1
|
García-Trujillo M, Lavado-García J, Boix-Besora A, Gòdia F, Cervera L. Gag HIV-1 Virus-like Particles and Extracellular Vesicles Functionalization with Spike Epitopes of SARS-CoV-2 Using a Copper-Free Click Chemistry Approach. Bioconjug Chem 2025; 36:486-499. [PMID: 39993141 PMCID: PMC12123617 DOI: 10.1021/acs.bioconjchem.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Enveloped nanoparticles such as extracellular vesicles (EVs) and virus-like particles (VLPs) have emerged as promising nanocarriers capable of transporting bioactive molecules for drug delivery and vaccination. Optimized functionalization methodologies are required to increase the functionalization levels of these nanoparticles, enhancing their performance. Here, a bioorthogonal copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reaction has been optimized to functionalize human immunodeficiency virus type 1 (HIV-1) Gag-based VLPs and EVs. The optimization process has been carried out through reaction kinetics and design of experiments (DoE) using Cy5 as a reporter molecule. The functionalization of both VLPs and EVs has been studied using super-resolution fluorescence microscopy (SRFM), revealing remarkable differences between Gag-VLPs and coproduced EVs. EVs produced by mock transfection and cell growth have been functionalized achieving a mean of 3618.63 ± 48.91 and 6498.75 ± 352.71 Cy5 molecules covalently linked per particle (Cy5cov/particle), respectively. Different nanoparticles have been functionalized with two linear B-cell epitopes from the Spike protein of SARS-CoV-2, S315-338 TSNFRVQPTESIVRFPNITNLCPF and S648-663 GCLIGAEHVNNSYECD, and analyzed by an immunoassay with sera from COVID-19 patients. The obtained results validate the selected B-cell epitopes and highlight the potential of the optimized functionalization approach for the development of nanoparticle-based vaccines.
Collapse
Affiliation(s)
- Marc García-Trujillo
- Grup
d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada
ENG4BIO, Escola d’Enginyeria, Universitat
Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193Barcelona, Spain
| | - Jesús Lavado-García
- Grup
d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada
ENG4BIO, Escola d’Enginyeria, Universitat
Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193Barcelona, Spain
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Arnau Boix-Besora
- Grup
d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada
ENG4BIO, Escola d’Enginyeria, Universitat
Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193Barcelona, Spain
- Institut
d’Investigació Biomèdica de BellvitgeIDIBELL, L’Hospitalet de Llobregat, 08908Barcelona, Spain
| | - Francesc Gòdia
- Grup
d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada
ENG4BIO, Escola d’Enginyeria, Universitat
Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193Barcelona, Spain
| | - Laura Cervera
- Grup
d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada
ENG4BIO, Escola d’Enginyeria, Universitat
Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola
del Vallès, 08193Barcelona, Spain
| |
Collapse
|
2
|
Hadj Hassine I, Ben M'hadheb M, Almalki MA, Gharbi J. Virus-like particles as powerful vaccination strategy against human viruses. Rev Med Virol 2024; 34:e2498. [PMID: 38116958 DOI: 10.1002/rmv.2498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Manel Ben M'hadheb
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jawhar Gharbi
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
3
|
Cho EJ, Cha Y, Lee SK, Kim HS, Kim JS, Lee EJ, Lee N, Hong KH, Huh HJ, Cha YJ, Kim HS. Development and Characterization of Synthetic Norovirus RNA for Use in Molecular Detection Methods. Ann Lab Med 2023; 43:38-44. [PMID: 36045055 PMCID: PMC9467847 DOI: 10.3343/alm.2023.43.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background Reference materials are essential for the quality assurance of molecular detection methods. We developed and characterized synthetic norovirus GI and GII RNA reference materials. Methods Norovirus GI and GII RNA sequences including the ORF1-ORF2 junction region were designed based on 1,495 reported norovirus sequences and synthesized via plasmid preparation and in vitro transcription. The synthetic norovirus GI and GII RNAs were evaluated using six commercial norovirus detection kits used in Korea and subjected to homogeneity and stability analyses. A multicenter study involving five laboratories and using four commercial real-time PCR norovirus detection assays was conducted for synthetic norovirus RNA characterization and uncertainty measurements. Results The synthetic norovirus GI and GII RNAs were positively detected using the six commercial norovirus detection kits and were homogeneous and stable for one year when stored at -20°C or -70°C. All data from the five laboratories were within a range of 1.0 log copies/μL difference for each RNA, and the overall mean concentrations for norovirus GI and GII RNAs were 7.90 log copies/μL and 6.96 log copies/μL, respectively. Conclusions The synthetic norovirus GI and GII RNAs are adequate for quality control based on commercial molecular detection reagents for noroviruses with high sequence variability. The synthetic RNAs can be used as reference materials in norovirus molecular detection methods.
Collapse
Affiliation(s)
- Eun-Jung Cho
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Younggil Cha
- Molecular Diagnostic R&D Center, Bioneer, Daejeon, Korea
| | - Su Kyung Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Jin Lee
- Department of Laboratory Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Nuri Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Ki Ho Hong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University Ilsan Hospital, Ilsan, Korea
| | - Young Joo Cha
- Corporate R&D Center for Biological Standards and Control, Resources and Innovation Cooperative, Hanam, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
4
|
Singh VA, Kumar CS, Khare B, Kuhn RJ, Banerjee M, Tomar S. Surface decorated reporter-tagged chikungunya virus-like particles for clinical diagnostics and identification of virus entry inhibitors. Virology 2023; 578:92-102. [PMID: 36473281 DOI: 10.1016/j.virol.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The ever-evolving and versatile VLP technology is becoming an increasingly popular area of science. This study presents surface decorated reporter-tagged VLPs of CHIKV, an enveloped RNA virus of the genus alphavirus and its applications. Western blot, IFA and live-cell imaging confirm the expression of reporter-tagged CHIK-VLPs from transfected HEK293Ts. CryoEM micrographs reveal particle diameter as ∼67nm and 56-70 nm, respectively, for NLuc CHIK-VLPs and mCherry CHIK-VLPs. Our study demonstrates that by exploiting NLuc CHIK-VLPs as a detector probe, robust ratiometric luminescence signal in CHIKV-positive sera compared to healthy controls can be achieved swiftly. Moreover, the potential activity of the Suramin drug as a CHIKV entry inhibitor has been validated through the reporter-tagged CHIK-VLPs. The results reported in this study open new avenues in the eVLPs domain and offer potential for large-scale screening of clinical samples and antiviral agents targeting entry of CHIKV and other alphaviruses.
Collapse
Affiliation(s)
- Vedita Anand Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Chandra Shekhar Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India
| | - Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
5
|
Lavado-García J, Pérez-Rubio P, Cervera L, Gòdia F. The cell density effect in animal cell-based bioprocessing: Questions, insights and perspectives. Biotechnol Adv 2022; 60:108017. [PMID: 35809763 DOI: 10.1016/j.biotechadv.2022.108017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
One of the main challenges in the development of bioprocesses based on cell transient expression is the commonly reported reduction of cell specific productivity at increasing cell densities. This is generally known as the cell density effect (CDE). Many efforts have been devoted to understanding the cell metabolic implications to this phenomenon in an attempt to design operational strategies to overcome it. A comprehensive analysis of the main studies regarding the CDE is provided in this work to better define the elements comprising its cause and impact. Then, examples of methodologies and approaches employed to achieve successful transient expression at high cell densities (HCD) are thoroughly reviewed. A critical assessment of the limitations of the reported studies in the understanding of the CDE is presented, covering the leading hypothesis of the molecular implications. The overall analysis of previous work on CDE may offer useful insights for further research into manufacturing of biologics.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Pol Pérez-Rubio
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Development of HEK-293 Cell Lines Constitutively Expressing Flaviviral Antigens for Use in Diagnostics. Microbiol Spectr 2022; 10:e0059222. [PMID: 35532242 PMCID: PMC9241944 DOI: 10.1128/spectrum.00592-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flaviviruses are important human pathogens worldwide. Diagnostic testing for these viruses is difficult because many of the pathogens require specialized biocontainment. To address this issue, we generated 39 virus-like particle (VLP)- and nonstructural protein 1 (NS1)-secreting stable cell lines in HEK-293 cells of 13 different flaviviruses, including dengue, yellow fever, Japanese encephalitis, West Nile, St. Louis encephalitis, Zika, Rocio, Ilheus, Usutu, and Powassan viruses. Antigen secretion was stable for at least 10 cell passages, as measured by enzyme-linked immunosorbent assays and immunofluorescence assays. Thirty-five cell lines (90%) had stable antigen expression over 10 passages, with three of these cell lines (7%) increasing in antigen expression and one cell line (3%) decreasing in antigen expression. Antigen secretion in the HEK-293 cell lines was higher than in previously developed COS-1 cell line counterparts. These antigens can replace current antigens derived from live or inactivated virus for safer use in diagnostic testing. IMPORTANCE Serological diagnostic testing for flaviviral infections is hindered by the need for specialized biocontainment for preparation of reagents and assay implementation. The use of previously developed COS-1 cell lines secreting noninfectious recombinant viral antigen is limited due to diminished antigen secretion over time. Here, we describe the generation of 39 flaviviral virus-like particle (VLP)- and nonstructural protein 1 (NS1)-secreting stable cell lines in HEK-293 cells representing 13 medically important flaviviruses. Antigen production was more stable and statistically higher in these newly developed cell lines than in their COS-1 cell line counterparts. The use of these cell lines for production of flaviviral antigens will expand serological diagnostic testing of flaviviruses worldwide.
Collapse
|
7
|
Process Design and Optimization towards Digital Twins for HIV-Gag VLP Production in HEK293 Cells, including Purification. Processes (Basel) 2022. [DOI: 10.3390/pr10020419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite great efforts to develop a vaccine against human immunodeficiency virus (HIV), which causes AIDS if untreated, no approved HIV vaccine is available to date. A promising class of vaccines are virus-like particles (VLPs), which were shown to be very effective for the prevention of other diseases. In this study, production of HI-VLPs using different 293F cell lines, followed by a three-step purification of HI-VLPs, was conducted. The quality-by-design-based process development was supported by process analytical technology (PAT). The HI-VLP concentration increased 12.5-fold while >80% purity was achieved. This article reports on the first general process development and optimization up to purification. Further research will focus on process development for polishing and formulation up to lyophilization. In addition, process analytical technology and process modeling for process automation and optimization by digital twins in the context of quality-by-design framework will be developed.
Collapse
|
8
|
Arista-Romero M, Delcanale P, Pujals S, Albertazzi L. Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles. ACS PHOTONICS 2022; 9:101-109. [PMID: 35083366 PMCID: PMC8778639 DOI: 10.1021/acsphotonics.1c01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 05/17/2023]
Abstract
Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFlu-S). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Pietro Delcanale
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco area delle Scienze 7/A, 43124 Parma, Italy
| | - Silvia Pujals
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
9
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
10
|
González-Domínguez I, Lorenzo E, Bernier A, Cervera L, Gòdia F, Kamen A. A Four-Step Purification Process for Gag VLPs: From Culture Supernatant to High-Purity Lyophilized Particles. Vaccines (Basel) 2021; 9:vaccines9101154. [PMID: 34696262 PMCID: PMC8539588 DOI: 10.3390/vaccines9101154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Gag-based virus-like particles (VLPs) have high potential as scaffolds for the development of chimeric vaccines and delivery strategies. The production of purified preparations that can be preserved independently from cold chains is highly desirable to facilitate distribution and access worldwide. In this work, a nimble purification has been developed, facilitating the production of Gag VLPs. Suspension-adapted HEK 293 cells cultured in chemically defined cell culture media were used to produce the VLPs. A four-step downstream process (DSP) consisting of membrane filtration, ion-exchange chromatography, polishing, and lyophilization was developed. The purification of VLPs from other contaminants such as host cell proteins (HCP), double-stranded DNA, or extracellular vesicles (EVs) was confirmed after their DSP. A concentration of 2.2 ± 0.8 × 109 VLPs/mL in the lyophilized samples was obtained after its storage at room temperature for two months. Morphology and structural integrity of purified VLPs was assessed by cryo-TEM and NTA. Likewise, the purification methodologies proposed here could be easily scaled up and applied to purify similar enveloped viruses and vesicles.
Collapse
Affiliation(s)
- Irene González-Domínguez
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
- Correspondence:
| | - Elianet Lorenzo
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Alice Bernier
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (A.B.); (A.K.)
| | - Laura Cervera
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Francesc Gòdia
- Departament d’Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.L.); (L.C.); (F.G.)
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (A.B.); (A.K.)
| |
Collapse
|
11
|
Alvim RGF, Lima TM, Silva JL, de Oliveira GAP, Castilho LR. Process intensification for the production of yellow fever virus-like particles as potential recombinant vaccine antigen. Biotechnol Bioeng 2021; 118:3581-3592. [PMID: 34143442 DOI: 10.1002/bit.27864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Yellow fever (YF) is a life-threatening viral disease endemic in parts of Africa and Latin America. Although there is a very efficacious vaccine since the 1930s, YF still causes 29,000-60,000 annual deaths. During recent YF outbreaks there were issues of vaccine shortage of the current egg-derived vaccine; rare but fatal vaccine adverse effects occurred; and cases were imported to Asia, where the circulating mosquito vector could potentially start local transmission. Here we investigated the production of YF virus-like particles (VLPs) using stably transfected HEK293 cells. Process intensification was achieved by combining sequential FACS (fluorescence-activated cell sorting) rounds to enrich the stable cell pool in terms of high producers and the use of perfusion processes. At shaken-tube scale, FACS enrichment of cells allowed doubling VLP production, and pseudoperfusion cultivation (with daily medium exchange) further increased VLP production by 9.3-fold as compared to batch operation mode. At perfusion bioreactor scale, the use of an inclined settler as cell retention device showed operational advantages over an ATF system. A one-step steric exclusion chromatography purification allowed significant removal of impurities and is a promising technique for future integration of upstream and downstream operations. Characterization by different techniques confirmed the identity and 3D-structure of the purified VLPs.
Collapse
Affiliation(s)
- Renata G F Alvim
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Túlio M Lima
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,School of Chemistry (EQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Leda R Castilho
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Pulix M, Lukashchuk V, Smith DC, Dickson AJ. Molecular characterization of HEK293 cells as emerging versatile cell factories. Curr Opin Biotechnol 2021; 71:18-24. [PMID: 34058525 DOI: 10.1016/j.copbio.2021.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
HEK293 cell lines are used for the production of recombinant proteins, virus-like particles and viral vectors. Recent work has generated molecular (systems level) characterisation of HEK293 variants that has enabled re-engineering of the cells towards enhanced use for manufacture-scale production of recombinant biopharmaceuticals (assessment of 'safe harbours' for gene insertion, engineering of new variants for stable, amplifiable expression). In parallel, there have been notable advances in the bioprocessing conditions (suspension adaptation, development of defined serum-free media) that offer the potential for large-scale manufacture, a feature especially important in the drive to produce viral vectors at large-scale and at commercially viable costs for gene therapy. The combination of cell-based and bioprocess-based modification of existing HEK293 cell processes, frequently informed by understandings transferred from developments with Chinese hamster ovary cell lines, seems destined to place the HEK293 cell systems firmly as a critical platform for production of future biologically based therapeutics.
Collapse
Affiliation(s)
- Michela Pulix
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, Department of Chemical Engineering & Analytical Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Vera Lukashchuk
- Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Daniel C Smith
- Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, Department of Chemical Engineering & Analytical Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
13
|
Cellular pathways of recombinant adeno-associated virus production for gene therapy. Biotechnol Adv 2021; 49:107764. [PMID: 33957276 DOI: 10.1016/j.biotechadv.2021.107764] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are among the most important vectors for in vivo gene therapies. With the rapid development of gene therapy, current rAAV manufacturing capacity faces a challenge to meet the emerging demand for these therapies in the future. To examine the bottlenecks in rAAV production during cell culture, we focus here on an analysis of cellular pathways of rAAV production, based on an overview of assembly mechanisms first in the wild-type (wt) AAV replication and then in the common methods of rAAV production. The differences analyzed between the wild-type and recombinant systems provide insights into the mechanistic differences that may correlate with viral productivity. Based on these analyses, we identify potential barriers to high productivity of rAAV and discuss future directions for improvement to meet the emerging needs set by the growth of rAAV-based therapy and the needs of patients.
Collapse
|
14
|
Chimeric VLPs Based on HIV-1 Gag and a Fusion Rabies Glycoprotein Induce Specific Antibodies against Rabies and Foot-and-Mouth Disease Virus. Vaccines (Basel) 2021; 9:vaccines9030251. [PMID: 33809060 PMCID: PMC7999769 DOI: 10.3390/vaccines9030251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Foot and mouth disease is a livestock acute disease, causing economic losses in affected areas. Currently, control of this disease is performed by mandatory vaccination campaigns using inactivated viral vaccines. In this work, we describe the development of a chimeric VLP-based vaccine candidate for foot-and-mouth disease virus (FMDV), based on the co-expression of the HIV-1 Gag protein and a novel fusion rabies glycoprotein (RVG), which carries in its N-term the FMDV main antigen: the G-H loop. It is demonstrated by confocal microscopy that both Gag-GFP polyprotein and the G-H loop colocalize at the cell membrane and, that the Gag polyprotein of the HIV virus acts as a scaffold for enveloped VLPs that during the budding process acquires the proteins that are being expressed in the cell membrane. The obtained VLPs were spherical particles of 130 ± 40 nm in diameter (analyzed by TEM, Cryo-TEM and NTA) carrying an envelope membrane that efficiently display the GH-RVG on its surface (analyzed by gold immunolabeling). Immunostainings with a FMDV hyperimmune serum showed that the heterologous antigenic site, genetically fused to RVG, is recognized by specific G-H loop antibodies. Additionally, the cVLPs produced expose the G-H loop to the liquid surrounding (analyzed by specific ELISA). Finally, we confirmed that these FMD cVLPs are able to induce a specific humoral immune response, based on antibodies directed to the G-H loop in experimental animals.
Collapse
|
15
|
Badalanloo K, Naji T, Ahmadi R. Cytotoxic and Apoptotic Effects of Celecoxib and Topotecan on AGS and HEK 293 Cell Lines. J Gastrointest Cancer 2020; 53:99-104. [PMID: 33200341 DOI: 10.1007/s12029-020-00434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE This study is aimed to assess the anti-cancer effects of Celecoxib and topotecan against Human Gastric cancer cell line (AGS) in comparison to the control in an in-vitro study. METHODS In this experimental study, Celecoxib and topotecan was prepared at concentrations of 500, 250, 125, 62.5, 31.2, 15.6 and 7.8 mg/ml. The effect of celecoxib and topotecan separately and in mixed form were investigated on AGS and normal HEK cells. To investigate the cell survival, MTT method was used to study the pathway of apoptosis using flowcytometry and Caspase kits based on colorimetric. Finally, one-way ANOVA and t-test were used to analyze the data. RESULTS The results of this study indicated that Celecoxib was cytotoxic against AGS and HEK cell lines. The topotecan indicated a significant cytotoxicity against AGS cells and was not toxic against HEK cell line. Our results indicated that Celecoxib and topotecan have synergist effects against AGS and HEK cell lines and were more effective than separate celecoxib or topotecan. CONCLUSION The mixture of clecoxib and topotecan was more effective than celecoxib and topotecan in separate form. Our results indicated that use mixed forms of treatments can cause excellent therapeutic effects and can cause less side effects.
Collapse
Affiliation(s)
- Kimia Badalanloo
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran
| | - Tahereh Naji
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rahim Ahmadi
- Department of Physiology, Faculty of Basic Sciences, Hamadan Branch, Islamic Azad University, Hamadan, Iran
| |
Collapse
|
16
|
Lavado-García J, Cervera L, Gòdia F. An Alternative Perfusion Approach for the Intensification of Virus-Like Particle Production in HEK293 Cultures. Front Bioeng Biotechnol 2020; 8:617. [PMID: 32637402 PMCID: PMC7318772 DOI: 10.3389/fbioe.2020.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023] Open
Abstract
Virus-like particles (VLPs) have gained interest over the last years as recombinant vaccine formats, as they generate a strong immune response and present storage and distribution advantages compared to conventional vaccines. Therefore, VLPs are being regarded as potential vaccine candidates for several diseases. One requirement for their further clinical testing is the development of scalable processes and production platforms for cell-based viral particles. In this work, the extended gene expression (EGE) method, which consists in consecutive media replacements combined with cell retransfections, was successfully optimized and transferred to a bioreactor operating in perfusion. A process optimization using design of experiments (DoE) was carried out to obtain optimal values for the time of retransfection, the cell specific perfusion rate (CSPR) and transfected DNA concentration, improving 86.7% the previously reported EGE protocol in HEK293. Moreover, it was successfully implemented at 1.5L bioreactor using an ATF as cell retention system achieving concentrations of 6.8·1010 VLP/mL. VLP interaction with the ATF hollow fibers was studied via confocal microscopy, field emission scanning electron microscopy, and nanoparticle tracking analysis to design a bioprocess capable of separating unassembled Gag monomers and concentrate VLPs in one step.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Pushko P, Tretyakova I. Influenza Virus Like Particles (VLPs): Opportunities for H7N9 Vaccine Development. Viruses 2020; 12:v12050518. [PMID: 32397182 PMCID: PMC7291233 DOI: 10.3390/v12050518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023] Open
Abstract
In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.
Collapse
|
18
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quantification of the HIV-1 virus-like particle production process by super-resolution imaging: From VLP budding to nanoparticle analysis. Biotechnol Bioeng 2020; 117:1929-1945. [PMID: 32242921 DOI: 10.1002/bit.27345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.
Collapse
Affiliation(s)
- Irene González-Domínguez
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Eduard Puente-Massaguer
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Laura Cervera
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| |
Collapse
|
19
|
Durous L, Rosa-Calatrava M, Petiot E. Advances in influenza virus-like particles bioprocesses. Expert Rev Vaccines 2019; 18:1285-1300. [DOI: 10.1080/14760584.2019.1704262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Durous
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
20
|
Characterization of influenza H1N1 Gag virus-like particles and extracellular vesicles co-produced in HEK-293SF. Vaccine 2019; 37:7100-7107. [DOI: 10.1016/j.vaccine.2019.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/06/2019] [Accepted: 07/05/2019] [Indexed: 01/02/2023]
|
21
|
Zika virus-like particles (VLPs): Stable cell lines and continuous perfusion processes as a new potential vaccine manufacturing platform. Vaccine 2019; 37:6970-6977. [DOI: 10.1016/j.vaccine.2019.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
|
22
|
Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine 2019; 37:6857-6867. [DOI: 10.1016/j.vaccine.2019.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
|
23
|
Cervera L, Gòdia F, Tarrés-Freixas F, Aguilar-Gurrieri C, Carrillo J, Blanco J, Gutiérrez-Granados S. Production of HIV-1-based virus-like particles for vaccination: achievements and limits. Appl Microbiol Biotechnol 2019; 103:7367-7384. [DOI: 10.1007/s00253-019-10038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|
24
|
Pereira Aguilar P, González-Domínguez I, Schneider TA, Gòdia F, Cervera L, Jungbauer A. At-line multi-angle light scattering detector for faster process development in enveloped virus-like particle purification. J Sep Sci 2019; 42:2640-2649. [PMID: 31169979 PMCID: PMC6771681 DOI: 10.1002/jssc.201900441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/05/2022]
Abstract
At‐line static light scattering and fluorescence monitoring allows direct in‐process tracking of fluorescent virus‐like particles. We have demonstrated this by coupling at‐line multi‐angle light scattering and fluorescence detectors to the downstream processing of enveloped virus‐like particles. Since light scattering intensity is directly proportional to particle concentration, our strategy allowed a swift identification of product containing fractions and rapid process development. Virus‐like particles containing the Human Immunodeficiency Virus‐1 Gag protein fused to the Green Fluorescence protein were produced in Human Embryonic Kidney 293 cells by transient transfection. A single‐column anion‐exchange chromatography method was used for direct capture and purification. The majority of host‐cell protein impurities passed through the column without binding. Virus‐like particles bound to the column were eluted by linear or step salt gradients. Particles recovered in the step gradient purification were characterized by nanoparticle tracking analysis, size exclusion chromatography coupled to multi‐angle light scattering and fluorescence detectors and transmission electron microscopy. A total recovery of 66% for the fluorescent particles was obtained with a 50% yield in the main product peak. Virus‐like particles were concentrated 17‐fold to final a concentration of 4.45 × 1010 particles/mL. Simple buffers and operation make this process suitable for large scale purposes.
Collapse
Affiliation(s)
| | - Irene González-Domínguez
- Department d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Francesc Gòdia
- Department d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laura Cervera
- Department d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
25
|
González-Domínguez I, Grimaldi N, Cervera L, Ventosa N, Gòdia F. Impact of physicochemical properties of DNA/PEI complexes on transient transfection of mammalian cells. N Biotechnol 2019; 49:88-97. [DOI: 10.1016/j.nbt.2018.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/24/2018] [Accepted: 09/29/2018] [Indexed: 12/26/2022]
|
26
|
|