1
|
Helmold M, Amann R. Advancing ORFV-Based Therapeutics to the Clinical Stage. Rev Med Virol 2025; 35:e70038. [PMID: 40346732 PMCID: PMC12064845 DOI: 10.1002/rmv.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/06/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025]
Abstract
The Orf virus (ORFV) is the prototype member of the parapoxvirus family and has long been recognized for its robust immunogenicity, favourable safety profile and its ability to stimulate both cellular and humoural immune responses without inducing significant anti-vector immunity. Despite these inherent advantages, early applications of ORFV-based technologies were limited by challenges in manufacturing scalability and uncertainties regarding clinical safety in humans. However, recent breakthroughs have transformed this therapeutic landscape. A landmark achievement is the development of Prime-2-CoV, an ORFV-based anti-COVID-19 vaccine that has advanced into human clinical trials, providing the first clinical evidence of live ORFV's feasibility, safety and immunogenicity. This milestone, together with the establishment of a good manufacturing practice (GMP)-compliant production process and comprehensive preclinical evaluations, has laid a robust foundation for broader clinical applications of ORFV-based therapeutics. Moreover, the use of ORFV as an oncolytic virus therapy has shown promising results, effectively converting immunologically 'cold' tumours into 'hot' ones, underscoring its versatility as a therapeutic platform. In this review, we critically assess recent advances in ORFV-based therapeutics, with a particular focus on vaccine development and oncolytic virotherapy (OVT). We thoroughly discuss the milestones and impact of the first ORFV-based clinical trial, outline strategies for optimizing the technology and provide insights into overcoming remaining challenges. Collectively, these advancements position ORFV as a highly promising and versatile platform for next-generation prophylactic and therapeutic interventions in both human and veterinary medicine, while also providing a roadmap for future innovations.
Collapse
Affiliation(s)
- Matthias Helmold
- Institute of ImmunologyUniversity Hospital TübingenTübingenGermany
- Institute of Tropical MedicineUniversity Hospital TübingenTübingenGermany
| | - Ralf Amann
- Institute of ImmunologyUniversity Hospital TübingenTübingenGermany
| |
Collapse
|
2
|
Pelz L, Dogra T, Marichal-Gallardo P, Hein MD, Hemissi G, Kupke SY, Genzel Y, Reichl U. Production of antiviral "OP7 chimera" defective interfering particles free of infectious virus. Appl Microbiol Biotechnol 2024; 108:97. [PMID: 38229300 PMCID: PMC10787692 DOI: 10.1007/s00253-023-12959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
Defective interfering particles (DIPs) of influenza A virus (IAV) are suggested for use as broad-spectrum antivirals. We discovered a new type of IAV DIP named "OP7" that carries point mutations in its genome segment (Seg) 7 instead of a deletion as in conventional DIPs (cDIPs). Recently, using genetic engineering tools, we generated "OP7 chimera DIPs" that carry point mutations in Seg 7 plus a deletion in Seg 1. Together with cDIPs, OP7 chimera DIPs were produced in shake flasks in the absence of infectious standard virus (STV), rendering UV inactivation unnecessary. However, only part of the virions harvested were OP7 chimera DIPs (78.7%) and total virus titers were relatively low. Here, we describe the establishment of an OP7 chimera DIP production process applicable for large-scale production. To increase total virus titers, we reduced temperature from 37 to 32 °C during virus replication. Production of almost pure OP7 chimera DIP preparations (99.7%) was achieved with a high titer of 3.24 log10(HAU/100 µL). This corresponded to an 11-fold increase relative to the initial process. Next, this process was transferred to a stirred tank bioreactor resulting in comparable yields. Moreover, DIP harvests purified and concentrated by steric exclusion chromatography displayed an increased interfering efficacy in vitro. Finally, a perfusion process with perfusion rate control was established, resulting in a 79-fold increase in total virus yields compared to the original batch process in shake flasks. Again, a very high purity of OP7 chimera DIPs was obtained. This process could thus be an excellent starting point for good manufacturing practice production of DIPs for use as antivirals. KEY POINTS: • Scalable cell culture-based process for highly effective antiviral OP7 chimera DIPs • Production of almost pure OP7 chimera DIPs in the absence of infectious virus • Perfusion mode production and purification train results in very high titers.
Collapse
Affiliation(s)
- Lars Pelz
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Tanya Dogra
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Marc Dominique Hein
- Otto Von Guericke University Magdeburg, Bioprocess Engineering, Magdeburg, Germany
| | - Ghada Hemissi
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Sascha Young Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Otto Von Guericke University Magdeburg, Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
3
|
Hengelbrock A, Probst F, Baukmann S, Uhl A, Tschorn N, Stitz J, Schmidt A, Strube J. Digital Twin for Continuous Production of Virus-like Particles toward Autonomous Operation. ACS OMEGA 2024; 9:34990-35013. [PMID: 39157157 PMCID: PMC11325504 DOI: 10.1021/acsomega.4c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]
Abstract
Lentiviral vector and virus-like particle (VLP) manufacturing have been published in fed-batch upstream and batch downstream modes before. Batch downstream and continuous upstream in perfusion mode were reported as well. This study exemplifies development and validation steps for a digital twin combining a physical-chemical-based mechanistic model for all unit operations with a process analytical technology strategy in order to show the efforts and benefits of autonomous operation approaches for manufacturing scale. As the general models are available from various other biologic manufacturing studies, the main step is model calibration for the human embryo kidney cell-based VLPs with experimental quantitative validation within the Quality-by-Design (QbD) approach, including risk assessment to define design and control space. For continuous operation in perfusion mode, the main challenge is the efficient separation of large particle manifolds for VLPs and cells, including cell debris, which is of similar size. Here, innovative tangential flow filtration operations are needed to avoid fast blocking with low mechanical stress pumps. A twofold increase of productivity was achieved using simulation case studies. This increase is similar to improvements previously described for other entities like plasmid DNAs, monoclonal antibodies (mAbs), and single-chain fragments of variability (scFv) fragments. The advantages of applying a digital twin for an advanced process control strategy have proven additional productivity gains of 20% at 99.9% reliability.
Collapse
Affiliation(s)
- Alina Hengelbrock
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Finja Probst
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Simon Baukmann
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Alexander Uhl
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Natalie Tschorn
- Faculty
of Applied Natural Sciences, Technische
Hochschule Köln, Leverkusen 51379, Germany
| | - Jörn Stitz
- Faculty
of Applied Natural Sciences, Technische
Hochschule Köln, Leverkusen 51379, Germany
| | - Axel Schmidt
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Jochen Strube
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| |
Collapse
|
4
|
Dorn M, Lucas C, Klottrup-Rees K, Lee K, Micheletti M. Platform development for high-throughput optimization of perfusion processes-Part II: Variation of perfusion rate strategies in microwell plates. Biotechnol Bioeng 2024; 121:1774-1788. [PMID: 38433473 DOI: 10.1002/bit.28685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The biopharmaceutical industry is replacing fed-batch with perfusion processes to take advantage of reduced capital and operational costs due to the operation at high cell densities (HCD) and improved productivities. HCDs are achieved by cell retention and continuous medium exchange, which is often based on the cell-specific perfusion rate (CSPR). To obtain a cost-productive process the perfusion rate must be determined for each process individually. However, determining optimal operating conditions remain labor-intensive and time-consuming experiments, as investigations are performed in lab-scale perfusion bioreactors. Small-scale models such as microwell plates (MWPs) provide an option for screening multiple perfusion rates in parallel in a semi-perfusion mimic. This study investigated two perfusion rate strategies applied to the MWP platform operated in semi-perfusion. The CSPR-based perfusion rate strategy aimed to maintain multiple CSPR values throughout the cultivation and was compared to a cultivation with a perfusion rate of 1 RV d-1. The cellular performance was investigated with the dual aim (i) to achieve HCD, when inoculating at conventional and HCDs, and (ii) to maintain HCDs, when applying an additional manual cell bleed. With both perfusion rate strategies viable cell concentrations up to 50 × 106 cells mL-1 were achieved and comparable results for key metabolites and antibody product titers were obtained. Furthermore, the combined application of cell bleed and CSPR-based medium exchange was successfully shown with similar results for growth, metabolites, and productivities, respectively, while reducing the medium consumption by up to 50% for HCD cultivations.
Collapse
Affiliation(s)
- Marie Dorn
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| | - Ciara Lucas
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| | - Kerensa Klottrup-Rees
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, AstraZeneca, Cambridge, UK
| | - Ken Lee
- BioProcess Technologies and Engineering, Biopharmaceutical Development, AstraZeneca, Gaithersburg, Maryland, USA
| | - Martina Micheletti
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Guo H, Ding X, Hua D, Liu M, Yang M, Gong Y, Ye N, Chen X, He J, Zhang Y, Xu X, Li J. Enhancing Dengue Virus Production and Immunogenicity with Celcradle™ Bioreactor: A Comparative Study with Traditional Cell Culture Methods. Vaccines (Basel) 2024; 12:563. [PMID: 38932292 PMCID: PMC11209354 DOI: 10.3390/vaccines12060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
The dengue virus, the primary cause of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is the most widespread mosquito-borne virus worldwide. In recent decades, the prevalence of dengue fever has increased markedly, presenting substantial public health challenges. Consequently, the development of an efficacious vaccine against dengue remains a critical goal for mitigating its spread. Our research utilized Celcradle™, an innovative tidal bioreactor optimized for high-density cell cultures, to grow Vero cells for dengue virus production. By maintaining optimal pH levels (7.0 to 7.4) and glucose concentrations (1.5 g/L to 3.5 g/L) during the proliferation of cells and viruses, we achieved a peak Vero cell count of approximately 2.46 × 109, nearly ten times the initial count. The use of Celcradle™ substantially decreased the time required for cell yield and virus production compared to conventional Petri dish methods. Moreover, our evaluation of the immunogenicity of the Celcradle™-produced inactivated DENV4 through immunization of mice revealed that sera from these mice demonstrated cross-reactivity with DENV4 cultured in Petri dishes and showed elevated antibody titers compared to those from mice immunized with virus from Petri dishes. These results indicate that the dengue virus cultivated using the Celcradle™ system exhibited enhanced immunogenicity relative to that produced in traditional methods. In conclusion, our study highlights the potential of the Celcradle™ bioreactor for large-scale production of inactivated dengue virus vaccines, offering significant promise for reducing the global impact of dengue virus infections and accelerating the development of effective vaccination strategies.
Collapse
Affiliation(s)
- Hongxia Guo
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaoyan Ding
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Maocheng Yang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yuanxin Gong
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Nan Ye
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaozhong Chen
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jiuxiang He
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| |
Collapse
|
6
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
7
|
Pérez-Rubio P, Lavado-García J, Bosch-Molist L, Romero EL, Cervera L, Gòdia F. Extracellular vesicle depletion and UGCG overexpression mitigate the cell density effect in HEK293 cell culture transfection. Mol Ther Methods Clin Dev 2024; 32:101190. [PMID: 38327808 PMCID: PMC10847930 DOI: 10.1016/j.omtm.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
The hitherto unexplained reduction of cell-specific productivity in transient gene expression (TGE) at high cell density (HCD) is known as the cell density effect (CDE). It currently represents a major challenge in TGE-based bioprocess intensification. This phenomenon has been largely reported, but the molecular principles governing it are still unclear. The CDE is currently understood to be caused by the combination of an unknown inhibitory compound in the extracellular medium and an uncharacterized cellular change at HCD. This study investigates the role of extracellular vesicles (EVs) as extracellular inhibitors for transfection through the production of HIV-1 Gag virus-like particles (VLPs) via transient transfection in HEK293 cells. EV depletion from the extracellular medium restored transfection efficiency in conditions that suffer from the CDE, also enhancing VLP budding and improving production by 60%. Moreover, an alteration in endosomal formation was observed at HCD, sequestering polyplexes and preventing transfection. Overexpression of UDP-glucose ceramide glucosyltransferase (UGCG) enzyme removed intracellular polyplex sequestration, improving transfection efficiency. Combining EV depletion and UGCG overexpression improved transfection efficiency by ∼45% at 12 × 106 cells/mL. These results suggest that the interaction between polyplexes and extracellular and intracellular vesicles plays a crucial role in the CDE, providing insights for the development of strategies to mitigate its impact.
Collapse
Affiliation(s)
- Pol Pérez-Rubio
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Lavado-García
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laia Bosch-Molist
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Elianet Lorenzo Romero
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Göbel S, Jaén KE, Fernandes RP, Reiter M, Altomonte J, Reichl U, Genzel Y. Characterization of a quail suspension cell line for production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:3335-3346. [PMID: 37584190 DOI: 10.1002/bit.28530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
The development of efficient processes for the production of oncolytic viruses (OV) plays a crucial role regarding the clinical success of virotherapy. Although many different OV platforms are currently under investigation, manufacturing of such viruses still mainly relies on static adherent cell cultures, which bear many challenges, particularly for fusogenic OVs. Availability of GMP-compliant continuous cell lines is limited, further complicating the development of commercially viable products. BHK21, AGE1. CR and HEK293 cells were previously identified as possible cell substrates for the recombinant vesicular stomatitis virus (rVSV)-based fusogenic OV, rVSV-NDV. Now, another promising cell substrate was identified, the CCX.E10 cell line, developed by Nuvonis Technologies. This suspension cell line is considered non-GMO as no foreign genes or viral sequences were used for its development. The CCX.E10 cells were thus thoroughly investigated as a potential candidate for OV production. Cell growth in the chemically defined medium in suspension resulted in concentrations up to 8.9 × 106 cells/mL with a doubling time of 26.6 h in batch mode. Cultivation and production of rVSV-NDV, was demonstrated successfully for various cultivation systems (ambr15, shake flask, stirred tank reactor, and orbitally shaken bioreactor) at vessel scales ranging from 15 mL to 10 L. High infectious virus titers of up to 4.2 × 108 TCID50 /mL were reached in orbitally shaken bioreactors and stirred tank reactors in batch mode, respectively. Our results suggest that CCX.E10 cells are a very promising option for industrial production of OVs, particularly for fusogenic VSV-based constructs.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Rita P Fernandes
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | | | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
9
|
Göbel S, Jaén KE, Dorn M, Neumeyer V, Jordan I, Sandig V, Reichl U, Altomonte J, Genzel Y. Process intensification strategies toward cell culture-based high-yield production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:2639-2657. [PMID: 36779302 DOI: 10.1002/bit.28353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Marie Dorn
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Faculty of Process and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Victoria Neumeyer
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
10
|
Eilts F, Labisch JJ, Orbay S, Harsy YMJ, Steger M, Pagallies F, Amann R, Pflanz K, Wolff MW. Stability studies for the identification of critical process parameters for a pharmaceutical production of the Orf virus. Vaccine 2023:S0264-410X(23)00722-3. [PMID: 37353451 DOI: 10.1016/j.vaccine.2023.06.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
A promising new vaccine platform is based on the Orf virus, a viral vector of the genus Parapoxvirus, which is currently being tested in phase I clinical trials. The application as a vaccine platform mandates a well-characterised, robust, and efficient production process. To identify critical process parameters in the production process affecting the virus' infectivity, the Orf virus was subjected to forced degradation studies, including thermal, pH, chemical, and mechanical stress conditions. The tests indicated a robust virus infectivity within a pH range of 5-7.4 and in the presence of the tested buffering substances (TRIS, HEPES, PBS). The ionic strength up to 0.5 M had no influence on the Orf virus' infectivity stability for NaCl and MgCl2, while NH4Cl destabilized significantly. Furthermore, short-term thermal stress of 2d up to 37 °C and repeated freeze-thaw cycles (20cycles) did not affect the virus' infectivity. The addition of recombinant human serum albumin was found to reduce virus inactivation. Last, the Orf virus showed a low shear sensitivity induced by peristaltic pumps and mixing, but was sensitive to ultrasonication. The isoelectric point of the applied Orf virus genotype D1707-V was determined at pH3.5. The broad picture of the Orf virus' infectivity stability against environmental parameters is an important contribution for the identification of critical process parameters for the production process, and supports the development of a stable pharmaceutical formulation. The work is specifically relevant for enveloped (large DNA) viruses, like the Orf virus and like most vectored vaccine approaches.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Jennifer J Labisch
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany; Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Lower Saxony, Germany
| | - Sabri Orbay
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany; Prime Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| |
Collapse
|
11
|
Drillien R, Pradeau-Aubreton K, Batisse J, Mezher J, Schenckbecher E, Marguin J, Ennifar E, Ruff M. Efficient production of protein complexes in mammalian cells using a poxvirus vector. PLoS One 2022; 17:e0279038. [PMID: 36520869 PMCID: PMC9754296 DOI: 10.1371/journal.pone.0279038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The production of full length, biologically active proteins in mammalian cells is critical for a wide variety of purposes ranging from structural studies to preparation of subunit vaccines. Prior research has shown that Modified vaccinia virus Ankara encoding the bacteriophage T7 RNA polymerase (MVA-T7) is particularly suitable for high level expression of proteins upon infection of mammalian cells. The expression system is safe for users and 10-50 mg of full length, biologically active proteins may be obtained in their native state, from a few litres of infected cell cultures. Here we report further improvements which allow an increase in the ease and speed of recombinant virus isolation, the scale-up of protein production and the simultaneous synthesis of several polypeptides belonging to a protein complex using a single virus vector. Isolation of MVA-T7 viruses encoding foreign proteins was simplified by combining positive selection for virus recombinants and negative selection against parental virus, a process which eliminated the need for tedious plaque purification. Scale-up of protein production was achieved by infecting a BHK 21 suspension cell line and inducing protein expression with previously infected cells instead of virus, thus saving time and effort in handling virus stocks. Protein complexes were produced from infected cells by concatenating the Tobacco Etch Virus (TEV) N1A protease sequence with each of the genes of the complex into a single ORF, each gene being separated from the other by twin TEV protease cleavage sites. We report the application of these methods to the production of a complex formed on the one hand between the HIV-1 integrase and its cell partner LEDGF and on the other between the HIV-1 VIF protein and its cell partners APOBEC3G, CBFβ, Elo B and Elo C. The strategies developed in this study should be valuable for the overexpression and subsequent purification of numerous protein complexes.
Collapse
Affiliation(s)
- Robert Drillien
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
- * E-mail: (RD); (MR)
| | - Karine Pradeau-Aubreton
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
| | - Julien Batisse
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
| | - Joëlle Mezher
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Emma Schenckbecher
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Justine Marguin
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Eric Ennifar
- Structure et Dynamique des Machines Biomoléculaires, Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS/Université de Strasbourg, Strasbourg, France
| | - Marc Ruff
- Department of Integrative Structural Biology, IGBMC, University of Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France
- * E-mail: (RD); (MR)
| |
Collapse
|
12
|
Mendes JP, Fernandes B, Pineda E, Kudugunti S, Bransby M, Gantier R, Peixoto C, Alves PM, Roldão A, Silva RJS. AAV process intensification by perfusion bioreaction and integrated clarification. Front Bioeng Biotechnol 2022; 10:1020174. [PMID: 36420444 PMCID: PMC9676353 DOI: 10.3389/fbioe.2022.1020174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 08/31/2023] Open
Abstract
Adeno-associated viruses (AAVs) demand for clinical trials and approved therapeutic applications is increasing due to this vector's overall success and potential. The high doses associated with administration strategies challenges bioprocess engineers to develop more efficient technologies and innovative strategies capable of increasing volumetric productivity. In this study, alternating tangential flow (ATF) and Tangential Flow Depth filtration (TFDF) techniques were compared as to their potential for 1) implementing a high-cell-density perfusion process to produce AAV8 using mammalian HEK293 cells and transient transfection, and 2) integrating AAV harvest and clarification units into a single step. On the first topic, the results obtained demonstrate that AAV expression improves with a medium exchange strategy. This was evidenced firstly in the small-scale perfusion-mocking study and later verified in the 2 L bioreactor operated in perfusion mode. Fine-tuning the shear rate in ATF and TFDF proved instrumental in maintaining high cell viabilities and, most importantly, enhancing AAV-specific titers (7.6 × 104 VG/cell), i.e., up to 4-fold compared to non-optimized perfusion cultures and 2-fold compared with batch operation mode. Regarding the second objective, TFDF enabled the highest recovery yields during perfusion-based continuous harvest of extracellular virus and lysate clarification. This study demonstrates that ATF and TFDF techniques have the potential to support the production and continuous harvest of AAV, and enable an integrated clarification procedure, contributing to the simplification of operations and improving manufacturing efficiency.
Collapse
Affiliation(s)
- João P. Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Fernandes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
13
|
Nie J, Sun Y, Ren H, Huang L, Feng K, Li Y, Bai Z. Optimization of an adenovirus-vectored zoster vaccine production process with chemically defined medium and a perfusion system. Biotechnol Lett 2022; 44:1347-1358. [PMID: 36183022 PMCID: PMC9526465 DOI: 10.1007/s10529-022-03302-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/11/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Cells grown in chemically defined medium are sensitive to shear force, potentially resulting in decreased cell growth. We optimized the perfusion process for HEK293 cell-based recombinant adenovirus-vectored zoster vaccine (Ad-HER) production with chemically defined medium. METHODS We first studied the pseudo-continuous strategies in shake flasks as a mimic of the bioreactor equipped with perfusion systems. Using design of experiment (DoE) in shake flasks, we obtained the regression models between Ad-HER titer/virus input-output ratio and three production process parameters: time of infection (TOI), multiplicity of infection (MOI), and virus production pH (pH). We then confirmed the effect of Pluronic F68 (PF-68) at 3.0 g/L on HEK293 cell growth and Ad-HER production in shake flasks and a 2 L benchtop bioreactor. RESULTS The optimized process was scale-up to a 2 L benchtop bioreactor with the PATFP perfusion system, which yielded cell density of 7.4 × 106 cells/mL and Ad-HER titer of 9.8 × 109 IFU/mL at 2 dpi, comparable to the bioreactor with a ATF2 system. CONCLUSION This optimization strategy could be used to develop a robust process with stable cell culture performance and adenovirus titer. Increasing PF-68 concentration in chemically defined medium could protect cells from shear stress generated by perfusion system.
Collapse
Affiliation(s)
- Jianqi Nie
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Yang Sun
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - He Ren
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
| | - Lingling Huang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Kai Feng
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Lavado-García J, Pérez-Rubio P, Cervera L, Gòdia F. The cell density effect in animal cell-based bioprocessing: Questions, insights and perspectives. Biotechnol Adv 2022; 60:108017. [PMID: 35809763 DOI: 10.1016/j.biotechadv.2022.108017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
One of the main challenges in the development of bioprocesses based on cell transient expression is the commonly reported reduction of cell specific productivity at increasing cell densities. This is generally known as the cell density effect (CDE). Many efforts have been devoted to understanding the cell metabolic implications to this phenomenon in an attempt to design operational strategies to overcome it. A comprehensive analysis of the main studies regarding the CDE is provided in this work to better define the elements comprising its cause and impact. Then, examples of methodologies and approaches employed to achieve successful transient expression at high cell densities (HCD) are thoroughly reviewed. A critical assessment of the limitations of the reported studies in the understanding of the CDE is presented, covering the leading hypothesis of the molecular implications. The overall analysis of previous work on CDE may offer useful insights for further research into manufacturing of biologics.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Pol Pérez-Rubio
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
15
|
Göbel S, Kortum F, Chavez KJ, Jordan I, Sandig V, Reichl U, Altomonte J, Genzel Y. Cell-line screening and process development for a fusogenic oncolytic virus in small-scale suspension cultures. Appl Microbiol Biotechnol 2022; 106:4945-4961. [PMID: 35767011 PMCID: PMC9329169 DOI: 10.1007/s00253-022-12027-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Abstract
Oncolytic viruses (OVs) represent a novel class of immunotherapeutics under development for the treatment of cancers. OVs that express a cognate or transgenic fusion protein is particularly promising as their enhanced intratumoral spread via syncytia formation can be a potent mechanism for tumor lysis and induction of antitumor immune responses. Rapid and efficient fusion of infected cells results in cell death before high titers are reached. Although this is an attractive safety feature, it also presents unique challenges for large-scale clinical-grade manufacture of OVs. Here we evaluate the use of four different suspension cell lines for the production of a novel fusogenic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV). The candidate cell lines were screened for growth, metabolism, and virus productivity. Permissivity was evaluated based on extracellular infectious virus titers and cell-specific virus yields (CSVYs). For additional process optimizations, virus adaptation and multiplicity of infection (MOI) screenings were performed and confirmed in a 1 L bioreactor. BHK-21 and HEK293SF cells infected at concentrations of 2 × 106 cells/mL were identified as promising candidates for rVSV-NDV production, leading to infectious titers of 3.0 × 108 TCID50/mL and 7.5 × 107 TCID50/mL, and CSVYs of 153 and 9, respectively. Compared to the AGE1.CR.pIX reference produced in adherent cultures, oncolytic potency was not affected by production in suspension cultures and possibly even increased in cultures of HEK293SF and AGE1.CR.pIX. Our study describes promising suspension cell-based processes for efficient large-scale manufacturing of rVSV-NDV. Key points • Cell contact-dependent oncolytic virus (OV) replicates in suspension cells. • Oncolytic potency is not encompassed during suspension cultivation. • Media composition, cell line, and MOI are critical process parameters for OV production. • The designed process is scalable and shows great promise for manufacturing clinical-grade material. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12027-5.
Collapse
Affiliation(s)
- Sven Göbel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Fabian Kortum
- Department of Internal Medicine II, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Karim Jaén Chavez
- Department of Internal Medicine II, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Ingo Jordan
- ProBioGen AG, Herbert-Bayer-Str. 8, 13086, Berlin, Germany
| | - Volker Sandig
- ProBioGen AG, Herbert-Bayer-Str. 8, 13086, Berlin, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-Von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
16
|
Trabelsi K, Zakour MB, Jordan I, Sandig V, Rourou S, Kallel H. Development of an efficient veterinary rabies vaccine production process in the avian suspension cell line AGE1.CR.pIX. BMC Biotechnol 2022; 22:17. [PMID: 35715843 PMCID: PMC9206308 DOI: 10.1186/s12896-022-00747-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mass vaccination of dogs as important rabies reservoir is proposed to most effectively reduce and eliminate rabies also in humans. However, a minimum coverage of 70% needs to be achieved for control of the disease in zoonotic regions. In numerous developing countries, dog vaccination rate is still dangerously low because of economic constraints and due to a high turnover in dog populations. Improved vaccine production processes may help to alleviate cost and supply limitations. In this work, we studied and optimized the replication and vaccine potency of PV rabies virus strain in the muscovy-duck derived AGE1.CR and AGE1.CR.pIX suspension cell lines. Results The BHK-21-adapted PV rabies virus strain replicated efficiently in the avian cell lines without requirement for prior passaging. CR.pIX was previously shown to augment heat shock responses and supported slightly higher infectious titers compared to the parental CR cell line. Both cell lines allowed replication of rabies virus also in absence of recombinant IGF, the only complex component of the chemically defined medium that was developed for the two cell lines. After scale-up from optimization experiments in shake flask to production in 7-l bioreactors peak virus titers of 2.4 × 108 FFU/ml were obtained. The potency of inactivated rabies virus harvest according to the NIH test was 3.5 IU/ml. Perfusion with the chemically defined medium during the virus replication phase improved the potency of the vaccine twofold, and increased the number of doses 9.6 fold. Conclusion This study demonstrates that a rabies vaccine for animal vaccination can be produced efficiently in the AGE1.CR.pIX suspension cell line in a scalable process in chemically defined medium.
Collapse
Affiliation(s)
- Khaled Trabelsi
- Biotechnology Development group, Institut Pasteur de Tunis. Université Tunis El Manar., 13, place Pasteur. BP 74., 1002, Tunis, Tunisia.,Department of Life Sciences, Health Biotechnology Program - King Fahad Chair for Health Biotechnology, College of Graduate Studies, Arabian Gulf University, PO Box 26671, Manama, Kingdom of Bahrain
| | - Meriem Ben Zakour
- Biotechnology Development group, Institut Pasteur de Tunis. Université Tunis El Manar., 13, place Pasteur. BP 74., 1002, Tunis, Tunisia.,Laboratoire Teriak, Zone Industrielle, El Fejja Mornaguia, 1153, La Manouba, Tunisia
| | | | | | - Samia Rourou
- Biotechnology Development group, Institut Pasteur de Tunis. Université Tunis El Manar., 13, place Pasteur. BP 74., 1002, Tunis, Tunisia.
| | - Hela Kallel
- Biotechnology Development group, Institut Pasteur de Tunis. Université Tunis El Manar., 13, place Pasteur. BP 74., 1002, Tunis, Tunisia.,Quantoom Biosciences, Nivelles, Belgium
| |
Collapse
|
17
|
The efficient development of a novel recombinant adenovirus zoster vaccine perfusion production process. Vaccine 2022; 40:2036-2043. [PMID: 35216843 PMCID: PMC8863426 DOI: 10.1016/j.vaccine.2022.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
Abstract
The adenovirus vector vaccines induce humoral and cellular immune responses and have been used to develop vaccines for effective prevention of life-threating viruses, such as Ebola and Coronaviruses. High demand of vaccines worldwide requires optimization of the production process. Perfusion process increases cell concentration and volumetric productivity, so that it becomes the commonly used strategy in vaccine production In this study, we optimized and developed a perfusion process for the adenovirus-based zoster vaccine production efficiently. We first tested different perfusion strategies in shake flasks, showing semi-continuous strategies for optimal HEK 293 cell growth. We then evaluated three empirical key process parameters (cell concentration at the time of infection (VCC), multiplicity of infection (MOI), virus production pH) by the design of experiment (DoE) method, from which the robust setpoint (VCC 1.04 × 107 cells/mL, MOI 9, and virus production pH 7.17) was confirmed in both shake flask and 2 L benchtop bioreactor. In the bioreactor, we compared the performances of two perfusion systems, the commercially-available XCell ATF® system and a novel peristaltic pump-driven alternating tangential flow perfusion system (PATFP system) that we developed. During cell cultivation stage, both perfusion systems have comparable performances regarding viable cell concentration and cell viability. At 2 dpi, the PATFP system resulted in an adenovirus titer of 2.1 × 1010 IFU/mL and cell-specific virus yield of 2,062 IFU/cell, reaching 75% and 77% of values for XCell ATF® system. This study demonstrates the perfusion process to be superior strategy for adenovirus-based vaccine production compared to the batch-mode strategy (1,467 IFU/cell). Furthermore, our PATFP system shows potential to be comparable to the XCell ATF® system, and it would become an alternative perfusion strategy for the vaccine production.
Collapse
|
18
|
High-Titer Hepatitis C Virus Production in a Scalable Single-Use High Cell Density Bioreactor. Vaccines (Basel) 2022; 10:vaccines10020249. [PMID: 35214707 PMCID: PMC8880717 DOI: 10.3390/vaccines10020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log10 focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 1010 FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production.
Collapse
|
19
|
Influenza Vaccine: An Engineering Vision from Virological Importance to Production. BIOTECHNOL BIOPROC E 2022; 27:714-738. [PMID: 36313971 PMCID: PMC9589582 DOI: 10.1007/s12257-022-0115-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/26/2023]
Abstract
According to data from the World Health Organization (WHO) every year, millions of people are affected by flu. Flu is a disease caused by influenza viruses. For preventing this, seasonal influenza vaccinations are widely considered the most efficient way to protect against the negative effects of the flu. To date, there is no "one-size-fits-all" vaccine that can be effective all over the world to protect against all seasonal or pandemic influenza virus types. Because influenza virus transforms its genetic structure and it can emerges as immunogenically new (antigenic drift) which causes epidemics or new virus subtype (antigenic shift) which causes pandemics. As a result, annual revaccination or new subtype viral vaccine development is required. Currently, three types of vaccines (inactivated, live attenuated, and recombinant) are approved in different countries. These can be named "conventional influenza vaccines" and their production are based on eggs or cell culture. Although, there is good effort to develop new influenza vaccines for broader and longer period of time protection. In this sense these candidate vaccines are called "universal influenza vaccines". In this article, after we mentioned the short history of flu then virus morphology and infection, we explained the diseases caused by the influenza virus in humans. Afterward, we explained in detail the production methods of available influenza vaccines, types of bioreactors used in cell culture based production, conventional and new vaccine types, and development strategies for better vaccines.
Collapse
|
20
|
Offersgaard A, Duarte Hernandez CR, Pihl AF, Costa R, Venkatesan NP, Lin X, Van Pham L, Feng S, Fahnøe U, Scheel TKH, Ramirez S, Reichl U, Bukh J, Genzel Y, Gottwein JM. SARS-CoV-2 Production in a Scalable High Cell Density Bioreactor. Vaccines (Basel) 2021; 9:706. [PMID: 34209694 PMCID: PMC8310283 DOI: 10.3390/vaccines9070706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has demonstrated the value of pursuing different vaccine strategies. Vaccines based on whole viruses, a widely used vaccine technology, depend on efficient virus production. This study aimed to establish SARS-CoV-2 production in the scalable packed-bed CelCradleTM 500-AP bioreactor. CelCradleTM 500-AP bottles with 0.5 L working volume and 5.5 g BioNOC™ II carriers were seeded with 1.5 × 108 Vero (WHO) cells, approved for vaccine production, in animal component-free medium and infected at a multiplicity of infection of 0.006 at a total cell number of 2.2-2.5 × 109 cells/bottle seven days post cell seeding. Among several tested conditions, two harvests per day and a virus production temperature of 33 °C resulted in the highest virus yield with a peak SARS-CoV-2 infectivity titer of 7.3 log10 50% tissue culture infectious dose (TCID50)/mL at 72 h post-infection. Six harvests had titers of ≥6.5 log10 TCID50/mL, and a total of 10.5 log10 TCID50 were produced in ~5 L. While trypsin was reported to enhance virus spread in cell culture, addition of 0.5% recombinant trypsin after infection did not improve virus yields. Overall, we demonstrated successful animal component-free production of SARS-CoV-2 in well-characterized Vero (WHO) cells in a scalable packed-bed bioreactor.
Collapse
Affiliation(s)
- Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Xiangliang Lin
- Esco Aster Pte Ltd., Singapore 486 777, Singapore; (N.P.V.); (X.L.)
| | - Long Van Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troels Kasper Høyer Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; (U.R.); (Y.G.)
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; (U.R.); (Y.G.)
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, 2650 Hvidovre, Denmark; (A.O.); (C.R.D.H.); (A.F.P.); (R.C.); (L.V.P.); (S.F.); (U.F.); (T.K.H.S.); (S.R.); (J.B.)
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
21
|
Kim AY, Kim H, Park SY, Park SH, Lee JM, Kim JS, Park JW, Park CK, Park JH, Ko YJ. Investigation of the optimal medium and application strategy for foot-and-mouth disease vaccine antigen production. J Appl Microbiol 2021; 131:1113-1122. [PMID: 33544957 DOI: 10.1111/jam.15024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
AIMS For the effective production of 146S particles, which determines foot-and-mouth disease (FMD) vaccine efficacy, we aimed to identify the optimal medium that is easy-to-use, productive and economically affordable for the large-scale production of FMD vaccine. METHODS AND RESULTS Nine combinations of cell growth media and replacement media were tested for virus propagation. Apart from the replacement strategy, we tested a simple addition strategy involving the addition of 30% v/v of fresh medium to the total spent medium using the Cellvento BHK-200 (Vento). Unlike other tested media that produced poor yields of 146S particles when the spent media were not eliminated, Vento exhibited high productivity with the 30% addition strategy. CONCLUSIONS Considering its lower price and media consumption compared to those of other media that require media replacement, the 30% addition strategy of Vento is highly effective. Furthermore, owing to its simple application strategy, it makes the scale-up process easy and helps in saving the time and labour involved in spent media removal. SIGNIFICANCE AND IMPACT OF THE STUDY Through the first comparative assessment of commercial media for the 146S particle recovery, this study suggests the best practical medium for the industrial-scale production of FMD vaccines.
Collapse
Affiliation(s)
- A-Y Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - H Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea.,College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - S Y Park
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - S H Park
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - J-M Lee
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - J-S Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - J-W Park
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - C-K Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - J-H Park
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - Y-J Ko
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| |
Collapse
|
22
|
Gränicher G, Tapia F, Behrendt I, Jordan I, Genzel Y, Reichl U. Production of Modified Vaccinia Ankara Virus by Intensified Cell Cultures: A Comparison of Platform Technologies for Viral Vector Production. Biotechnol J 2021; 16:e2000024. [PMID: 32762152 PMCID: PMC7435511 DOI: 10.1002/biot.202000024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Modified Vaccinia Ankara (MVA) virus is a promising vector for vaccination against various challenging pathogens or the treatment of some types of cancers, requiring a high amount of virions per dose for vaccination and gene therapy. Upstream process intensification combining perfusion technologies, the avian suspension cell line AGE1.CR.pIX and the virus strain MVA-CR19 is an option to obtain very high MVA yields. Here the authors compare different options for cell retention in perfusion mode using conventional stirred-tank bioreactors. Furthermore, the authors study hollow-fiber bioreactors and an orbital-shaken bioreactor in perfusion mode, both available for single-use. Productivity for the virus strain MVA-CR19 is compared to results from batch and continuous production reported in literature. The results demonstrate that cell retention devices are only required to maximize cell concentration but not for continuous harvesting. Using a stirred-tank bioreactor, a perfusion strategy with working volume expansion after virus infection results in the highest yields. Overall, infectious MVA virus titers of 2.1-16.5 × 109 virions/mL are achieved in these intensified processes. Taken together, the study shows a novel perspective on high-yield MVA virus production in conventional bioreactor systems linked to various cell retention devices and addresses options for process intensification including fully single-use perfusion platforms.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Ilona Behrendt
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsBioprocess EngineeringSandtorstr. 1Magdeburg39106Germany
- Chair for Bioprocess EngineeringOtto‐von‐Guericke‐University MagdeburgUniversitätsplatz 2Magdeburg39106Germany
| |
Collapse
|
23
|
Elshereef AA, Jochums A, Lavrentieva A, Stuckenberg L, Scheper T, Solle D. High cell density transient transfection of CHO cells for TGF-β1 expression. Eng Life Sci 2020; 19:730-740. [PMID: 32624966 DOI: 10.1002/elsc.201800174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
High cell densities for transient transfection with polyethyleneimine (PEI) can be used for rapid and maximal production of recombinant proteins. High cell densities can be obtained by different cultivation systems, such as batch or perfusion systems. Herein, densities up to 18 million cells/mL were obtained by centrifugation for transfection evaluation. PEI transfection efficiency was easily determined by transfected enhanced green fluorescence protein (EGFP) reporter plasmid DNA (pDNA). A linear correlation between fluorescence intensity and transfection efficiency was improved. The transfection efficiency of PEI was highly dependent on the transfection conditions and directly related to the level of recombinant protein. Several factors were required to optimize the transient transfection process; these factors included the media type (which is compatible with low or high cell density transfection), the preculture CHO-K1 suspension cell density, and the pDNA to PEI level. Based on design of experiment (DoE) analyses, the optimal transfection conditions for 10 × 106 cells/mL in the CHOMACS CD medium achieved 73% transfection efficiency and a cell viability of over 80%. These results were confirmed for the production of transforming growth factor-beta 1 (TGF-β1) in a shake flask. The purified TGF-β1 protein concentration from 60 mL supernatant was 27 µg/mL, and the protein was biologically active.
Collapse
Affiliation(s)
- Abdalla A Elshereef
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany.,Chemistry of Natural and Microbial Products Department Pharmaceutical and Drug Industries Research Division National Research Centre Giza Egypt
| | - André Jochums
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Antonina Lavrentieva
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Lena Stuckenberg
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| | - Dörte Solle
- Institute of Technical Chemistry Gottfried Wilhelm Leibniz University of Hannover Hannover Germany
| |
Collapse
|
24
|
Coronel J, Gränicher G, Sandig V, Noll T, Genzel Y, Reichl U. Application of an Inclined Settler for Cell Culture-Based Influenza A Virus Production in Perfusion Mode. Front Bioeng Biotechnol 2020; 8:672. [PMID: 32714908 PMCID: PMC7343718 DOI: 10.3389/fbioe.2020.00672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses have been successfully propagated using a variety of animal cell lines in batch, fed-batch, and perfusion culture. For suspension cells, most studies reported on membrane-based cell retention devices typically leading to an accumulation of viruses in the bioreactor in perfusion mode. Aiming at continuous virus harvesting for improved productivities, an inclined settler was evaluated for influenza A virus (IAV) production using the avian suspension cell line AGE1.CR.pIX. Inclined settlers present many advantages as they are scalable, robust, and comply with cGMP regulations, e.g., for recombinant protein manufacturing. Perfusion rates up to 3000 L/day have been reported. In our study, successful growth of AGE1.CR.pIX cells up to 50 × 106 cells/mL and a cell retention efficiency exceeding 96% were obtained with the settler cooled to room temperature. No virus retention was observed. A total of 5.4-6.5 × 1013 virions were produced while a control experiment with an ATF system equaled to 1.9 × 1013 virions. For infection at 25 × 106 cells/mL, cell-specific virus yields up to 3474 virions/cell were obtained, about 5-fold higher than for an ATF based cultivation performed as a control (723 virions/cell). Trypsin activity was shown to have a large impact on cell growth dynamics after infection following the cell retention device, especially at a cell concentration of 50 × 106 cells/mL. Further control experiments performed with an acoustic settler showed that virus production was improved with a heat exchanger of the inclined settler operated at 27°C. In summary, cell culture-based production of viruses in perfusion mode with an inclined settler and continuous harvesting can drastically increase IAV yields and possibly the yield of other viruses. To our knowledge, this is the first report to show the potential of this device for viral vaccine production.
Collapse
Affiliation(s)
- Juliana Coronel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
25
|
Lavado-García J, Cervera L, Gòdia F. An Alternative Perfusion Approach for the Intensification of Virus-Like Particle Production in HEK293 Cultures. Front Bioeng Biotechnol 2020; 8:617. [PMID: 32637402 PMCID: PMC7318772 DOI: 10.3389/fbioe.2020.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023] Open
Abstract
Virus-like particles (VLPs) have gained interest over the last years as recombinant vaccine formats, as they generate a strong immune response and present storage and distribution advantages compared to conventional vaccines. Therefore, VLPs are being regarded as potential vaccine candidates for several diseases. One requirement for their further clinical testing is the development of scalable processes and production platforms for cell-based viral particles. In this work, the extended gene expression (EGE) method, which consists in consecutive media replacements combined with cell retransfections, was successfully optimized and transferred to a bioreactor operating in perfusion. A process optimization using design of experiments (DoE) was carried out to obtain optimal values for the time of retransfection, the cell specific perfusion rate (CSPR) and transfected DNA concentration, improving 86.7% the previously reported EGE protocol in HEK293. Moreover, it was successfully implemented at 1.5L bioreactor using an ATF as cell retention system achieving concentrations of 6.8·1010 VLP/mL. VLP interaction with the ATF hollow fibers was studied via confocal microscopy, field emission scanning electron microscopy, and nanoparticle tracking analysis to design a bioprocess capable of separating unassembled Gag monomers and concentrate VLPs in one step.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Gränicher G, Coronel J, Trampler F, Jordan I, Genzel Y, Reichl U. Performance of an acoustic settler versus a hollow fiber-based ATF technology for influenza virus production in perfusion. Appl Microbiol Biotechnol 2020; 104:4877-4888. [PMID: 32291490 PMCID: PMC7228903 DOI: 10.1007/s00253-020-10596-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Process intensification and integration is crucial regarding an ever increasing pressure on manufacturing costs and capacities in biologics manufacturing. For virus production in perfusion mode, membrane-based alternating tangential flow filtration (ATF) and acoustic settler are the commonly described cell retention technologies. While acoustic settlers allow for continuous influenza virus harvesting, the use of commercially available membranes for ATF systems typically results in the accumulation of virus particles in the bioreactor vessel. Accordingly, with one single harvest at the end of a cultivation, this increases the risk of lowering the product quality. To assess which cell retention device would be most suitable for influenza A virus production, we compared various key performance figures using AGE1.CR.pIX cells at concentrations between 25 and 50 × 106 cells/mL at similar infection conditions using either an ATF system or an acoustic settler. Production yields, process-related impurities, and aggregation of viruses and other large molecules were evaluated. Taking into account the total number of virions from both the bioreactor and the harvest vessel, a 1.5-3.0-fold higher volumetric virus yield was obtained for the acoustic settler. In addition, fewer large-sized aggregates (virus particles and other molecules) were observed in the harvest taken directly from the bioreactor. In contrast, similar levels of process-related impurities (host cell dsDNA, total protein) were obtained in the harvest for both retention systems. Overall, a clear advantage was observed for continuous virus harvesting after the acoustic settler operation mode was optimized. This development may also allow direct integration of subsequent downstream processing steps. KEY POINTS: • High suspension cell density, immortalized avian cell line, influenza vaccine.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Juliana Coronel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Felix Trampler
- SonoSep Technologies, Waldgasse 7, 2371, Hinterbrühl, Austria
| | - Ingo Jordan
- ProBioGen AG, Goethestr 54, 13086, Berlin, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
27
|
Nikolay A, Bissinger T, Gränicher G, Wu Y, Genzel Y, Reichl U. Perfusion Control for High Cell Density Cultivation and Viral Vaccine Production. Methods Mol Biol 2020; 2095:141-168. [PMID: 31858467 DOI: 10.1007/978-1-0716-0191-4_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The global demand for complex biopharmaceuticals like recombinant proteins, vaccines, or viral vectors is steadily rising. To further improve process productivity and to reduce production costs, process intensification can contribute significantly. The design and optimization of perfusion processes toward very high cell densities require careful selection of strategies for optimal perfusion rate control. In this chapter, various options are discussed to guarantee high cell-specific virus yields and to achieve virus concentrations up to 1010 virions/mL. This includes reactor volume exchange regimes and perfusion rate control based on process variables such as cell concentration and metabolite or by-product concentration. Strategies to achieve high cell densities by perfusion rate control and their experimental implementation are described in detail for pseudo-perfusion or small-scale perfusion bioreactor systems. Suspension cell lines such as MDCK, BHK-21, EB66®, and AGE1.CR.pIX® are used to exemplify production of influenza, yellow fever, Zika, and modified vaccinia Ankara virus.
Collapse
Affiliation(s)
- Alexander Nikolay
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Thomas Bissinger
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gwendal Gränicher
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yixiao Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
28
|
Orbitally Shaken Single-Use Bioreactor for Animal Cell Cultivation: Fed-Batch and Perfusion Mode. Methods Mol Biol 2019. [PMID: 31858465 DOI: 10.1007/978-1-0716-0191-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Increasing the cultivation volume from small to large scale can be a rather complex and challenging process when the method of aeration and mixing is different between scales. Orbitally shaken bioreactors (OSBs) utilize the same hydrodynamic principles that define the success of smaller-scale cultures, which are developed on an orbitally shaken platform, and can simplify scale-up. Here we describe the basic working principles of scale-up in terms of the volumetric oxygen transfer coefficient (kLa) and mixing time and how to define these parameters experimentally. The scale-up process from an Erlenmeyer flask shaken on an orbital platform to an orbitally shaken single-use bioreactor (SB10-X, 12 L) is described in terms of both fed-batch and perfusion-based processes. The fed-batch process utilizes a recombinant variant of the mammalian cell line, Chinese hamster ovary (CHO), to express a biosimilar of a therapeutic monoclonal antibody. The perfusion-based process utilizes either an alternating tangential flow filtration (ATF) or a tangential flow filtration (TFF) system for cell retention to cultivate an avian cell line, AGE1.CR.pIX, for the propagation of influenza A virus, H1N1, in high cell density. Based on two example cell cultivations, processes outline the advantages that come with using an orbitally shaken bioreactor for scaling-up a process. The described methods are also applicable to other suspension cell lines.
Collapse
|
29
|
Jordan I, Horn D, Thiele K, Haag L, Fiddeke K, Sandig V. A Deleted Deletion Site in a New Vector Strain and Exceptional Genomic Stability of Plaque-Purified Modified Vaccinia Ankara (MVA). Virol Sin 2019; 35:212-226. [PMID: 31833037 PMCID: PMC7198643 DOI: 10.1007/s12250-019-00176-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Vectored vaccines based on highly attenuated modified vaccinia Ankara (MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is usually produced on primary chicken embryo fibroblasts, but production processes based on continuous cell lines emerge as increasingly robust and cost-effective alternatives. An isolate of a hitherto undescribed genotype was recovered by passage of a non-plaque-purified preparation of MVA in a continuous anatine suspension cell line (CR.pIX) in chemically defined medium. The novel isolate (MVA-CR19) replicated to higher infectious titers in the extracellular volume of suspension cultures and induced fewer syncytia in adherent cultures. We now extend previous studies with the investigation of the point mutations in structural genes of MVA-CR19 and describe an additional point mutation in a regulatory gene. We furthermore map and discuss an extensive rearrangement of the left telomer of MVA-CR19 that appears to have occurred by duplication of the right telomer. This event caused deletions and duplications of genes that may modulate immunologic properties of MVA-CR19 as a vaccine vector. Our characterizations also highlight the exceptional genetic stability of plaque-purified MVA: although the phenotype of MVA-CR19 appears to be advantageous for replication, we found that all genetic markers that differentiate wildtype and MVA-CR19 are stably maintained in passages of recombinant viruses based on either wildtype or MVA-CR.
Collapse
Affiliation(s)
- Ingo Jordan
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany.
| | - Deborah Horn
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| | - Kristin Thiele
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany.,Sartorius Stedim Cellca GmbH, Erwin-Rentschler-Str 21, 88471, Laupheim, Germany
| | - Lars Haag
- Vironova AB, Gävlegatan 22, 113 30, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Universitetsjukhuset i Huddinge, 14152, Huddinge, Sweden
| | | | - Volker Sandig
- ProBioGen AG, Herbert-Bayer-Straße 8, 13086, Berlin, Germany
| |
Collapse
|
30
|
Bissinger T, Fritsch J, Mihut A, Wu Y, Liu X, Genzel Y, Tan WS, Reichl U. Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production. Vaccine 2019; 37:7003-7010. [DOI: 10.1016/j.vaccine.2019.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
31
|
Influenza A virus production in a single-use orbital shaken bioreactor with ATF or TFF perfusion systems. Vaccine 2019; 37:7011-7018. [DOI: 10.1016/j.vaccine.2019.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
|
32
|
Gränicher G, Coronel J, Pralow A, Marichal-Gallardo P, Wolff M, Rapp E, Karlas A, Sandig V, Genzel Y, Reichl U. Efficient influenza A virus production in high cell density using the novel porcine suspension cell line PBG.PK2.1. Vaccine 2019; 37:7019-7028. [PMID: 31005427 DOI: 10.1016/j.vaccine.2019.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation. Different host cell lines, such as MDCK, Vero, AGE1.CR or PER.C6 cells have been shown to be a good substrate for influenza virus production. With respect to the ease of scale-up, suspension cells should be preferred over adherent cells. Ideally, they should replicate different influenza virus strains with high cell-specific yields. Evaluation of new cell lines and further development of processes is of considerable interest, as this increases the number of options regarding the design of manufacturing processes, flexibility of vaccine production and efficiency. Here, PBG.PK2.1, a new mammalian cell line that was developed by ProBioGen AG (Germany) for virus production is presented. The cells derived from immortal porcine kidney cells were previously adapted to growth in suspension in a chemically-defined medium. Influenza virus production was improved after virus adaptation to PBG.PK2.1 cells and optimization of infection conditions, namely multiplicity of infection and trypsin concentration. Hemagglutinin titers up to 3.24 log10(HA units/100 µL) were obtained in fed-batch mode in bioreactors (700 mL working volume). Evaluation of virus propagation in high cell density culture using a hollow-fiber based system (ATF2) demonstrated promising performance: Cell concentrations of up to 50 × 106 cells/mL with viabilities exceeding 95%, and a maximum HA titer of 3.93 log10(HA units/100 µL). Analysis of glycosylation of the viral HA antigen expressed showed clear differences compared to HA produced in MDCK or Vero cell lines. With an average cell-specific productivity of 5000 virions/cell, we believe that PBG.PK2.1 cells are a very promising candidate to be considered for next-generation influenza virus vaccine production.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany.
| | - Juliana Coronel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Michael Wolff
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Gießen, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | | | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstr. 1, 39106 Magdeburg, Germany; Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
33
|
Vázquez-Ramírez D, Jordan I, Sandig V, Genzel Y, Reichl U. High titer MVA and influenza A virus production using a hybrid fed-batch/perfusion strategy with an ATF system. Appl Microbiol Biotechnol 2019; 103:3025-3035. [PMID: 30796494 PMCID: PMC6447503 DOI: 10.1007/s00253-019-09694-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023]
Abstract
A cultivation strategy to increase the productivity of Modified Vaccinia Ankara (MVA) virus in high-cell density processes is presented. Based on an approach developed in shake flask cultures, this strategy was established in benchtop bioreactors, comprising the growth of suspension AGE1.CR.pIX cells to high cell densities in a chemically defined medium before infection with the MVA-CR19 virus strain. First, a perfusion regime was established to optimize the cell growth phase. Second, a fed-batch regime was chosen for the initial infection phase to facilitate virus uptake and cell-to-cell spreading. Afterwards, a switch to perfusion enabled the continuous supply of nutrients for the late stages of virus propagation. With maximum infectious titers of 1.0 × 1010 IU/mL, this hybrid fed-batch/perfusion strategy increased product titers by almost one order of magnitude compared to conventional batch cultivations. Finally, this strategy was also applied to the production of influenza A/PR/8/34 (H1N1) virus considered for manufacturing of inactivated vaccines. Using the same culture system, a total number of 3.8 × 1010 virions/mL was achieved. Overall, comparable or even higher cell-specific virus yields and volumetric productivities were obtained using the same cultivation systems as for the conventional batch cultivations. In addition, most viral particles were found in the culture supernatant, which can simplify further downstream operations, in particular for MVA viruses. Considering the current availability of well-described perfusion/cell retention technologies, the present strategy may contribute to the development of new approaches for viral vaccine production.
Collapse
Affiliation(s)
- Daniel Vázquez-Ramírez
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestr. 54, 13086, Berlin, Germany
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.,Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
34
|
Nikolay A, Léon A, Schwamborn K, Genzel Y, Reichl U. Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Appl Microbiol Biotechnol 2018; 102:8725-8737. [PMID: 30091043 PMCID: PMC6153634 DOI: 10.1007/s00253-018-9275-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
A live-attenuated, human vaccine against mosquito-borne yellow fever virus has been available since the 1930s. The vaccine provides long-lasting immunity and consistent mass vaccination campaigns counter viral spread. However, traditional egg-based vaccine manufacturing requires about 12 months and vaccine supplies are chronically close to shortages. In particular, for urban outbreaks, vaccine demand can be covered rarely by global stockpiling. Thus, there is an urgent need for an improved vaccine production platform, ideally transferable to other flaviviruses including Zika virus. Here, we present a proof-of-concept study regarding cell culture-based yellow fever virus 17D (YFV) and wild-type Zika virus (ZIKV) production using duck embryo-derived EB66® cells. Based on comprehensive studies in shake flasks, 1-L bioreactor systems were operated with scalable hollow fiber-based tangential flow filtration (TFF) and alternating tangential flow filtration (ATF) perfusion systems for process intensification. EB66® cells grew in chemically defined medium to cell concentrations of 1.6 × 108 cells/mL. Infection studies with EB66®-adapted virus led to maximum YFV titers of 7.3 × 108 PFU/mL, which corresponds to about 10 million vaccine doses for the bioreactor harvest. For ZIKV, titers of 1.0 × 1010 PFU/mL were achieved. Processes were automated successfully using a capacitance probe to control perfusion rates based on on-line measured cell concentrations. The use of cryo-bags for direct inoculation of production bioreactors facilitates pre-culture preparation contributing to improved process robustness. In conclusion, this platform is a powerful option for next generation cell culture-based flavivirus vaccine manufacturing.
Collapse
Affiliation(s)
- Alexander Nikolay
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Arnaud Léon
- Valneva SE, 6 rue Alain Bombard, 44800, Saint-Herblain, France
| | | | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Sandtorstr. 1, 39106, Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
35
|
Palomares LA, Mukhopadhyay TK, Genzel Y, Lua LH, Cox MM. Vaccine Technology VI: Innovative and integrated approaches in vaccine development. Vaccine 2018; 36:3061-3063. [DOI: 10.1016/j.vaccine.2018.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|