1
|
Larkin CI, Dunn MD, Shoemaker JE, Klimstra WB, Faeder JR. A detailed kinetic model of Eastern equine encephalitis virus replication in a susceptible host cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628424. [PMID: 39764060 PMCID: PMC11703215 DOI: 10.1101/2024.12.13.628424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care. Although the general characteristics of EEEV infection within the host cell are well-studied, it remains unclear how these interactions lead to rapid production of progeny viral particles, limiting development of antiviral therapies. Here, we present a novel rule-based model that describes attachment, entry, uncoating, replication, assembly, and export of both infectious virions and virus-like particles within mammalian cells. Additionally, it quantitatively characterizes host ribosome activity in EEEV replication via a model parameter defining ribosome density on viral RNA. To calibrate the model, we performed experiments to quantify viral RNA, protein, and infectious particle production during acute infection. We used Bayesian inference to calibrate the model, discovering in the process that an additional constraint was required to ensure consistency with previous experimental observations of a high ratio between the amounts of full-length positive-sense viral genome and negative-sense template strand. Overall, the model recapitulates the experimental data and predicts that EEEV rapidly concentrates host ribosomes densely on viral RNA. Dense packing of host ribosomes was determined to be critical to establishing the characteristic positive to negative RNA strand ratio because of its role in governing the kinetics of transcription. Sensitivity analysis identified viral transcription as the critical step for infectious particle production, making it a potential target for future therapeutic development.
Collapse
Affiliation(s)
- Caroline I. Larkin
- Joint Carnegie Mellon University - University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason E. Shoemaker
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Fierro C, Weidenthaler H, Vidojkovic S, Schmidt D, Gafoor Z, Stroukova D, Zwiers S, Müller J, Volkmann A. Safety and immunogenicity of a novel trivalent recombinant MVA-based equine encephalitis virus vaccine: A Phase 1 clinical trial. Vaccine 2024; 42:2695-2706. [PMID: 38494412 DOI: 10.1016/j.vaccine.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Three encephalitic alphaviruses-western, eastern, and Venezuelan equine encephalitis virus (WEEV, EEEV and VEEV)-can cause severe disease and have the potential to be used as biological weapons. There are no approved vaccines for human use. A novel multivalent MVA-BN-WEV vaccine encodes the envelope surface proteins of the 3 viruses and is thereby potentially able to protect against them all, as previously demonstrated in animal models. This first-in-human study assessed the safety, tolerability, and immunogenicity of MVA-BN-WEV vaccine in healthy adult participants. METHODS Forty-five participants were enrolled into 3 dose groups (1 × 10E7 Inf.U, 1 × 10E8 Inf.U, and 2 × 10E8 Inf.U), received 2 doses 4 weeks apart, and were then monitored for 6 months. RESULTS The safety profile of MVA-BN-WEV was acceptable at all administered doses, with incidence of local solicited AEs increased with increasing dose and no other clinically meaningful differences between dose groups. One SAE (Grade 2 pleural effusion) was reported in the lowest dose group and assessed as possibly related. No AEs resulted in death or led to withdrawal from the second vaccination or from the trial. The most common local solicited AE was injection site pain, and general solicited AEs were headache, fatigue, and myalgia. MVA-BN-WEV induced humoral immune responses; WEEV-, EEEV- and VEEV-specific neutralizing antibody responses peaked 2 weeks following the second vaccination, and the magnitude of these responses increased with dose escalation. The highest dose resulted in seroconversion of all (100 %) participants for WEEV and VEEV and 92.9 % for EEEV, 2 weeks following second vaccination, and durability was observed for 6 months. MVA-BN-WEV induced cellular immune responses to VEEV E1 and E2 (EEEV and WEEV not tested) and a dose effect for peptide pool E2. CONCLUSION The study demonstrated that MVA-BN-WEV is well tolerated, induces immune responses, and is suitable for further development. CLINICAL TRIAL REGISTRY NUMBER NCT04131595.
Collapse
Affiliation(s)
- Carlos Fierro
- Johnson County Clin-Trials (JCCT), 16400 College Blvd., Lenexa, KS 66219, USA
| | | | - Sanja Vidojkovic
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Zarina Gafoor
- Bavarian Nordic Inc, 1005 Slater Road, Suite 101, Durham, NC 27703, USA
| | - Daria Stroukova
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Susan Zwiers
- Bavarian Nordic Inc, 1005 Slater Road, Suite 101, Durham, NC 27703, USA
| | - Jutta Müller
- Immunic AG, Lochhamer Schlag 21, 82166 Gräfelfing, Germany
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany.
| |
Collapse
|
3
|
Beddingfield BJ, Plante KS, Plante JA, Weaver SC, Bose S, Krzykwa C, Chirichella N, Redmann RK, Seiler SZ, Dufour J, Blair RV, Endt K, Volkmann A, Maness NJ, Roy CJ. MVA-based vaccines are protective against lethal eastern equine encephalitis virus aerosol challenge in cynomolgus macaques. NPJ Vaccines 2024; 9:47. [PMID: 38413593 PMCID: PMC10899228 DOI: 10.1038/s41541-024-00842-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024] Open
Abstract
MVA-based monovalent eastern equine encephalitis virus (MVA-BN-EEEV) and multivalent western, eastern, and Venezuelan equine encephalitis virus (MVA-BN-WEV) vaccines were evaluated in the cynomolgus macaque aerosol model of EEEV infection. Macaques vaccinated with two doses of 5 × 108 infectious units of the MVA-BN-EEEV or MVA-BN-WEV vaccine by the intramuscular route rapidly developed robust levels of neutralizing antibodies to EEEV that persisted at high levels until challenge at day 84 via small particle aerosol delivery with a target inhaled dose of 107 PFU of EEEV FL93-939. Robust protection was observed, with 7/8 animals receiving MVA-BN-EEEV and 100% (8/8) animals receiving MVA-BN-WEV surviving while only 2/8 mock vaccinated controls survived lethal challenge. Complete protection from viremia was afforded by both vaccines, with near complete protection from vRNA loads in tissues and any pathologic evidence of central nervous system damage. Overall, the results indicate both vaccines are effective in eliciting an immune response that is consistent with protection from aerosolized EEEV-induced disease.
Collapse
Affiliation(s)
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Sarah Bose
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Clara Krzykwa
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nicole Chirichella
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Rachel K Redmann
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Stephanie Z Seiler
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Jason Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Robert V Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Kathrin Endt
- Bavarian Nordic GmbH, Fraunhofer Strasse 13, 82152, Martinsried, Germany
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhofer Strasse 13, 82152, Martinsried, Germany
| | - Nicholas J Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA
| | - Chad J Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
4
|
Nguyen TL, Kim H. Designing a Multiepitope Vaccine against Eastern Equine Encephalitis Virus: Immunoinformatics and Computational Approaches. ACS OMEGA 2024; 9:1092-1105. [PMID: 38222668 PMCID: PMC10785064 DOI: 10.1021/acsomega.3c07322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
Eastern equine encephalitis virus (EEEV) is a significant threat to human and animal populations, causing severe encephalitis, often leading to long-term neurological complications and even mortality. Despite this, no approved antiviral treatments or EEEV human vaccines currently exist. In response, we utilized immunoinformatics and computational approaches to design a multiepitope vaccine candidate for EEEV. By screening the structural polyprotein of EEEV, we predicted both T-cell and linear B-cell epitopes. These epitopes underwent comprehensive evaluations for their antigenicity, toxicity, and allergenicity. From these evaluations, we selected ten epitopes highly suitable for vaccine design, which were connected with adjuvants using a stable linker. The resulting vaccine construct demonstrated exceptional antigenic, nontoxic, nonallergenic, and physicochemical properties. Subsequently, we employed molecular docking and molecular dynamics simulations to reveal a stable interaction pattern between the vaccine candidate and Toll-like receptor 5. Besides, computational immune simulations predicted the vaccine's capability to induce robust immune responses. Our study addresses the urgent need for effective EEEV preventive strategies and offers valuable insights for EEEV vaccine development. As EEEV poses a severe threat with potential spread due to climate change, our research provides a crucial step in enhancing public health defenses against this menacing zoonotic disease.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Heebal Kim
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary
Program in Bioinformatics, Seoul National
University, Seoul 08826, Republic
of Korea
- eGnome,
Inc., Seoul 05836, Republic of Korea
| |
Collapse
|
5
|
Sah R, Siddiq A, Al-Ahdal T, Maulud SQ, Mohanty A, Padhi BK, El-Shall NA, Chandran D, Emran TB, Hussein NR, Dhama K, Satapathy P. The emerging scenario for the Eastern equine encephalitis virus and mitigation strategies to counteract this deadly mosquito-borne zoonotic virus, the cause of the most severe arboviral encephalitis in humans—an update. FRONTIERS IN TROPICAL DISEASES 2023; 3. [DOI: 10.3389/fitd.2022.1077962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
6
|
Babaeimarzangou SS, Zaker H, Soleimannezhadbari E, Gamchi NS, Kazeminia M, Tarighi S, Seyedian H, Tsatsakis A, Spandidos DA, Margina D. Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the Coronaviridae and Togaviridae families (Review). Exp Ther Med 2022; 25:42. [PMID: 36569444 PMCID: PMC9768462 DOI: 10.3892/etm.2022.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of zoonotic viral diseases pose a severe threat to public health and economies worldwide, with this currently being more prominent than it previously was human history. These emergency zoonotic diseases that originated and transmitted from vertebrates to humans have been estimated to account for approximately one billion cases of illness and have caused millions of deaths worldwide annually. The recent emergence of severe acute respiratory syndrome coronavirus-2 (coronavirus disease 2019) is an excellent example of the unpredictable public health threat causing a pandemic. The present review summarizes the literature data regarding the main vaccine developments in human clinical phase I, II and III trials against the zoonotic positive-sense single-stranded RNA viruses belonging to the Coronavirus and Alphavirus genera, including severe acute respiratory syndrome, Middle east respiratory syndrome, Venezuelan equine encephalitis virus, Semliki Forest virus, Ross River virus, Chikungunya virus and O'nyong-nyong virus. That there are neither vaccines nor effective antiviral drugs available against most of these viruses is undeniable. Therefore, new explosive outbreaks of these zoonotic viruses may surely be expected. The present comprehensive review provides an update on the status of vaccine development in different clinical trials against these viruses, as well as an overview of the present results of these trials.
Collapse
Affiliation(s)
- Seyed Sajjad Babaeimarzangou
- Division of Poultry Health and Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Himasadat Zaker
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran
| | | | - Naeimeh Shamsi Gamchi
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran
| | - Masoud Kazeminia
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Shima Tarighi
- Veterinary Office of West Azerbaijan Province, Urmia 5717617695, Iran
| | - Homayon Seyedian
- Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Department of Medicine, University of Crete, 71307 Heraklion, Greece,Correspondence to: Professor Denisa Margina, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania,Correspondence to: Professor Denisa Margina, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
7
|
Boulton S, Poutou J, Martin NT, Azad T, Singaravelu R, Crupi MJF, Jamieson T, He X, Marius R, Petryk J, Tanese de Souza C, Austin B, Taha Z, Whelan J, Khan ST, Pelin A, Rezaei R, Surendran A, Tucker S, Fekete EEF, Dave J, Diallo JS, Auer R, Angel JB, Cameron DW, Cailhier JF, Lapointe R, Potts K, Mahoney DJ, Bell JC, Ilkow CS. Single-dose replicating poxvirus vector-based RBD vaccine drives robust humoral and T cell immune response against SARS-CoV-2 infection. Mol Ther 2022; 30:1885-1896. [PMID: 34687845 PMCID: PMC8527104 DOI: 10.1016/j.ymthe.2021.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas T Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Christiano Tanese de Souza
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jack Whelan
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sarwat T Khan
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Adrian Pelin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Abera Surendran
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sarah Tucker
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emily E F Fekete
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rebecca Auer
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - D William Cameron
- Division of Infectious Disease, Department of Medicine, University of Ottawa at The Ottawa Hospital/ Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - Réjean Lapointe
- Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Kyle Potts
- Arnie Charbonneau Cancer Institute, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 6A8, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2T 1N4, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 6A8, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2T 1N4, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Carolina S Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
8
|
Powers AM. Resurgence of Interest in Eastern Equine Encephalitis Virus Vaccine Development. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:20-26. [PMID: 34734632 DOI: 10.1093/jme/tjab135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Eastern equine encephalitis virus (EEEV; Family Togaviridae), is an endemic pathogen first isolated in 1933 with distribution primarily in the eastern US and Canada. The virus has caused periodic outbreaks in both humans and equines along the eastern seaboard and through the southern coastal states. While the outbreaks caused by EEEV have been sporadic and varied geographically since the discovery of the virus, it has continued to expand its range moving into the Midwest states as well. Additionally, one of the largest outbreaks was recorded in 2019 prompting concerns that outbreaks were becoming larger and more frequent. Because the virus can cause serious disease and because it is transmissible by both mosquitoes and aerosol, there has been renewed interest in identifying potential options for vaccines. Currently, there are no licensed vaccines and control relies completely on the use of personal protective measures and integrated vector control which have limited effectiveness for the EEEV vectors. Several vaccine candidates are currently being developed; this review will describe the multiple options under consideration for future development and assess their relative advantages and disadvantages.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Diseases Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
9
|
Volkmann A, Williamson AL, Weidenthaler H, Meyer TPH, Robertson JS, Excler JL, Condit RC, Evans E, Smith ER, Kim D, Chen RT. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform. Vaccine 2021; 39:3067-3080. [PMID: 33077299 PMCID: PMC7568176 DOI: 10.1016/j.vaccine.2020.08.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. The Modified Vaccinia Ankara (MVA) vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features specifically of the MVA-BN vector system, followed by a template with details on the safety and characteristics of an MVA-BN based vaccine against Zaire ebolavirus and other filovirus strains. The MVA-BN-Filo vaccine is based on a live, highly attenuated poxviral vector incapable of replicating in human cells and encodes glycoproteins of Ebola virus Zaire, Sudan virus and Marburg virus and the nucleoprotein of the Thai Forest virus. This vaccine has been approved in the European Union in July 2020 as part of a heterologous Ebola vaccination regimen. The MVA-BN vector is attenuated following over 500 serial passages in eggs, showing restricted host tropism and incompetence to replicate in human cells. MVA has six major deletions and other mutations of genes outside these deletions, which all contribute to the replication deficiency in human and other mammalian cells. Attenuation of MVA-BN was demonstrated by safe administration in immunocompromised mice and non-human primates. In multiple clinical trials with the MVA-BN backbone, more than 7800 participants have been vaccinated, demonstrating a safety profile consistent with other licensed, modern vaccines. MVA-BN has been approved as smallpox vaccine in Europe and Canada in 2013, and as smallpox and monkeypox vaccine in the US in 2019. No signal for inflammatory cardiac disorders was identified throughout the MVA-BN development program. This is in sharp contrast to the older, replicating vaccinia smallpox vaccines, which have a known risk for myocarditis and/or pericarditis in up to 1 in 200 vaccinees. MVA-BN-Filo as part of a heterologous Ebola vaccination regimen (Ad26.ZEBOV/MVA-BN-Filo) has undergone clinical testing including Phase III in West Africa and is currently in use in large scale vaccination studies in Central African countries. This paper provides a comprehensive picture of the MVA-BN vector, which has reached regulatory approvals, both as MVA-BN backbone for smallpox/monkeypox, as well as for the MVA-BN-Filo construct as part of an Ebola vaccination regimen, and therefore aims to provide solutions to prevent disease from high-consequence human pathogens.
Collapse
Affiliation(s)
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine at the University of Cape Town, South Africa
| | | | | | | | | | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Eric Evans
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R Smith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | - Robert T Chen
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| |
Collapse
|
10
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
11
|
Pierson BC, Cardile AP, Okwesili AC, Downs IL, Reisler RB, Boudreau EF, Kortepeter MG, Koca CD, Ranadive MV, Petitt PL, Kanesa-Thasan N, Rivard RG, Liggett DL, Haller JM, Norris SL, Purcell BK, Pittman PR, Saunders DL, Keshtkar Jahromi M. Safety and immunogenicity of an inactivated eastern equine encephalitis virus vaccine. Vaccine 2021; 39:2780-2790. [PMID: 33888325 DOI: 10.1016/j.vaccine.2021.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Eastern equine encephalitis virus (EEEV) is a mosquito borne alphavirus spread primarily in Atlantic and Gulf Coast regions of the United States. EEEV is the causative agent of a devastating meningoencephalitis syndrome, with approximately 30% mortality and significant morbidity. There is no licensed human vaccine against EEEV. An inactivated EEEV vaccine has been offered under investigational new drug (IND) protocols at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) since 1976. METHODS Healthy at-risk laboratory personnel received inactivated PE-6 strain EEEV (TSI-GSD 104) vaccine under two separate IND protocols. Protocol FY 99-11 (2002-2008) had a primary series consisting of doses on day 0, 7, and 28. Protocol FY 06-31 (2008-2016) utilized a primary series with doses on day 0 and 28, and month 6. Participants with an inadequate immune response, plaque reduction neutralization test with 80% cut-off (PRNT80) titer < 40, received booster vaccination. Volunteers with prior EEEV vaccination were eligible to enroll for booster doses based on annual titer evaluation. RESULTS The FY06-31 dosing schema resulted in significantly greater post-primary series immune response (PRNT80 ≥ 40) rates (84% vs 54%) and geometric mean titers (184.1 vs 39.4). The FY 06-31 dosing schema also resulted in significantly greater cumulative annual immune response rates from 1 to up to 7 years post vaccination (75% vs 59%) and geometric mean of titers (60.1 vs 43.0). The majority of probably or definitely related adverse events were mild and local; there were no probably or definitely related serious adverse events. CONCLUSIONS Inactivated PE-6 EEEV vaccine is safe and immunogenic in at-risk laboratory personnel. A prolonged primary series, with month 6 dose, significantly improved vaccine immunogenicity both post-primary series and longitudinally on annual titers. Despite decades of safe use under IND, full licensure is not planned due to manufacturing constraints, and ongoing development of alternatives.
Collapse
Affiliation(s)
- Benjamin C Pierson
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States.
| | - Anthony P Cardile
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Arthur C Okwesili
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Isaac L Downs
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Ronald B Reisler
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Ellen F Boudreau
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Mark G Kortepeter
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Craig D Koca
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Manmohan V Ranadive
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Patricia L Petitt
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Niranjan Kanesa-Thasan
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Robert G Rivard
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Dani L Liggett
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Jeannine M Haller
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Sarah L Norris
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Bret K Purcell
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Phillip R Pittman
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - David L Saunders
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Maryam Keshtkar Jahromi
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
| |
Collapse
|
12
|
Henning L, Endt K, Steigerwald R, Anderson M, Volkmann A. A Monovalent and Trivalent MVA-Based Vaccine Completely Protects Mice Against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenge. Front Immunol 2021; 11:598847. [PMID: 33542715 PMCID: PMC7851092 DOI: 10.3389/fimmu.2020.598847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
Venezuelan, eastern and western equine encephalitis viruses (EEV) can cause severe disease of the central nervous system in humans, potentially leading to permanent damage or death. Yet, no licensed vaccine for human use is available to protect against these mosquito-borne pathogens, which can be aerosolized and therefore pose a bioterror threat in addition to the risk of natural outbreaks. Using the mouse aerosol challenge model, we evaluated the immunogenicity and efficacy of EEV vaccines that are based on the modified vaccinia Ankara-Bavarian Nordic (MVA-BN®) vaccine platform: three monovalent vaccines expressing the envelope polyproteins E3-E2-6K-E1 of the respective EEV virus, a mixture of these three monovalent EEV vaccines (Triple-Mix) as a first approach to generate a multivalent vaccine, and a true multivalent alphavirus vaccine (MVA-WEV, Trivalent) encoding the polyproteins of all three EEVs in a single non-replicating MVA viral vector. BALB/c mice were vaccinated twice in a four-week interval and samples were assessed for humoral and cellular immunogenicity. Two weeks after the second immunization, animals were exposed to aerosolized EEV. The majority of vaccinated animals exhibited VEEV, WEEV, and EEEV neutralizing antibodies two weeks post-second administration, whereby the average VEEV neutralizing antibodies induced by the monovalent and Trivalent vaccine were significantly higher compared to the Triple-Mix vaccine. The same statistical difference was observed for VEEV E1 specific T cell responses. However, all vaccinated mice developed comparable interferon gamma T cell responses to the VEEV E2 peptide pools. Complete protective efficacy as evaluated by the prevention of mortality and morbidity, lack of clinical signs and viremia, was demonstrated for the respective monovalent MVA-EEV vaccines, the Triple-Mix and the Trivalent single vector vaccine not only in the homologous VEEV Trinidad Donkey challenge model, but also against heterologous VEEV INH-9813, WEEV Fleming, and EEEV V105-00210 inhalational exposures. These EEV vaccines, based on the safe MVA vector platform, therefore represent promising human vaccine candidates. The trivalent MVA-WEV construct, which encodes antigens of all three EEVs in a single vector and can potentially protect against all three encephalitic viruses, is currently being evaluated in a human Phase 1 trial.
Collapse
Affiliation(s)
- Lisa Henning
- Battelle Memorial Institute, Columbus, OH, United States
| | | | | | | | | |
Collapse
|
13
|
Keshtkar-Jahromi M, Reisler RB, Haller JM, Clizbe DP, Rivard RG, Cardile AP, Pierson BC, Norris S, Saunders D, Pittman PR. The Western Equine Encephalitis Lyophilized, Inactivated Vaccine: An Update on Safety and Immunogenicity. Front Immunol 2020; 11:555464. [PMID: 33240257 PMCID: PMC7680781 DOI: 10.3389/fimmu.2020.555464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background Western Equine Encephalitis (WEE) is a naturally acquired infection and potentially devastating bioweapon, with no specific human countermeasures. An experimental inactivated Western Equine Encephalitis Vaccine (WEEV; WEE TSI-GSD 210) has been used under an IND (investigational New Drug) protocol at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) since 1976. Methods Over 24 years from 1987 to 2011, 876 subjects received 3 primary vaccine doses under 3 studies with 1,537 booster doses administered (FY87-8, phase 2, laboratory workers, vaccine lots 1-81-1, 1-81-2, and 2-1-91; FY99-12, phase 2 laboratory workers, lot 2-1-91; and FY09-02, phase 1 healthy volunteer, lot 3-1-92). Post-vaccination safety and immunogenicity [plaque reduction neutralization test 80% (PRNT80) > 1:40] were analyzed. Results Overall PRNT80 response to the primary series in FY87-8 was 42% (326/770) but dropped to 16% (14/87) in FY99-12, prompting study FY09-02, which achieved 89% (17/19). The first booster response rate was 68% (814/1194) in FY87-8, 53% (171/324) in FY99-12, and 100% (10/10) in FY09-02. The majority of definitely related adverse reactions (AEs) were mild and local with no definitely related serious AEs. No laboratory acquired WEE infection was documented during this period despite 4 reported exposures in vaccinated subjects. Conclusion The TSI-GSD 210 WEE vaccine was immunogenic, safe and well tolerated. Use of this vaccine could be considered in an emergency setting. Despite decades of safe and effective use under IND, full licensure is not planned due to manufacturing constraints, and a strategic decision to develop alternatives. Clinical Trial Registration https://clinicaltrials.gov/, identifier NCT01159561.
Collapse
Affiliation(s)
- Maryam Keshtkar-Jahromi
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ronald B Reisler
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Jeannine M Haller
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Denise P Clizbe
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Robert G Rivard
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Anthony P Cardile
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Benjamin C Pierson
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Sarah Norris
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - David Saunders
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Phillip R Pittman
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| |
Collapse
|
14
|
Stromberg ZR, Fischer W, Bradfute SB, Kubicek-Sutherland JZ, Hraber P. Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis Viruses. Vaccines (Basel) 2020; 8:vaccines8020273. [PMID: 32503232 PMCID: PMC7350001 DOI: 10.3390/vaccines8020273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/21/2023] Open
Abstract
Vaccinations are a crucial intervention in combating infectious diseases. The three neurotropic Alphaviruses, Eastern (EEEV), Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, are pathogens of interest for animal health, public health, and biological defense. In both equines and humans, these viruses can cause febrile illness that may progress to encephalitis. Currently, there are no licensed treatments or vaccines available for these viruses in humans. Experimental vaccines have shown variable efficacy and may cause severe adverse effects. Here, we outline recent strategies used to generate vaccines against EEEV, VEEV, and WEEV with an emphasis on virus-vectored and plasmid DNA delivery. Despite candidate vaccines protecting against one of the three viruses, few studies have demonstrated an effective trivalent vaccine. We evaluated the potential of published vaccines to generate cross-reactive protective responses by comparing DNA vaccine sequences to a set of EEEV, VEEV, and WEEV genomes and determining the vaccine coverages of potential epitopes. Finally, we discuss future directions in the development of vaccines to combat EEEV, VEEV, and WEEV.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
| | - Steven B. Bradfute
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 505, USA;
| | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
- Correspondence:
| |
Collapse
|
15
|
Nguyen W, Nakayama E, Yan K, Tang B, Le TT, Liu L, Cooper TH, Hayball JD, Faddy HM, Warrilow D, Allcock RJN, Hobson-Peters J, Hall RA, Rawle DJ, Lutzky VP, Young P, Oliveira NM, Hartel G, Howley PM, Prow NA, Suhrbier A. Arthritogenic Alphavirus Vaccines: Serogrouping Versus Cross-Protection in Mouse Models. Vaccines (Basel) 2020; 8:vaccines8020209. [PMID: 32380760 PMCID: PMC7349283 DOI: 10.3390/vaccines8020209] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Chikungunya virus (CHIKV), Ross River virus (RRV), o’nyong nyong virus (ONNV), Mayaro virus (MAYV) and Getah virus (GETV) represent arthritogenic alphaviruses belonging to the Semliki Forest virus antigenic complex. Antibodies raised against one of these viruses can cross-react with other serogroup members, suggesting that, for instance, a CHIKV vaccine (deemed commercially viable) might provide cross-protection against antigenically related alphaviruses. Herein we use human alphavirus isolates (including a new human RRV isolate) and wild-type mice to explore whether infection with one virus leads to cross-protection against viremia after challenge with other members of the antigenic complex. Persistently infected Rag1-/- mice were also used to assess the cross-protective capacity of convalescent CHIKV serum. We also assessed the ability of a recombinant poxvirus-based CHIKV vaccine and a commercially available formalin-fixed, whole-virus GETV vaccine to induce cross-protective responses. Although cross-protection and/or cross-reactivity were clearly evident, they were not universal and were often suboptimal. Even for the more closely related viruses (e.g., CHIKV and ONNV, or RRV and GETV), vaccine-mediated neutralization and/or protection against the intended homologous target was significantly more effective than cross-neutralization and/or cross-protection against the heterologous virus. Effective vaccine-mediated cross-protection would thus likely require a higher dose and/or more vaccinations, which is likely to be unattractive to regulators and vaccine manufacturers.
Collapse
Affiliation(s)
- Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Eri Nakayama
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-0052, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - Tamara H. Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - John D. Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - Helen M. Faddy
- Research and Development Laboratory, Australian Red Cross Lifeblood, Kelvin Grove, Qld 4059, Australia;
| | - David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Qld 4108, Australia;
| | - Richard J. N. Allcock
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia;
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Viviana P. Lutzky
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
| | - Nidia M. Oliveira
- Deptartment of Microbiology, University of Western Australia, Perth, WA 6009, Australia;
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Qld 4029, Australia;
| | | | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
- Correspondence: (N.A.P.); (A.S.)
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
- Correspondence: (N.A.P.); (A.S.)
| |
Collapse
|
16
|
Tao S, Tao R, Busch DH, Widera M, Schaal H, Drexler I. Sequestration of Late Antigens Within Viral Factories Impairs MVA Vector-Induced Protective Memory CTL Responses. Front Immunol 2019; 10:2850. [PMID: 31867011 PMCID: PMC6904312 DOI: 10.3389/fimmu.2019.02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic CD8+ T cell (CTL) responses play an essential role in antiviral immunity. Here, we focused on the activation of CTL which recognize epitopes derived from viral or recombinant antigens with either early or late expression kinetics after infection with Modified Vaccinia Virus Ankara (MVA). Late antigens but not early antigens failed to efficiently stimulate murine CTL lines in vitro and were unable to activate and expand protective memory T cell responses in mice in vivo. The reduced or absent presentation of late antigens was not due to impaired antigen presentation or delayed protein synthesis, but was caused by sequestration of late antigens within viral factories (VFs). Additionally, the trapping of late antigens in VFs conflicts with antigen processing and presentation as proteasomal activity was strongly reduced or absent in VFs, suggesting inefficient antigen degradation. This study gives for the first time a mechanistic explanation for the weak immunogenicity of late viral antigens for memory CTL activation. Since MVA is preferentially used as a boost vector in heterologous prime/boost vaccinations, this is an important information for future vaccine design.
Collapse
Affiliation(s)
- Sha Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dirk H Busch
- Institute of Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Marek Widera
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
17
|
Steigerwald R, Brake DA, Barrera J, Schutta CJ, Kalla M, Wennier ST, Volkmann A, Hurtle W, Clark BA, Zurita M, Pisano M, Kamicker BJ, Puckette MC, Rasmussen MV, Neilan JG. Evaluation of modified Vaccinia Ankara-based vaccines against foot-and-mouth disease serotype A24 in cattle. Vaccine 2019; 38:769-778. [PMID: 31718901 DOI: 10.1016/j.vaccine.2019.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
To prepare foot-and-mouth disease (FMD) recombinant vaccines in response to newly emerging FMD virus (FMDV) field strains, we evaluated Modified Vaccinia virus Ankara-Bavarian Nordic (MVA-BN®) as an FMD vaccine vector platform. The MVA-BN vector has the capacity to carry and express numerous foreign genes and thereby has the potential to encode antigens from multiple FMDV strains. Moreover, this vector has an extensive safety record in humans. All MVA-BN-FMD constructs expressed the FMDV A24 Cruzeiro P1 capsid polyprotein as antigen and the FMDV 3C protease required for processing of the polyprotein. Because the FMDV wild-type 3C protease is detrimental to mammalian cells, one of four FMDV 3C protease variants were utilized: wild-type, or one of three previously reported mutants intended to dampen protease activity (C142T, C142L) or to increase specificity and thereby reduce adverse effects (L127P). These 3C coding sequences were expressed under the control of different promoters selected to reduce 3C protease expression. Four MVA-BN-FMD constructs were evaluated in vitro for acceptable vector stability, FMDV P1 polyprotein expression, processing, and the potential for vaccine scale-up production. Two MVA-BN FMD constructs met the in vitro selection criteria to qualify for clinical studies: MVA-mBN360B (carrying a C142T mutant 3C protease and an HIV frameshift for reduced expression) and MVA-mBN386B (carrying a L127P mutant 3C protease). Both vaccines were safe in cattle and elicited low to moderate serum neutralization titers to FMDV following multiple dose administrations. Following FMDV homologous challenge, both vaccines conferred 100% protection against clinical FMD and viremia using single dose or prime-boost immunization regimens. The MVA-BN FMD vaccine platform was capable of differentiating infected from vaccinated animals (DIVA). The demonstration of the successful application of MVA-BN as an FMD vaccine vector provides a platform for further FMD vaccine development against more epidemiologically relevant FMDV strains.
Collapse
Affiliation(s)
- Robin Steigerwald
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - David A Brake
- BioQuest Associates, LLC, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - José Barrera
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Christopher J Schutta
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Markus Kalla
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - Sonia T Wennier
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| | - William Hurtle
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Benjamin A Clark
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Mariceny Zurita
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Melia Pisano
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Barbara J Kamicker
- Leidos, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Michael C Puckette
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - Max V Rasmussen
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| | - John G Neilan
- U.S. Department of Homeland Security Science and Technology Directorate, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY 11944, United States.
| |
Collapse
|
18
|
Sharma A, Knollmann-Ritschel B. Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development. Viruses 2019; 11:v11020164. [PMID: 30781656 PMCID: PMC6410161 DOI: 10.3390/v11020164] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Dedication This review is dedicated in the memory of Dr Radha K. Maheshwari, a great mentor and colleague, whose passion for research and student training has left a lasting effect on this manuscript and many other works. Abstract Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased interest in VEEV has resulted in a more thorough understanding of the pathogenesis of this disease. Inflammation plays a paradoxical role of antiviral response as well as development of lethal encephalitis through an interplay between the host and viral factors that dictate virus replication. VEEV has efficient replication machinery that adapts to overcome deleterious mutations in the viral genome or improve interactions with host factors. In the last few decades there has been ongoing development of various VEEV vaccine candidates addressing the shortcomings of the current investigational new drugs or approved vaccines. We review the current understanding of the molecular basis of VEEV pathogenesis and discuss various types of vaccine candidates.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
19
|
Phelps AL, O’Brien LM, Eastaugh LS, Davies C, Lever MS, Ennis J, Zeitlin L, Nunez A, Ulaeto DO. Aerosol infection of Balb/c mice with eastern equine encephalitis virus; susceptibility and lethality. Virol J 2019; 16:2. [PMID: 30611287 PMCID: PMC6321726 DOI: 10.1186/s12985-018-1103-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Eastern equine encephalitis virus is an alphavirus that naturally cycles between mosquitoes and birds or rodents in Eastern States of the US. Equine infection occurs by being bitten by cross-feeding mosquitoes, with a case fatality rate of up to 75% in humans during epizootic outbreaks. There are no licensed medical countermeasures, and with an anticipated increase in mortality when exposed by the aerosol route based on anecdotal human data and experimental animal data, it is important to understand the pathogenesis of this disease in pursuit of treatment options. This report details the clinical and pathological findings of mice infected with EEEV by the aerosol route, and use as a model for EEEV infection in humans. METHODS Mice were exposed by the aerosol route to a dose range of EEEV to establish the median lethal dose. A pathogenesis study followed whereby mice were exposed to a defined dose of virus and sacrificed at time-points thereafter for histopathological analysis and virology. RESULTS Clinical signs of disease appeared within 2 days post challenge, culminating in severe clinical signs within 24 h, neuro-invasion and dose dependent lethality. EEEV was first detected in the lung 1 day post challenge, and by day 3 peak viral titres were observed in the brain, spleen and blood, corresponding with severe meningoencephalitis, indicative of encephalitic disease. Lethality follows severe neurological signs, and may be linked to a threshold level of virus replication in the brain. Effective medical countermeasures for EEEV may necessitate early inoculation to inhibit infection of the brain in zoonotic incidents, and be able to traverse the blood-brain barrier to sufficiently interrupt replication in the brain in cases of aerosol infection. CONCLUSIONS There is little human data on the hazard posed by aerosol infection with encephalitic alphaviruses, and use of EEEV as a bioweapon may be by the aerosol route. A well characterized model of aerosol exposure that recapitulates some of the most severe human clinical features is necessary to evaluate the efficacy of putative medical countermeasures, and to increase our understanding about how this route of infection induces such rapid neuro-invasion and resulting disease.
Collapse
Affiliation(s)
- Amanda L. Phelps
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a,, Porton Down, Salisbury, Wiltshire SP4 0JQ UK
| | - Lyn M. O’Brien
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a,, Porton Down, Salisbury, Wiltshire SP4 0JQ UK
| | - Lin S. Eastaugh
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a,, Porton Down, Salisbury, Wiltshire SP4 0JQ UK
| | - Carwyn Davies
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a,, Porton Down, Salisbury, Wiltshire SP4 0JQ UK
| | - Mark S. Lever
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a,, Porton Down, Salisbury, Wiltshire SP4 0JQ UK
| | - Jane Ennis
- Mapp Biopharmaceutical Inc, 6160 Lusk Blvd. #C105, San Diego, CA 92121 USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc, 6160 Lusk Blvd. #C105, San Diego, CA 92121 USA
| | - Alejandro Nunez
- Pathology Unit, Animal and Plant Health Agency – Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB UK
| | - David O. Ulaeto
- CBR Division, Defence Science and Technology Laboratory (Dstl), Room 201, Building 7a,, Porton Down, Salisbury, Wiltshire SP4 0JQ UK
| |
Collapse
|
20
|
Suschak JJ, Bagley K, Six C, Shoemaker CJ, Kwilas S, Spik KW, Dupuy LC, Schmaljohn CS. The genetic adjuvant IL-12 enhances the protective efficacy of a DNA vaccine for Venezuelan equine encephalitis virus delivered by intramuscular injection in mice. Antiviral Res 2018; 159:113-121. [PMID: 30268913 DOI: 10.1016/j.antiviral.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023]
Abstract
We have previously shown that DNA vaccines expressing codon-optimized alphavirus envelope glycoprotein genes protect both mice and non-human primates from viral challenge when delivered by intramuscular electroporation (IM-EP). To determine if we could achieve equivalent immunogenicity and protective efficacy in the absence of electroporation, we co-delivered our Venezuelan equine encephalitis virus (VEEV) DNA vaccine with DNA plasmids expressing genetic adjuvants designed to augment immune responses. We tested the Th1-inducing cytokine IL-12 as well as the granulocyte growth factor GM-CSF, both of which have demonstrated significant adjuvant effect when included in clinical DNA vaccine formulations. Additionally, as multiple reports have described the necessity of IFN-αβ in DNA vaccine immunogenicity, we tested vaccine plasmids encoding a potent stimulator of the IFN-αβ pathway. Our data suggest that IM vaccination of mice with plasmid DNA encoding genetic adjuvants enhances VEEV vaccine immunogenicity, resulting in improved T cell responses, as well as skewing of the anti-VEEV IgG antibody isotype. Additionally, IM vaccination of VEEV DNA vaccine and IL-12 provided complete protection against aerosol VEEV challenge. Overall, our data suggest that co-delivery of genetic adjuvants with alphavirus DNA vaccines using IM delivery can influence the type of immune response obtained and provide comparable protective immunity to that achieved by IM-EP delivery of the vaccine without adjuvants.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Encephalitis Virus, Venezuelan Equine
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Interleukin-12/genetics
- Interleukin-12/immunology
- Mice
- Mice, Inbred BALB C
- Vaccines, DNA/immunology
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- John J Suschak
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | - Carolyn Six
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles J Shoemaker
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Steven Kwilas
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Kristin W Spik
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Lesley C Dupuy
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Connie S Schmaljohn
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|