1
|
Maciel M, Scott JC, Baudier RL, Clements JD, Laird RM, Gutiérrez RL, Porter CK, Norton EB. Protective antibodies against enterotoxigenic Escherichia coli are generated from heat-labile toxoid vaccination and exhibit subject- and vaccine-specific diversity. Med Microbiol Immunol 2025; 214:10. [PMID: 39934422 PMCID: PMC11814043 DOI: 10.1007/s00430-025-00817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
Heat-labile toxin (LT) from enterotoxigenic Escherichia coli (ETEC) is an important pathogenic protein. Anti-LT antibodies (Abs) induced by vaccination can neutralize the toxin and potentially prevent diarrheal secretion from ~ 60% of ETEC strains expressing LT. However, only superficial investigation of the anti-toxin response is usually conducted in clinical trials. Here, we utilized human serum samples from two clinical trials performed to assess safety, immunogenicity and protection in a controlled human infection model with a LT + ST + CFA/I + H10407 ETEC strain. These Phase 1 and Phase 2b clinical trials explored a prototype ETEC adhesin (CfaE) and a chimeric adhesin-toxoid protein (dscCfaE-CTA2/LTB5) delivered intradermally or transcutaneously with a mutated form of LT (mLT) as an adjuvant. Serum samples were tested for antigen-specific IgG or IgA Abs by immunoblot, enzyme-linked immunosorbent assay (ELISA), or functional neutralizing Abs using LT holotoxin, LTA or LTB subunits. Abs to both LT subunits were present, but the response to each was altered by vaccine formulation, dose, and delivery routes as well as subject. The anti-LT IgG response correlated best to neutralizing antibodies and protection from H10407 controlled challenge when compared to other measures including serum IgA or anti-fimbriae (CfaE) Abs. In addition, our results helped to explain cohort attack rate differences in naïve unvaccinated participants and we found higher anti-LTA IgG post-challenge significantly related to ETEC severity score. Thus, strategies generating and measuring immunity to the complete AB5 structure of LT and subunits are better determinant of assessing protective immunity against LT + or LT + ST + ETEC diarrheal secretion in humans.
Collapse
Affiliation(s)
- Milton Maciel
- Operationally Relevant Infections Department, Naval Medical Research Command, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jordan C Scott
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Robin L Baudier
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
- Biostatistics and Design Program, Oregon Health and Sciences University, Portland, USA
| | - John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Renee M Laird
- Operationally Relevant Infections Department, Naval Medical Research Command, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
- Diarrheal Disease Research Branch, Walter Reed Army Institute of Research, Silver Spring, USA
| | - Ramiro L Gutiérrez
- Operationally Relevant Infections Department, Naval Medical Research Command, Silver Spring, MD, USA
- State University of New York Upstate Medical University, Syracuse, USA
| | - Chad K Porter
- Translational and Clinical Research Department, Naval Medical Research Command, Silver Spring, MD, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Barbosa MS, Sampaio BA, Spergser J, Rosengarten R, Marques LM, Chopra-Dewasthaly R. Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies. Vaccines (Basel) 2024; 12:156. [PMID: 38400139 PMCID: PMC10892753 DOI: 10.3390/vaccines12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Contagious agalactia (CA) is a serious multietiological disease whose classic etiological agent is Mycoplasma agalactiae and which causes high morbidity and mortality rates in infected herds. CA is classified as a notifiable disease by the World Organization for Animal Health due to its significant worldwide economic impact on livestock, primarily involving goat and sheep farms. The emergence of atypical symptoms and strains of M. agalactiae in wildlife ungulates reestablishes its highly plastic genome and is also of great epidemiological significance. Antimicrobial therapy is the main form of control, although several factors, such as intrinsic antibiotic resistance and the selection of resistant strains, must be considered. Available vaccines are few and mostly inefficient. The virulence and pathogenicity mechanisms of M. agalactiae mainly rely on surface molecules that have direct contact with the host. Because of this, they are essential for the development of vaccines. This review highlights the currently available vaccines and their limitations and the development of new vaccine possibilities, especially considering the challenge of antigenic variation and dynamic genome in this microorganism.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
| | | | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
- Department of Microbiology, State University of Santa Cruz (UESC), Ilheus 45662-900, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| |
Collapse
|
3
|
Gutiérrez RL, Porter CK, Harro C, Talaat K, Riddle MS, DeNearing B, Brubaker J, Maciel M, Laird RM, Poole S, Chakraborty S, Maier N, Sack DA, Savarino SJ. Efficacy Evaluation of an Intradermally Delivered Enterotoxigenic Escherichia coli CF Antigen I Fimbrial Tip Adhesin Vaccine Coadministered with Heat-Labile Enterotoxin with LT(R192G) against Experimental Challenge with Enterotoxigenic E. coli H10407 in Healthy Adult Volunteers. Microorganisms 2024; 12:288. [PMID: 38399692 PMCID: PMC10892241 DOI: 10.3390/microorganisms12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Enterotoxigenic E. coli (ETEC) is a principal cause of diarrhea in travelers, deployed military personnel, and children living in low to middle-income countries. ETEC expresses a variety of virulence factors including colonization factors (CF) that facilitate adherence to the intestinal mucosa. We assessed the protective efficacy of a tip-localized subunit of CF antigen I (CFA/I), CfaE, delivered intradermally with the mutant E. coli heat-labile enterotoxin, LTR192G, in a controlled human infection model (CHIM). METHODS Three cohorts of healthy adult subjects were enrolled and given three doses of 25 μg CfaE + 100 ng LTR192G vaccine intradermally at 3-week intervals. Approximately 28 days after the last vaccination, vaccinated and unvaccinated subjects were admitted as inpatients and challenged with approximately 2 × 107 cfu of CFA/I+ ETEC strain H10407 following an overnight fast. Subjects were assessed for moderate-to-severe diarrhea for 5 days post-challenge. RESULTS A total of 52 volunteers received all three vaccinations; 41 vaccinated and 43 unvaccinated subjects were challenged and assessed for moderate-to-severe diarrhea. Naïve attack rates varied from 45.5% to 64.7% across the cohorts yielding an overall efficacy estimate of 27.8% (95% confidence intervals: -7.5-51.6%). In addition to reducing moderate-severe diarrhea rates, the vaccine significantly reduced loose stool output and overall ETEC disease severity. CONCLUSIONS This is the first study to demonstrate protection against ETEC challenge after intradermal vaccination with an ETEC adhesin. Further examination of the challenge methodology is necessary to address the variability in naïve attack rate observed among the three cohorts in the present study.
Collapse
Affiliation(s)
- Ramiro L. Gutiérrez
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Clayton Harro
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Kawsar Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Mark S. Riddle
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| | - Barbara DeNearing
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Jessica Brubaker
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Milton Maciel
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Renee M. Laird
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Steven Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Subra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | | | - David A. Sack
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21224, USA (K.T.); (B.D.); (D.A.S.)
| | - Stephen J. Savarino
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (M.S.R.); (R.M.L.); (S.P.); (S.J.S.)
| |
Collapse
|
4
|
Zhou S, Yu KOA, Mabrouk MT, Jahagirdar D, Huang WC, Guerra JA, He X, Ortega J, Poole ST, Hall ER, Gomez-Duarte OG, Maciel M, Lovell JF. Antibody induction in mice by liposome-displayed recombinant enterotoxigenic Escherichia coli (ETEC) colonization antigens. Biomed J 2023; 46:100588. [PMID: 36925108 PMCID: PMC10711177 DOI: 10.1016/j.bj.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) strains cause infectious diarrhea and colonize host intestine epithelia via surface-expressed colonization factors. Colonization factor antigen I (CFA/I), a prevalent ETEC colonization factor, is a vaccine target since antibodies directed to this fimbria can block ETEC adherence and prevent diarrhea. METHODS Two recombinant antigens derived from CFA/I were investigated with a vaccine adjuvant system that displays soluble antigens on the surface of immunogenic liposomes. The first antigen, CfaEB, is a chimeric fusion protein comprising the minor (CfaE) and major (CfaB) subunits of CFA/I. The second, CfaEad, is the adhesin domain of CfaE. RESULTS Owing to their His-tag, recombinant CfaEB and CfaEad, spontaneously bound upon admixture with nanoliposomes containing cobalt-porphyrin phospholipid (CoPoP), as well as a synthetic monophosphoryl lipid A (PHAD) adjuvant. Intramuscular immunization of mice with sub-microgram doses CfaEB or CfaEad admixed with CoPoP/PHAD liposomes elicited serum IgG and intestinal IgA antibodies. The smaller CfaEad antigen benefitted more from liposome display. Serum and intestine antibodies from mice immunized with liposome-displayed CfaEB or CfaEad recognized native CFA/I fimbria as evidenced by immunofluorescence and hemagglutination inhibition assays using the CFA/I-expressing H10407 ETEC strain. CONCLUSION These data show that colonization factor-derived recombinant ETEC antigens exhibit immunogenicity when delivered in immunogenic particle-based formulations.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Karl O A Yu
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Moustafa T Mabrouk
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Julio A Guerra
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Xuedan He
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Steven T Poole
- Naval Medical Research Center, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Eric R Hall
- Naval Medical Research Center, Silver Spring, MD, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatrics Infectious Diseases, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Milton Maciel
- Naval Medical Research Center, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; Department of Microbiology and Immunology, Uniformed Services University Health System, Bethesda, MD, USA.
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Upadhyay I, Parvej SMD, Shen Y, Li S, Lauder KL, Zhang C, Zhang W. Protein-based vaccine candidate MecVax broadly protects against enterotoxigenic Escherichia coli intestinal colonization in a rabbit model. Infect Immun 2023; 91:e0027223. [PMID: 37874163 PMCID: PMC10652908 DOI: 10.1128/iai.00272-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
There are no vaccines licensed against enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and the most common cause of travelers' diarrhea. Multivalent vaccine candidate MecVax unprecedentedly targets two ETEC enterotoxins (heat-stable toxin, STa; heat-labile toxin, LT) and the seven most prevalent ETEC adhesins (colonization factor antigen, CFA/I, coli surface antigens, CS1-CS6) and has been demonstrated preclinically to protect against STa- and LT-mediated ETEC clinical diarrhea and prevent intestinal colonization from ETEC strain H10407 (CFA/I, STa, LT). However, it is unattested whether MecVax broadly protects against intestinal colonization from ETEC strains producing the other six adhesins (CS1-CS6) also targeted by this product. In this study, we immunized rabbits with MecVax and challenged them with heterogeneous ETEC strains that express CS1-CS6 adhesins to evaluate MecVax's efficacy against bacterial intestinal colonization, thus providing broad vaccine protection against ETEC infection. Data revealed that rabbits intramuscularly immunized with MecVax developed robust responses to both ETEC enterotoxins (STa, LT) and seven adhesins (CFA/I, CS1-CS6), and when challenged with ETEC isolates expressing CS1/CS3, CS2/CS3, CS4/CS6, CS5/CS6, or CS6 adhesin, the immunized rabbits prevented over two logs (>99%) of bacteria from colonization in small intestines. Additionally, compared to a CFA-toxoid fusion protein, which is another potential ETEC vaccine antigen to target two ETEC enterotoxins and the seven adhesins, MecVax exhibited better protection against ETEC intestinal colonization. These results, in conjunction with the protection data from early studies, evidenced that MecVax is broadly protective, validating MecVax's candidacy as an effective vaccine against ETEC-associated diarrhea and accelerating ETEC vaccine development.
Collapse
Affiliation(s)
- Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shafiullah M. D. Parvej
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yiyang Shen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn L. Lauder
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chongyang Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Gutiérrez RL, Riddle MS, Porter CK, Maciel M, Poole ST, Laird RM, Lane M, Turiansky GW, Jarell A, Savarino SJ. A First in Human Clinical Trial Assessing the Safety and Immunogenicity of Two Intradermally Delivered Enterotoxigenic Escherichia coli CFA/I Fimbrial Tip Adhesin Antigens with and without Heat-Labile Enterotoxin with Mutation LT(R192G). Microorganisms 2023; 11:2689. [PMID: 38004700 PMCID: PMC10672875 DOI: 10.3390/microorganisms11112689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Enterotoxigenic E. coli (ETEC) is a leading cause of diarrhea in travelers as well as for children living in low- to middle-income countries. ETEC adhere to intestinal epithelium via colonization factors (CFs). CFA/I, a common CF, is composed of a polymeric stalk and a tip-localized minor adhesive subunit, CfaE. Vaccine delivery by the transcutaneous immunization of dscCfaE was safe but was poorly immunogenic in a phase 1 trial when administered to volunteers with LTR(192G) and mLT. To potentially enhance the immunogenicity of CfaE while still delivering via a cutaneous route, we evaluated the safety and immunogenicity of two CfaE constructs administered intradermally (ID) with or without mLT. METHODS CfaE was evaluated as a donor strand-complemented construct (dscCfaE) and as a chimeric construct (Chimera) in which dscCfaE replaces the A1 domain of the cholera toxin A subunit and assembles non-covalently with the pentamer of heat-labile toxin B (LTB). Subjects received three ID vaccinations three weeks apart with either dscCfaE (1, 5, and 25 µg) or Chimera (2.6 and 12.9 µg) with and without 0.1 µg of mLT. Subjects were monitored for local and systemic adverse events. Immunogenicity was evaluated by serum and antibody-secreting cell (ASC) responses. RESULTS The vaccine was well-tolerated with predominantly mild and moderate local vaccine site reactions characterized by erythema, induration and post-inflammatory hyperpigmentation. High rates of serologic and ASC responses were seen across study groups with the most robust responses observed in subjects receiving 25 µg of dscCfaE with 0.1 mcg of LT(R192G). CONCLUSION Both ETEC adhesin vaccine prototypes were safe and immunogenic when co-administered with mLT by the ID route. The observed immune responses induced with the high dose of dscCfaE and mLT warrant further assessment in a controlled human infection model.
Collapse
Affiliation(s)
- Ramiro L. Gutiérrez
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - Mark S. Riddle
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Milton Maciel
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Steven T. Poole
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Renee M. Laird
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Michelle Lane
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
| | - George W. Turiansky
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Abel Jarell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Stephen J. Savarino
- Naval Medical Research Command, Silver Spring, MD 20910, USA; (R.L.G.); (S.T.P.)
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Li S, Seo H, Upadhyay I, Zhang W. A Polyvalent Adhesin-Toxoid Multiepitope-Fusion-Antigen-Induced Functional Antibodies against Five Enterotoxigenic Escherichia coli Adhesins (CS7, CS12, CS14, CS17, and CS21) but Not Enterotoxins (LT and STa). Microorganisms 2023; 11:2473. [PMID: 37894131 PMCID: PMC10608864 DOI: 10.3390/microorganisms11102473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing prevalence and association with moderate-to-severe diarrhea make enterotoxigenic Escherichia coli (ETEC) adhesins CS7, CS12, CS14, CS17, and CS21 potential targets of ETEC vaccines. Currently, there are no vaccines licensed to protect against ETEC, a top cause of children's diarrhea and travelers' diarrhea. Recently, a polyvalent adhesin protein (adhesin MEFA-II) was demonstrated to induce antibodies that inhibited adherence from these five ETEC adhesins and reduced the enterotoxicity of ETEC heat-stable toxin (STa), which plays a key role in causing ETEC-associated diarrhea. To improve adhesin MEFA-II for functional antibodies against STa toxin and the other ETEC toxin, heat-labile toxin (LT), we modified adhesin MEFA-II by adding another STa toxoid and an LT epitope; we examined the new antigen immunogenicity (to five adhesins and two toxins) and more importantly antibody functions against ETEC adherence and STa and LT enterotoxicity. Data show that mice intramuscularly immunized with the new antigen (adhesin MEFA-IIb) developed robust IgG responses to the targeted adhesins (CS7, CS12, CS14, CS17, and CS21) and toxins (STa and LT). Mouse antibodies inhibited the adherence of ETEC strains expressing any of these five adhesins but failed to neutralize STa or LT enterotoxicity. In further studies, rabbits intramuscularly immunized with adhesin MEFA-IIb developed robust antigen-specific antibodies; when challenged with an ETEC isolate expressing CS21 adhesin (JF2101, CS21, and STa), the immunized rabbits showed a significant reduction in intestinal colonization by ETEC bacteria. These data indicate that adhesin MEFA-IIb is broadly immunogenic and induces functional antibodies against the targeted ETEC adhesins but not the toxins.
Collapse
Affiliation(s)
| | | | | | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
8
|
Upadhyay I, Parvej SMD, Li S, Lauder KL, Shen Y, Zhang W. Polyvalent Protein Adhesin MEFA-II Induces Functional Antibodies against Enterotoxigenic Escherichia coli (ETEC) Adhesins CS7, CS12, CS14, CS17, and CS21 and Heat-Stable Toxin (STa). Appl Environ Microbiol 2023; 89:e0068323. [PMID: 37212687 PMCID: PMC10304760 DOI: 10.1128/aem.00683-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
There are no licensed vaccines for enterotoxigenic Escherichia coli (ETEC), a common cause of children's diarrhea and travelers' diarrhea. ETEC strains producing enterotoxins (heat-labile toxin, LT; heat-stable toxin, STa) and adhesins CFA/I, CFA/II (CS1-CS3) or CFA/IV (CS4-CS6) attributed to a majority of ETEC-associated diarrheal cases, thus the two toxins (STa, LT) and the seven adhesins (CFA/I, CS1 to CS6) are historically the primary targets in ETEC vaccine development. Recent studies, however, revealed that ETEC strains with adhesins CS14, CS21, CS7, CS17, and CS12 are also prevalent and cause moderate-to-severe diarrhea; these adhesins are now considered antigen targets as well for ETEC vaccines. In this study, we applied the epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform and constructed a polyvalent protein to present immuno-dominant continuous B-cell epitopes of these five adhesins (also an STa toxoid); we then characterized this protein antigen's (termed as adhesin MEFA-II) broad immunogenicity and evaluated antibody functions against each targeted adhesin and STa toxin. Data showed that mice intramuscularly immunized with adhesin MEFA-II protein developed robust IgG to the targeted adhesins and toxin STa. Importantly, the antigen-derived antibodies significantly inhibited adherence of ETEC bacteria expressing adhesin CS7, CS12, CS14, CS17, or CS21 and reduced STa enterotoxicity. These results indicated that adhesin MEFA-II protein is broadly immunogenic and induces cross-functional antibodies, suggesting adhesin MEFA-II can be an effective ETEC vaccine antigen; if included in an ETEC vaccine candidate, adhesin MEFA-II can expand vaccine coverage and increase efficacy against ETEC-associated children's diarrhea and travelers' diarrhea. IMPORTANCE An effective vaccine is lacking against ETEC, a primary cause of children's diarrhea and traveler's diarrhea and a threat to global health. The key challenge in ETEC vaccine development is that ETEC bacteria express heterogeneous virulence determinants (>25 adhesins and two toxins). While the current strategy to target the seven most prevalent ETEC adhesins (CFA/I, CS1 to CS6) potentially lead to a vaccine against many clinical cases, the prevalence of ETEC strains shifts chronically and geographically, and ETEC expressing other adhesins, mainly CS7, CS12, CS14, CS17, and CS21, also cause moderate-to-severe diarrhea. However, it is impossible to develop an ETEC vaccine to target as many as 12 adhesins under conventional approaches. This study used a unique vaccinology platform to create a polyvalent antigen and demonstrated the antigen's broad immunogenicity and functions against the targeted ETEC adhesins, enabling the development of a broadly protective vaccine essentially against all of the important ETEC strains.
Collapse
Affiliation(s)
- Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shafiullah M. D. Parvej
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn L. Lauder
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yiyang Shen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Intradermally administered enterotoxigenic E. coli vaccine candidate MecVax induces functional serum IgG antibodies against seven adhesins (CFA/I, CS1-CS6) and both toxins (STa, LT). Appl Environ Microbiol 2021; 88:e0213921. [PMID: 34936832 DOI: 10.1128/aem.02139-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are no vaccines licensed for enterotoxigenic Escherichia coli (ETEC), a leading bacterial cause of children's diarrhea and travelers' diarrhea. MecVax, a multivalent E. coli vaccine candidate composed of two epitope- and structure-based polyvalent proteins (toxoid fusion 3xSTaN12S-mnLTR192G/L211A and CFA/I/II/IV MEFA), is to induce broad anti-adhesin and antitoxin antibodies against heterogeneous ETEC pathovars. Administered intraperitoneally (IP) or intramuscularly (IM), MecVax was shown to induce antibodies against seven ETEC adhesins (CFA/I, CS1-CS6), which are produced by ETEC pathovars causing over 60% of ETEC-associated diarrheal cases and the moderate-to-severe cases, and both toxins (heat-labile toxin - LT and heat-stable toxin - STa) expressed by all ETEC strains. To further characterize immunogenicity of this protein-based injectable subunit vaccine candidate and to explore other parenteral administration routes for the product, in this study, we intradermally (ID) immunized mice with MecVax and measured antigen-specific antibody responses and further antibody functional activities against the adhesins and toxins targeted by the vaccine. Data showed that mice ID immunized with MecVax developed robust anti-CFA/I, -CS1, -CS2, -CS3, -CS4, -CS5, -CS6, -LT and anti-STa IgG responses. Furthermore, antibodies derived from MecVax via ID route inhibited adherence of ETEC or E. coli strains expressing any of the seven target adhesins (CFA/I, CS1-CS6) and neutralized enterotoxicity of LT and STa toxins. These results confirmed broad immunogenicity of MecVax and suggested that this multivalent ETEC subunit vaccine candidate can be effectively delivered via ID route. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of diarrhea in children living in developing countries and international travelers. Developing an effective vaccine for ETEC diarrhea has been hampered because of challenges of virulence heterogeneity and difficulties of inducing neutralizing antibodies against the key STa toxin. MecVax, a subunit vaccine candidate carrying two polyvalent protein antigens for the first time induces functional antibodies against the most important ETEC adhesins which are associated with a majority of diarrheal cases and the moderate-to-severe cases but also against enterotoxicity of LT and more importantly STa toxin which plays a key role in children's diarrhea and travelers' diarrhea, potentially leading to development of a truly effective ETEC vaccine. Data from this study may also indicated that this ETEC subunit vaccine can be administered effectively via ID route, expanding clinical administration options for this vaccine product.
Collapse
|
10
|
Zhao H, Xu Y, Li X, Li G, Zhao H, Wang L. Expression and Purification of a Recombinant Enterotoxin Protein Using Different E. coli Host Strains and Expression Vectors. Protein J 2021; 40:245-254. [PMID: 33721189 DOI: 10.1007/s10930-021-09973-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
Infection by Enterotoxigenic Escherichia coli is a common cause of diarrhea in animals. The development of vaccines against enterotoxins can effectively control the infection. We have previously constructed a recombinant antigen SLS fused by STa, LTB and STb enterotoxin and it showed a high immunogenicity in mice. Herein, we evaluated the expression of SLS in three different E. coli cells with corresponding plasmids. SLS proteins expressed in E. coli BL21 (DE3) and Rosetta-gami B (DE3) were aggregated as inclusion bodies, and the proteins solubility were not obviously promoted in low temperature combined with adjustment of inducer concentration. In contrast, SLS protein with maltose-binding protein (MBP) yielded from TB1 (DE3) cells were partially soluble. After increasing the IPTG concentration in the medium up to 2 mM and incubating at 37 ℃ for 4 h, the soluble protein yield reached the highest level (4.533 mg/0.2 L culture), which was significantly higher than the expression of SLS protein in Rosetta-gami B (DE3) (P < 0.05). Therefore, the TB1-pMAL expression system can be used for mass extraction and purification of SLS antigen prior to measuring its immunogenicity in pregnant mammals.
Collapse
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.,Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116620, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Haofei Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
11
|
Abstract
Enteric viral and bacterial infections continue to be a leading cause of mortality and morbidity in young children in low-income and middle-income countries, the elderly, and immunocompromised individuals. Vaccines are considered an effective and practical preventive approach against the predominantly fecal-to-oral transmitted gastroenteritis particularly in the resource-limited countries or regions where implementation of sanitation systems and supply of safe drinking water are not quickly achievable. While vaccines are available for a few enteric pathogens including rotavirus and cholera, there are no vaccines licensed for many other enteric viral and bacterial pathogens. Challenges in enteric vaccine development include immunological heterogeneity among pathogen strains or isolates, a lack of animal challenge models to evaluate vaccine candidacy, undefined host immune correlates to protection, and a low protective efficacy among young children in endemic regions. In this article, we briefly updated the progress and challenges in vaccines and vaccine development for the leading enteric viral and bacterial pathogens including rotavirus, human calicivirus, Shigella, enterotoxigenic Escherichia coli (ETEC), cholera, nontyphoidal Salmonella, and Campylobacter, and introduced a novel epitope- and structure-based vaccinology platform known as MEFA (multiepitope fusion antigen) and the application of MEFA for developing broadly protective multivalent vaccines against heterogenous pathogens.
Collapse
Affiliation(s)
- Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Qiangde Duan
- University of Yangzhou, Institute of Comparative Medicine, Yangzhou, PR China
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA,CONTACT Weiping Zhang, University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| |
Collapse
|
12
|
Evaluation of the Immunogenicity and Protective Efficacy of an Enterotoxigenic Escherichia coli CFA/I Adhesin-Heat-Labile Toxin Chimera. Infect Immun 2020; 88:IAI.00252-20. [PMID: 32839188 DOI: 10.1128/iai.00252-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.
Collapse
|
13
|
A first in human clinical trial assessing the safety and immunogenicity of transcutaneously delivered enterotoxigenic Escherichia coli fimbrial tip adhesin with heat-labile enterotoxin with mutation R192G. Vaccine 2020; 38:7040-7048. [DOI: 10.1016/j.vaccine.2020.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/04/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023]
|