1
|
Zhang JF, Shang K, Kim SW, Park JY, Wei B, Jang HK, Kang M, Cha SY. Simultaneous construction strategy using two types of fluorescent markers for HVT vector vaccine against infectious bursal disease and H9N2 avian influenza virus by NHEJ-CRISPR/Cas9. Front Vet Sci 2024; 11:1385958. [PMID: 38812565 PMCID: PMC11135205 DOI: 10.3389/fvets.2024.1385958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Recently, herpesvirus of turkeys (HVT), which was initially employed as a vaccine against Marek's disease (MD), has been shown to be a highly effective viral vector for producing recombinant vaccines that can simultaneously express the protective antigens of multiple poultry diseases. Prior to the development of commercial HVT-vectored dual-insert vaccines, the majority of HVT-vectored vaccines in use only contained a single foreign gene and were often generated using time-consuming and inefficient traditional recombination methods. The development of multivalent HVT-vectored vaccines that induce simultaneous protection against several avian diseases is of great value. In particular, efficacy interference between individual recombinant HVT vaccines can be avoided. Herein, we demonstrated the use of CRISPR/Cas9 gene editing technology for the insertion of an IBDV (G2d) VP2 expression cassette into the UL45/46 region of the recombinant rHVT-HA viral genome to generate the dual insert rHVT-VP2-HA recombinant vaccine. The efficacy of this recombinant virus was also evaluated in specific pathogen-free (SPF) chickens. PCR and sequencing results showed that the recombinant virus rHVT-VP2-HA was successfully constructed. Vaccination with rHVT-VP2-HA produced high levels of specific antibodies against IBDV (G2d) and H9N2/Y280. rHVT-VP2-HA can provide 100% protection against challenges with IBDV (G2d) and H9N2/Y280. These results demonstrate that rHVT-VP2-HA is a safe and highly efficacious vaccine for the simultaneous control of IBDV (G2d) and H9N2/Y280.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Ke Shang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan, Republic of Korea
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan, Republic of Korea
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
2
|
Zhang JF, Kim SW, Shang K, Park JY, Choi YR, Jang HK, Wei B, Kang M, Cha SY. Protection of Chickens against H9N2 Avian Influenza Isolates with a Live Vector Vaccine Expressing Influenza Hemagglutinin Gene Derived from Y280 Avian Influenza Virus. Animals (Basel) 2024; 14:872. [PMID: 38539970 PMCID: PMC10967311 DOI: 10.3390/ani14060872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 11/11/2024] Open
Abstract
Since the outbreak of the H9N2/Y439 avian influenza virus in 1996, the Korean poultry industry has incurred severe economic losses. A novel possibly zoonotic H9N2 virus from the Y280-like lineage (H9N2/Y280) has been prevalent in Korea since June 2020, posing a threat to the poultry sector. Rapid mutation of influenza viruses urges the development of effective vaccines against newly generated strains. Thus, we engineered a recombinant virus rHVT/Y280 to combat H9N2/Y280. We integrated the hemagglutinin (HA) gene of the H9N2/Y280 strain into the US2 region of the herpesvirus of turkeys (HVT) Fc126 vaccine strain, utilizing CRISPR/Cas9 gene-editing technology. The successful construction of rHVT/Y280 was confirmed by polymerase chain reaction and sequencing, followed by efficacy evaluation. Four-day-old specific pathogen-free chickens received the rHVT/Y280 vaccine and were challenged with the H9N2/Y280 strain A21-MRA-003 at 3 weeks post-vaccination. In 5 days, there were no gross lesions among the vaccinated chickens. The rHVT/Y280 vaccine induced strong humoral immunity and markedly reduced virus shedding, achieving 100% inhibition of virus recovery in the cecal tonsil and significantly lowering tissue viral load. Thus, HVT vector vaccines expressing HA can be used for protecting poultry against H9N2/Y280. The induction of humoral immunity by live vaccines is vital in such cases. In summary, the recombinant virus rHVT/Y280 is a promising vaccine candidate for the protection of chickens against the H9N2/Y280.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Ke Shang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471000, China
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Yu-Ri Choi
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| |
Collapse
|
3
|
Sagong M, Lee KN, Lee EK, Kang H, Choi YK, Lee YJ. Current situation and control strategies of H9N2 avian influenza in South Korea. J Vet Sci 2023; 24:e5. [PMID: 36560837 PMCID: PMC9899936 DOI: 10.4142/jvs.22216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.
Collapse
Affiliation(s)
- Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Kwang-Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyunmi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea.
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
4
|
Heo GB, Kye SJ, Sagong M, Lee EK, Lee KN, Lee YN, Choi KS, Lee MH, Lee YJ. Genetic characterization of H9N2 avian influenza virus previously unrecognized in Korea. J Vet Sci 2021; 22:e21. [PMID: 33774937 PMCID: PMC8007441 DOI: 10.4142/jvs.2021.22.e21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, we describe the isolation and characterization of previously unreported Y280-lineage H9N2 viruses from two live bird markets in Korea in June 2020. Genetic analysis revealed that they were distinct from previous H9N2 viruses circulating in Korea and had highest homology to A/chicken/Shandong/1844/2019(H9N2) viruses. Their genetic constellation showed they belonged to genotype S, which is the predominant genotype in China since 2010, where genotype S viruses have infected humans and acted as internal gene donors to H5 and H7 zoonotic influenza viruses. Active surveillance and control measures need to be enhanced to protect the poultry industry and public health.
Collapse
Affiliation(s)
- Gyeong Beom Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.,College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soo Jeong Kye
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Kwang Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yu Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Kang Seuk Choi
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Myoung Heon Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Youn Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
5
|
Lai VD, Kim JW, Choi YY, Kim JJ, So HH, Mo J. First report of field cases of Y280-like LPAI H9N2 strains in South Korean poultry farms: pathological findings and genetic characterization. Avian Pathol 2021; 50:327-338. [PMID: 34013789 DOI: 10.1080/03079457.2021.1929833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
H9N2 low-pathogenic avian influenza (LPAI) viruses have long been circulating in the world poultry industry, resulting in substantial economic losses. In addition to bird health consequences, viruses from specific lineages such as G1 and Y280 are also known to have the potential to cause a pandemic within the human population. In South Korea, after introducing inactivated H9N2 vaccines in 2007, there were no field outbreaks of H9N2 LPAI since 2009. However, in June 2020, an H9N2 virus was isolated from an outbreak in a Korean chicken farm. This strain was distinct from the predominant Korean/Y439 lineage and was believed to be part of the Y280-like lineage. Since the first case of this new H9N2 LPAI, nine more cases of field infections in poultry farms were documented through July and December of 2020. Phylogenetic analysis of the haemagglutinin (HA) and neuraminidase genes of these case isolates revealed that all strains were grouped with exotic Y280-like strains that did not previously exist in South Korea and were emerging into a new cluster. Serological assays also confirmed the existence of antibodies to Y280-like viruses in field sera collected from infected birds, and that they had seroconverted. Further analysis of the receptor-binding region in the HA protein also revealed that these isolates harboured a human-like motif that could potentially affect mammals and humans, demonstrating a possible public health risk. This is the first report of field cases caused by Y280-like H9N2 LPAI in the Korean poultry industry. RESEARCH HIGHLIGHTSField outbreaks caused by Y280-like H9N2 avian influenza viruses were confirmed.A human-like motif was found at the HA receptor-binding region of all isolates.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Hee So
- Hansol Poultry Hospital, Yongin, South Korea
| | - Jongseo Mo
- Southeast Poultry Research Laboratory, USDA-ARS, US National Poultry Research Center, Athens, GA, USA
| |
Collapse
|