1
|
Rodolphi CM, Soares IF, Matos ADS, Rodrigues-da-Silva RN, Ferreira MU, Pratt-Riccio LR, Totino PRR, Scopel KKG, Lima-Junior JDC. Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study. Antibodies (Basel) 2024; 13:69. [PMID: 39189240 PMCID: PMC11348034 DOI: 10.3390/antib13030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Malaria is a serious health problem worldwide affecting mainly children and socially vulnerable people. The biological particularities of P. vivax, such as the ability to generate dormant liver stages, the rapid maturation of gametocytes, and the emergence of drug resistance, have contributed to difficulties in disease control. In this context, developing an effective vaccine has been considered a fundamental tool for the efficient control and/or elimination of vivax malaria. Although recombinant proteins have been the main strategy used in designing vaccine prototypes, synthetic immunogenic peptides have emerged as a viable alternative for this purpose. Considering, therefore, that in the Brazilian endemic population, little is known about the profile of the humoral immune response directed to synthetic peptides that represent different P. vivax proteins, the present work aimed to map the epitope-specific antibodies' profiles to synthetic peptides representing the linear portions of the ookinete and sporozoite cell passage protein (CelTOS), thrombospondin-related adhesive protein (TRAP), and cysteine-rich protective antigen (CyRPA) proteins in the acute (AC) and convalescent phases (Conv30 and Conv180 after infection) of vivax malaria. The results showed that the studied subjects responded to all proteins for at least six months following infection. For IgM, a few individuals (3-21%) were positive during the acute phase of the disease; the highest frequencies were observed for IgG (28-57%). Regarding the subclasses, IgG2 and IgG3 stood out as the most prevalent for all peptides. During the follow-up, the stability of IgG was observed for all peptides. Only one significant positive correlation was observed between IgM and exposure time. We conclude that for all the peptides, the immunodominant epitopes are recognized in the exposed population, with similar frequency and magnitude. However, if the antibodies detected in this study are potential protectors, this needs to be investigated.
Collapse
Affiliation(s)
- Cinthia Magalhães Rodolphi
- Research Centre of Parasitology, Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Isabela Ferreira Soares
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| | - Ada da Silva Matos
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| | | | - Marcelo Urbano Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo 05508-220, Brazil;
| | - Lilian Rose Pratt-Riccio
- Laboratory for Malaria Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.R.P.-R.); (P.R.R.T.)
- Center for Research, Diagnosis, and Training in Malaria of Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Paulo Renato Rivas Totino
- Laboratory for Malaria Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (L.R.P.-R.); (P.R.R.T.)
- Center for Research, Diagnosis, and Training in Malaria of Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Kézia Katiani Gorza Scopel
- Research Centre of Parasitology, Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil;
| | - Josué da Costa Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.F.S.); (A.d.S.M.)
| |
Collapse
|
2
|
Miura K, Flores-Garcia Y, Long CA, Zavala F. Vaccines and monoclonal antibodies: new tools for malaria control. Clin Microbiol Rev 2024; 37:e0007123. [PMID: 38656211 PMCID: PMC11237600 DOI: 10.1128/cmr.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Costa-Gouvea TBL, Françoso KS, Marques RF, Gimenez AM, Faria ACM, Cariste LM, Dominguez MR, Vasconcelos JRC, Nakaya HI, Silveira ELV, Soares IS. Poly I:C elicits broader and stronger humoral and cellular responses to a Plasmodium vivax circumsporozoite protein malaria vaccine than Alhydrogel in mice. Front Immunol 2024; 15:1331474. [PMID: 38650939 PMCID: PMC11033515 DOI: 10.3389/fimmu.2024.1331474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.
Collapse
Affiliation(s)
- Tiffany B. L. Costa-Gouvea
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Katia S. Françoso
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C. M. Faria
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo M. Cariste
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Ronnie C. Vasconcelos
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Marques RF, Gimenez AM, Caballero O, Simpson A, Salazar AM, Amino R, Godin S, Gazzinelli RT, Soares IS. Non-clinical toxicity and immunogenicity evaluation of a Plasmodium vivax malaria vaccine using Poly-ICLC (Hiltonol®) as adjuvant. Vaccine 2024; 42:2394-2406. [PMID: 38448321 DOI: 10.1016/j.vaccine.2024.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Malaria caused byPlasmodium vivaxis a pressing public health problem in tropical and subtropical areas.However, little progress has been made toward developing a P. vivaxvaccine, with only three candidates being tested in clinical studies. We previously reported that one chimeric recombinant protein (PvCSP-All epitopes) containing the conserved C-terminus of the P. vivax Circumsporozoite Protein (PvCSP), the three variant repeat domains, and aToll-like receptor-3 agonist,Poly(I:C), as an adjuvant (polyinosinic-polycytidylic acid, a dsRNA analog mimicking viral RNA), elicits strong antibody-mediated immune responses in mice to each of the three allelic forms of PvCSP. In the present study, a pre-clinical safety evaluation was performed to identify potential local and systemic toxic effects of the PvCSP-All epitopes combined with the Poly-ICLC (Poly I:C plus poly-L-lysine, Hiltonol®) or Poly-ICLC when subcutaneously injected into C57BL/6 mice and New Zealand White Rabbits followed by a 21-day recovery period. Overall, all observations were considered non-adverse and were consistent with the expected inflammatory response and immune stimulation following vaccine administration. High levels of vaccine-induced specific antibodies were detected both in mice and rabbits. Furthermore, mice that received the vaccine formulation were protected after the challenge with Plasmodium berghei sporozoites expressing CSP repeats from P. vivax sporozoites (Pb/Pv-VK210). In conclusion, in these non-clinical models, repeated dose administrations of the PvCSP-All epitopes vaccine adjuvanted with a Poly-ICLC were immunogenic, safe, and well tolerated.
Collapse
Affiliation(s)
- Rodolfo F Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Alba M Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | - Andres M Salazar
- Oncovir, Inc. Washington, Washington, DC, United States of America
| | - Rogerio Amino
- Department of Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Steven Godin
- Smithers Avanza Toxicology Services, Gaithersburg, MD, United States of America
| | - Ricardo T Gazzinelli
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Ntumngia FB, Kolli SK, Annamalai Subramani P, Barnes SJ, Nicholas J, Ogbondah MM, Barnes BB, Salinas ND, Thawornpan P, Tolia NH, Chootong P, Adams JH. Naturally acquired antibodies against Plasmodium vivax pre-erythrocytic stage vaccine antigens inhibit sporozoite invasion of human hepatocytes in vitro. Sci Rep 2024; 14:1260. [PMID: 38218737 PMCID: PMC10787766 DOI: 10.1038/s41598-024-51820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
In Plasmodium vivax, the most studied vaccine antigens are aimed at blocking merozoite invasion of erythrocytes and disease development. Very few studies have evaluated pre-erythrocytic (PE) stage antigens. The P. vivax circumsporozoite protein (CSP), is considered the leading PE vaccine candidate, but immunity to CSP is short-lived and variant specific. Thus, there is a need to identify other potential candidates to partner with CSP in a multivalent vaccine to protect against infection and disease. We hypothesize that sporozoite antigens important for host cell infection are considered potential targets. In this study, we evaluated the magnitude and quality of naturally acquired antibody responses to four P. vivax PE antigens: sporozoite surface protein 3 (SSP3), sporozoite protein essential for traversal 1 (SPECT1), cell traversal protein of ookinetes and sporozoites (CelTOS) and CSP in plasma of P. vivax infected patients from Thailand. Naturally acquired antibodies to these antigens were prevalent in the study subjects, but with significant differences in magnitude of IgG antibody responses. About 80% of study participants had antibodies to all four antigens and only 2% did not have antibodies to any of the antigens. Most importantly, these antibodies inhibited sporozoite infection of hepatocytes in vitro. Significant variations in magnitude of antigen-specific inhibitory antibody responses were observed with individual samples. The highest inhibitory responses were observed with anti-CelTOS antibodies, followed by anti-SPECT1, SSP3 and CSP antibodies respectively. These data highlight the vaccine potential of these antigens in protecting against hepatocyte infection and the need for a multi-valent pre-erythrocytic vaccine to prevent liver stage development of P. vivax sporozoites.
Collapse
Affiliation(s)
- Francis Babila Ntumngia
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA.
| | - Surendra Kumar Kolli
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA
| | | | - Samantha J Barnes
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA
| | - Justin Nicholas
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Madison M Ogbondah
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA
| | - Brian B Barnes
- College of Marine Science, University of South Florida, St Petersburg, FL, USA
| | - Nichole D Salinas
- Host Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Niraj H Tolia
- Host Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - John H Adams
- Center for Global Health and Interdisciplinary Research, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
6
|
Guled BA, Na-Bangchang K, Chaijaroenkul W. Exploring genetic polymorphisms among Plasmodium vivax isolates from the Thai-Myanmar borders using circumsporozoite protein (pvcsp) and ookinete surface protein (pvs25) encoding genes. Parasitol Res 2024; 123:91. [PMID: 38200222 DOI: 10.1007/s00436-023-08104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Plasmodium vivax malaria cases remain high along the Thai-Myanmar and Thai-Cambodia borders. Plasmodium vivax circumsporozoite protein (pvcsp) and Plasmodium vivax ookinete surface protein (pvs25) genes are promising molecular markers of the genetic diversity of P. vivax. This study investigated the genetic diversity of pvcsp and pvs25 in P. vivax isolates collected from the Thai-Myanmar border. The DNA samples were amplified, and the genotypes were analyzed by PCR-RFLP and DNA sequencing. Pvcsp genotypes, VK210, VK247, and mixed types, were found in 203 (91.9%), 15 (6.8%), and 3 (1.3%) of the isolates, respectively. Twenty-four allelic variants were observed, of which a high prevalence of VK210E and VK247E were reported. Two pvcsp variants, VK210C and VK210M showed significantly higher parasite density (46,234 (1154-144,000) vs. 25,606 (1373-68,878), respectively). The genetic diversity of pvcsp along the Thai-Myanmar border during 2002-2015 showed dynamic changes with both positive and negative selection. The frequency and distribution of pvcsp pattern might be changed over time and might be other factors contributing to gene selection. Three amino acid substitutions of pvs25, i.e., E97Q, I130T, and Q131K, were investigated with frequencies of 10 (4.5%), 221 (100%), and 204 (92.3%) isolates, respectively. There was no association between parasite density and pvs25 polymorphisms. The frequency of pvs25 polymorphism was similar to that previously reported, with the absence of random mutation. In conclusion, the genetic variation of pvcsp was changed over times whereas the genetic diversity of pvs25 was limited; these variations would be helpful for further vaccine development against P. vivax malaria.
Collapse
Affiliation(s)
- Bashir Abdirahman Guled
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang, 12120, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang, 12120, Pathum Thani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, 12120, Pathum Thani, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang, 12120, Pathum Thani, Thailand.
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Thawornpan P, Nicholas J, Malee C, Kochayoo P, Wangriatisak K, Tianpothong P, Ntumngia FB, J. Barnes S, H. Adams J, Chootong P. Longitudinal analysis of antibody responses to Plasmodium vivax sporozoite antigens following natural infection. PLoS Negl Trop Dis 2024; 18:e0011907. [PMID: 38277340 PMCID: PMC10817200 DOI: 10.1371/journal.pntd.0011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND P. vivax malaria is a major global health burden hindering social and economic development throughout many tropical and sub-tropical countries. Pre-erythrocytic (PE) vaccines emerge as an attractive approach for the control and elimination of malaria infection. Therefore, evaluating the magnitude, longevity and prevalence of naturally acquired IgG antibody responses against PE candidate antigens is useful for vaccine design. METHODOLOGY/PRINCIPAL FINDINGS The antigenicity of five recombinant PE antigens (PvCSP-VK210, PvSSP3, PvM2-MAEBL, PvCelTOS and PvSPECT1) was evaluated in plasma samples from individuals residing in low transmission areas in Thailand (Ranong and Chumphon Provinces). The samples were collected at the time of acute vivax malaria and 90, 270 and 360 days later. The prevalence, magnitude and longevity of total IgG and IgG subclasses were determined for each antigen using the longitudinal data. Our results showed that seropositivity of all tested PE antigens was detected during infection in at least some subjects; anti-PvCSP-VK210 and anti-PvCelTOS antibodies were the most frequent. Titers of these antibodies declined during the year of follow up, but notably seropositivity persisted. Among seropositive subjects at post-infection, high number of subjects possessed antibodies against PvCSP-VK210. Anti-PvSSP3 antibody responses had the longest half-life. IgG subclass profiling showed that the predominant subclasses were IgG1 and IgG3 (cytophilic antibodies), tending to remain detectable for at least 360 days after infection. CONCLUSIONS/SIGNIFICANCE The present study demonstrated the magnitude and longevity of serological responses to multiple PE antigens of P. vivax after natural infection. This knowledge could contribute to the design of an effective P. vivax vaccine.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Justin Nicholas
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Chayapat Malee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pachara Tianpothong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis Babila Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Samantha J. Barnes
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Nicholas J, De SL, Thawornpan P, Brashear AM, Kolli SK, Subramani PA, Barnes SJ, Cui L, Chootong P, Ntumngia FB, Adams JH. Preliminary characterization of Plasmodium vivax sporozoite antigens as pre-erythrocytic vaccine candidates. PLoS Negl Trop Dis 2023; 17:e0011598. [PMID: 37703302 PMCID: PMC10519608 DOI: 10.1371/journal.pntd.0011598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Plasmodium vivax pre-erythrocytic (PE) vaccine research has lagged far behind efforts to develop Plasmodium falciparum vaccines. There is a critical gap in our knowledge of PE antigen targets that can induce functionally inhibitory neutralizing antibody responses. To overcome this gap and guide the selection of potential PE vaccine candidates, we considered key characteristics such as surface exposure, essentiality to infectivity and liver stage development, expression as recombinant proteins, and functional immunogenicity. Selected P. vivax sporozoite antigens were surface sporozoite protein 3 (SSP3), sporozoite microneme protein essential for cell traversal (SPECT1), sporozoite surface protein essential for liver-stage development (SPELD), and M2 domain of MAEBL. Sequence analysis revealed little variation occurred in putative B-cell and T-cell epitopes of the PE candidates. Each antigen was tested for expression as refolded recombinant proteins using an established bacterial expression platform and only SPELD failed. The successfully expressed antigens were immunogenic in vaccinated laboratory mice and were positively reactive with serum antibodies of P. vivax-exposed residents living in an endemic region in Thailand. Vaccine immune antisera were tested for reactivity to native sporozoite proteins and for their potential vaccine efficacy using an in vitro inhibition of liver stage development assay in primary human hepatocytes quantified on day 6 post-infection by high content imaging analysis. The anti-PE sera produced significant inhibition of P. vivax sporozoite invasion and liver stage development. This report provides an initial characterization of potential new PE candidates for a future P. vivax vaccine.
Collapse
Affiliation(s)
- Justin Nicholas
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Sai Lata De
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Awtum M. Brashear
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Surendra Kumar Kolli
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Pradeep Annamalai Subramani
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Samantha J. Barnes
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Liwang Cui
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis Babila Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - John H. Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
9
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
10
|
Caoili SEC. Comprehending B-Cell Epitope Prediction to Develop Vaccines and Immunodiagnostics. Front Immunol 2022; 13:908459. [PMID: 35874755 PMCID: PMC9300992 DOI: 10.3389/fimmu.2022.908459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
|
11
|
Naz S, Ahmad S, Abbasi SW, Ismail S, Waseem S, Tahir Ul Qamar M, Almatroudi A, Ali Z. Identification of immunodominant epitopes in allelic variants VK210 and VK247 of Plasmodium Vivax Circumsporozoite immunogen. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105120. [PMID: 34655808 DOI: 10.1016/j.meegid.2021.105120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax-induced malaria is among the leading causes of morbidity and mortality in sub-tropical and tropical regions and infect 2.85 billion people globally. The continual rise and propagation of resistance against anti-malarial drugs is a prerequisite to develop a potent vaccine candidate for Plasmodium vivax (P. vivax). Circumsporozoite protein (CSP) is an important immunogen of malaria parasite that has the conserved CSP structure as an immune dominant B-cell epitope. In current study, we focused on designing multi-epitope vaccines (MEVs) using various immunoinformatics tools against Pakistani based allelic variants VK210 and VK247 of P. vivax CSP (PvCSP) gene. Antigenicity, allergic potential and physicochemical parameters of both PvCSP variants were assessed for the designed MEVs and they were within acceptable range suitable for post experimental investigations. The three-dimensional structures of both MEVs have been predicted ab initio, optimized, and validated by using different online servers. The both MEVs candidates were stable and free from aggregation-prone regions. The stability of both MEVs had been improved by a disulfide engineering approach. To estimate the binding energy and stability of the MEVs, molecular docking simulation and binding free energy calculations with TLR-4 immune receptor have been conducted. The docking score of PvCSP210 and PvCSP247 for TLR-4 was -6.34 kJ/mol and - 2.3 kJ/mol, respectively. For PvCSP210-TLR4 system, mean RMSD was 4.96 Å while PvCSP247-TLR4 system, average RMSD was 4.49 Å. The binding free energy of PvCSP210-TLR4 complex and PvCSP247-TLR4 complex was -50.49/-117.15 kcal/mol (MMGBSA/MMPSA) and -52.94/-96.26 kcal/mol (MMGBSA/MMPSA), respectively. The expression of both MEVs produced in Escherichia coli K12 expression system by in silico cloning was significant. Immune simulation revealed that the proposed MEVs induce strong humoral and cellular immunological responses, in addition to significant production of interleukins and cytokines. In conclusions, we believed that the MEVs proposed in current research, using combine approach of immunoinformatics, structural biology and biophysical approaches, could induce protective and effective immune responses against P. vivax and the experimental validation of our findings could contribute to the development of potential malaria vaccine.
Collapse
Affiliation(s)
- Shumaila Naz
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan.
| | - Saba Ismail
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Shahid Waseem
- Alpha Genomics (Pvt) Ltd., Plot 4-C, Danyal Plaza, Block A, Main Main PWD Rd, Sector A PWD Society, Islamabad
| | | | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Zain Ali
- Department of Biochemistry, Quaid-i-Azam University Islamabad, Pakistan
| |
Collapse
|
12
|
Gimenez AM, Salman AM, Marques RF, López-Camacho C, Harrison K, Kim YC, Janse CJ, Soares IS, Reyes-Sandoval A. A universal vaccine candidate against Plasmodium vivax malaria confers protective immunity against the three PvCSP alleles. Sci Rep 2021; 11:17928. [PMID: 34504134 PMCID: PMC8429696 DOI: 10.1038/s41598-021-96986-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria is a highly prevalent parasitic disease in regions with tropical and subtropical climates worldwide. Among the species of Plasmodium causing human malaria, P. vivax is the second most prevalent and the most geographically widespread species. A major target of a pre-erythrocytic vaccine is the P. vivax circumsporozoite protein (PvCSP). In previous studies, we fused two recombinant proteins representing three allelic variants of PvCSP (VK210, VK247 and P. vivax-like) to the mumps virus nucleocapsid protein to enhance immune responses against PvCSP. The objective of the present study was to evaluate the protective efficacy of these recombinants in mice challenged with transgenic P. berghei parasites expressing PvCSP allelic variants. Formulations containing Poly (I:C) or Montanide ISA720 as adjuvants elicited high and long-lasting IgG antibody titers specific to each PvCSP allelic variant. Immunized mice were challenged with two existing chimeric P. berghei parasite lines expressing PvCSP-VK210 and PvCSP-VK247. We also developed a novel chimeric line expressing the third allelic variant, PvCSP-P. vivax-like, as a new murine immunization-challenge model. Our formulations conferred partial protection (significant delay in the time to reach 1% parasitemia) against challenge with the three chimeric parasites. Our results provide insights into the development of a vaccine targeting multiple strains of P. vivax.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ahmed M Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Rodolfo F Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kate Harrison
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Young Chan Kim
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chris J Janse
- Department of Parasitology, Leiden Malaria Research Group, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK. .,Instituto Politécnico Nacional, IPN, Av. Luis Enrique Erro S/N. Unidad Adolfo López Mateos, Zacatenco, CP 07738, Mexico City, Mexico.
| |
Collapse
|
13
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
14
|
Discovery of four new B-cell protective epitopes for malaria using Q beta virus-like particle as platform. NPJ Vaccines 2020; 5:92. [PMID: 33083027 PMCID: PMC7546618 DOI: 10.1038/s41541-020-00242-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria remains one of the world’s most urgent global health problems, with almost half a million deaths and hundreds of millions of clinical cases each year. Existing interventions by themselves will not be enough to tackle infection in high-transmission areas. The best new intervention would be an effective vaccine; but the leading P. falciparum and P. vivax vaccine candidates, RTS,S and VMP001, show only modest to low field efficacy. New antigens and improved ways for screening antigens for protective efficacy will be required. This study exploits the potential of Virus-Like Particles (VLP) to enhance immune responses to antigens, the ease of coupling peptides to the Q beta (Qβ) VLP and the existing murine malaria challenge to screen B-cell epitopes for protective efficacy. We screened P. vivax TRAP (PvTRAP) immune sera against individual 20-mer PvTRAP peptides. The most immunogenic peptides associated with protection were loaded onto Qβ VLPs to assess protective efficacy in a malaria sporozoite challenge. A second approach focused on identifying conserved regions within known sporozoite invasion proteins and assessing them as part of the Qβ. Using this VLP as a peptide scaffold, four new protective B-cell epitopes were discovered: three from the disordered region of PvTRAP and one from Thrombospondin-related sporozoite protein (TRSP). Antigenic interference between these and other B-cell epitopes was also explored using the virus-like particle/peptide platform. This approach demonstrates the utility of VLPs to help identifying new B-cell epitopes for inclusion in next-generation malaria vaccines.
Collapse
|