1
|
Magalhaes T, Hamer GL, de Carvalho-Leandro D, Ribeiro VML, Turell MJ. Uncertainties Surrounding Madariaga Virus, a Member of the Eastern Equine Encephalitis Virus Complex. Vector Borne Zoonotic Dis 2024; 24:633-640. [PMID: 38717063 DOI: 10.1089/vbz.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background: Madariaga virus (MADV), a member of the eastern equine encephalitis virus (EEEV) complex, circulates in Latin America and exhibits distinct evolutionary and ecological features compared to the North American EEEV. While published data have shed light on MADV ecology, several key aspects remain unknown. Methods: In this study, we compiled data on virus isolation, vector competence, and animal serology collected over six decades in Latin America to identify critical knowledge gaps on MADV transmission and ecology. Results: Specific vertebrate animals serving as amplifying hosts and the mosquito species acting as enzootic and epizootic vectors have not yet been identified. Other aspects that remain unclear are the virus current geographic distribution, the role of equines as hosts in epizootic cycles, and the full impact of MADV on human health in endemic regions. Conclusions: The numerous knowledge gaps surrounding MADV, its widespread distribution in Latin America, and its potential to cause severe disease in animals and humans emphasize the urgent need for increased research efforts, heightened awareness, and intensified surveillance towards this potential emerging threat.
Collapse
Affiliation(s)
- Tereza Magalhaes
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Danilo de Carvalho-Leandro
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Colégio de Aplicação, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vladimir M L Ribeiro
- Department of Pathology and Forensic Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
| | | |
Collapse
|
2
|
Drwiega EN, Danziger LH, Burgos RM, Michienzi SM. Commonly Reported Mosquito-Borne Viruses in the United States: A Primer for Pharmacists. J Pharm Pract 2024; 37:741-752. [PMID: 37018738 DOI: 10.1177/08971900231167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Mosquito-borne diseases are a public health concern. Pharmacists are often a patient's first stop for health information and may be asked questions regarding transmission, symptoms, and treatment of mosquito borne viruses (MBVs). The objective of this paper is to review transmission, geographic location, symptoms, diagnosis and treatment of MBVs. We discuss the following viruses with cases in the US in recent years: Dengue, West Nile, Chikungunya, LaCrosse Encephalitis, Eastern Equine Encephalitis Virus, and Zika. Prevention, including vaccines, and the impact of climate change are also discussed.
Collapse
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Larry H Danziger
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodrigo M Burgos
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah M Michienzi
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Zubair AS, McAlpine LS, Gobeske KT. Virology, ecology, epidemiology, pathology, and treatment of eastern equine encephalitis. J Neurol Sci 2024; 457:122886. [PMID: 38278094 DOI: 10.1016/j.jns.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Eastern equine encephalitis (EEE) was one of the first-recognized neuroinvasive arboviral diseases in North America, and it remains the most lethal. Although EEE is known to have periodic spikes in infection rates, there is increasing evidence that it may be undergoing a change in its prevalence and its public health burden. Numerous factors shape the scope of EEE in humans, and there are important similarities with other emergent viral diseases that have surfaced or strengthened in recent years. Because environmental and ecological conditions that broadly influence the epidemiology of arboviral diseases also are changing, and the frequency, severity, and scope of outbreaks are expected to worsen, an expanded understanding of EEE will have untold importance in coming years. Here we review the factors shaping EEE transmission cycles and the conditions leading to outbreaks in humans from an updated, multidomain perspective. We also provide special consideration of factors shaping the virology, host-vector-environment relationships, and mechanisms of pathology and treatment as a reference for broadening audiences.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Kevin T Gobeske
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Ruiz C, Gibson G, Rojas S, Friend K. Eastern Equine Encephalitis Virus: A Case Report and Brief Literature Review of Current Therapeutic and Preventative Strategies. Vector Borne Zoonotic Dis 2024; 24:118-121. [PMID: 37870590 DOI: 10.1089/vbz.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Background: Eastern equine encephalitis virus (EEEV) is a rare mosquito-borne illness exhibiting rapid neurological deterioration and permanent damage. Despite its >30% mortality and >60% long-term neurological damage, EEEV has no approved antiviral medication or vaccination. This report uniquely aims to describe a rare case of EEEV and provide a current literature review of therapeutic and preventative options from the clinical perspective to guide clinicians and public health workers, along with informing them about its impact and current knowledge gaps. Methods: A retrospective chart review of the electronic medical record was performed for a patient's 10-day hospital admission in July 2021. In addition, PubMed was searched using relevant keywords for a literature review of EEEV. Results: A 61-year-old woman presented with dysarthria and right-sided facial droop. Acute ischemic stroke was ruled out, and empiric intravenous (IV) antibiotics were initiated for possible infectious etiology. The patient developed worsening mental status and fever and was intubated, with antibiotics broadened with concern for meningitis along with tick-borne illness. The patient remained encephalopathic and febrile, and lumbar serologies were consistent with viral meningoencephalitis or acute disseminated encephalomyelitis. Several days after collection, quantitative antibody testing returned positive for EEEV. The patient was pronounced dead on hospital day 10. On review of the literature regarding EEEV, supportive care and prevention remain the cornerstone of management. Although early IV immunoglobulin and high-dose steroids have shown potential as treatments to reduce morbidity and mortality, no vaccines have been approved to date. Conclusion: Prospective trials and further investigations into treatment and preventative options may be useful in reducing the morbidity and mortality associated with EEEV.
Collapse
Affiliation(s)
- Christian Ruiz
- Department of Pharmacy, Novant Health Huntersville Medical Center, Huntersville, North Carolina, USA
| | - Geneen Gibson
- Department of Pharmacy, St. Joseph's/Candler Health System, Savannah, Georgia, USA
| | - Scott Rojas
- Department of Infectious Disease, St. Joseph's/Candler Health System, Savannah, Georgia, USA
| | - Kimberly Friend
- Department of Pharmacy, St. Joseph's/Candler Health System, Savannah, Georgia, USA
| |
Collapse
|
5
|
Nguyen TL, Kim H. Designing a Multiepitope Vaccine against Eastern Equine Encephalitis Virus: Immunoinformatics and Computational Approaches. ACS OMEGA 2024; 9:1092-1105. [PMID: 38222668 PMCID: PMC10785064 DOI: 10.1021/acsomega.3c07322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
Eastern equine encephalitis virus (EEEV) is a significant threat to human and animal populations, causing severe encephalitis, often leading to long-term neurological complications and even mortality. Despite this, no approved antiviral treatments or EEEV human vaccines currently exist. In response, we utilized immunoinformatics and computational approaches to design a multiepitope vaccine candidate for EEEV. By screening the structural polyprotein of EEEV, we predicted both T-cell and linear B-cell epitopes. These epitopes underwent comprehensive evaluations for their antigenicity, toxicity, and allergenicity. From these evaluations, we selected ten epitopes highly suitable for vaccine design, which were connected with adjuvants using a stable linker. The resulting vaccine construct demonstrated exceptional antigenic, nontoxic, nonallergenic, and physicochemical properties. Subsequently, we employed molecular docking and molecular dynamics simulations to reveal a stable interaction pattern between the vaccine candidate and Toll-like receptor 5. Besides, computational immune simulations predicted the vaccine's capability to induce robust immune responses. Our study addresses the urgent need for effective EEEV preventive strategies and offers valuable insights for EEEV vaccine development. As EEEV poses a severe threat with potential spread due to climate change, our research provides a crucial step in enhancing public health defenses against this menacing zoonotic disease.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Heebal Kim
- Department
of Agricultural Biotechnology and Research Institute of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary
Program in Bioinformatics, Seoul National
University, Seoul 08826, Republic
of Korea
- eGnome,
Inc., Seoul 05836, Republic of Korea
| |
Collapse
|
6
|
Kim AS, Diamond MS. A molecular understanding of alphavirus entry and antibody protection. Nat Rev Microbiol 2023; 21:396-407. [PMID: 36474012 PMCID: PMC9734810 DOI: 10.1038/s41579-022-00825-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that cause epidemics of human infection and disease on a global scale. These viruses are classified as either arthritogenic or encephalitic based on their genetic relatedness and the clinical syndromes they cause. Although there are currently no approved therapeutics or vaccines against alphaviruses, passive transfer of monoclonal antibodies confers protection in animal models. This Review highlights recent advances in our understanding of the host factors required for alphavirus entry, the mechanisms of action by which protective antibodies inhibit different steps in the alphavirus infection cycle and candidate alphavirus vaccines currently under clinical evaluation that focus on humoral immunity. A comprehensive understanding of alphavirus entry and antibody-mediated protection may inform the development of new classes of countermeasures for these emerging viruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Sah R, Siddiq A, Al-Ahdal T, Maulud SQ, Mohanty A, Padhi BK, El-Shall NA, Chandran D, Emran TB, Hussein NR, Dhama K, Satapathy P. The emerging scenario for the Eastern equine encephalitis virus and mitigation strategies to counteract this deadly mosquito-borne zoonotic virus, the cause of the most severe arboviral encephalitis in humans—an update. FRONTIERS IN TROPICAL DISEASES 2023; 3. [DOI: 10.3389/fitd.2022.1077962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|