1
|
Schaerlaekens S, Jacobs L, Stobbelaar K, Cos P, Delputte P. All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines (Basel) 2024; 12:97. [PMID: 38250910 PMCID: PMC10819635 DOI: 10.3390/vaccines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) poses a significant global health concern as a major cause of lower respiratory tract infections (LRTIs). Over the last few years, substantial efforts have been directed towards developing vaccines and therapeutics to combat RSV, leading to a diverse landscape of vaccine candidates. Notably, two vaccines targeting the elderly and the first maternal vaccine have recently been approved. The majority of the vaccines and vaccine candidates rely solely on a prefusion-stabilized conformation known for its highly neutralizing epitopes. Although, so far, this antigen design appears to be successful for the elderly, our current understanding remains incomplete, requiring further improvement and refinement in this field. Pediatric vaccines still have a long journey ahead, and we must ensure that vaccines currently entering the market do not lose efficacy due to the emergence of mutations in RSV's circulating strains. This review will provide an overview of the current status of vaccine designs and what to focus on in the future. Further research into antigen design is essential, including the exploration of the potential of alternative RSV proteins to address these challenges and pave the way for the development of novel and effective vaccines, especially in the pediatric population.
Collapse
Affiliation(s)
- Sofie Schaerlaekens
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Lotte Jacobs
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| |
Collapse
|
2
|
Willemsen JE, Borghans JA, Bont LJ, Drylewicz J. Maternal vaccination against RSV can substantially reduce childhood mortality in low-income and middle-income countries: A mathematical modeling study. Vaccine X 2023; 15:100379. [PMID: 37711264 PMCID: PMC10498305 DOI: 10.1016/j.jvacx.2023.100379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a leading cause of childhood mortality in infants below 6 months of age. In low-income and middle-income countries (LMICs), the public health burden is substantial and resources are limited. It is critical to inform decision makers about effectiveness of new interventions. Methods We developed a mathematical model where individual RSV subtype A (RSV-A) and B (RSV-B) maternally derived neutralizing titers were predicted at time of birth after maternal vaccination with the RSV prefusion F protein-based vaccine. We estimated the subsequent duration of vaccine-induced immunity and compared this to the age at time of death distribution in the RSV GOLD Mortality Database to predict the potential impact of maternal vaccination on RSV-related childhood mortality. We used country-specific timing of antenatal care visits distributions and mortality estimates to make country-specific predictions for number of cases averted. Findings The model predicts that on average a neonate born at 40 weeks gestational age will be protected between 6 and 7 months from RSV-A and approximately 5 months from RSV-B related mortality. We estimated the potential impact of RSV-related mortality for in-hospital and out-of-hospital cases in LMICs and predicted that in 51 GAVI-eligible countries maternal vaccination could avert between 55% and 63% of the RSV-related in-hospital mortality cases below 6 months of age. Interpretation We show that maternal vaccination could substantially decrease RSV-A and RSV-B related in-hospital and out-of-hospital mortality in LMICs in the first 6 months of life.
Collapse
Affiliation(s)
- Joukje E. Willemsen
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Infectious Diseases, Department of Pediatrics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - José A.M. Borghans
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Louis J. Bont
- Division of Infectious Diseases, Department of Pediatrics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julia Drylewicz
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Leroux-Roels I, Bruhwyler J, Stergiou L, Sumeray M, Joye J, Maes C, Lambert PH, Leroux-Roels G. Double-Blind, Placebo-Controlled, Dose-Escalating Study Evaluating the Safety and Immunogenicity of an Epitope-Specific Chemically Defined Nanoparticle RSV Vaccine. Vaccines (Basel) 2023; 11:vaccines11020367. [PMID: 36851245 PMCID: PMC9967611 DOI: 10.3390/vaccines11020367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND V-306 is a virus-like particle-based vaccine candidate displaying respiratory syncytial virus (RSV) F site II protein mimetics (FsIIm) as an antigenic epitope. METHODS This was a randomized, placebo-controlled, double-blind, dose-escalating, first-in-human study, conducted in 60 women aged 18-45 years. Twenty subjects per cohort (15 vaccine and five placebo) received two V-306 intramuscular administrations on Days 0 and 56 at 15 µg, 50 µg, or 150 µg. Safety and immunogenicity were assessed after each vaccination and for 1 year in total. RESULTS V-306 was safe and well tolerated at all dose levels, with no increase in reactogenicity and unsolicited adverse events between the first and second administrations. At 50 µg and 150 µg, V-306 induced an increase in FsIIm-specific immunoglobulin G (IgG) titers, which lasted at least 4 months. This did not translate into an increase in RSV-neutralizing antibody titers, which were already high at baseline. No increase in the anti-F protein-specific IgG titers was observed, which were also high in most subjects at baseline due to past natural infections. CONCLUSIONS V-306 was safe and well-tolerated. Future modifications of the vaccine and assay conditions will likely improve the results of vaccination.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Jacques Bruhwyler
- Expert Clinical Services Organization (ECSOR) sa/nv, Rue de la Station 78, B-1630 Linkebeek, Belgium
| | - Lilli Stergiou
- Virometix AG, Wagistrasse 14, 8952 Schlieren, Switzerland
- Correspondence: ; Tel.: +41-4343-38660
| | - Mark Sumeray
- Virometix AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Cathy Maes
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Paul-Henri Lambert
- Department of Paediatrics, Gynecology and Obstetrics, University of Geneva, Rue du Général Dufour 24, 1211 Geneva, Switzerland
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Chu KB, Quan FS. Respiratory Viruses and Virus-like Particle Vaccine Development: How Far Have We Advanced? Viruses 2023; 15:v15020392. [PMID: 36851606 PMCID: PMC9965150 DOI: 10.3390/v15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With technological advancements enabling globalization, the intercontinental transmission of pathogens has become much easier. Respiratory viruses are one such group of pathogens that require constant monitoring since their outbreak leads to massive public health crises, as exemplified by the influenza virus, respiratory syncytial virus (RSV), and the recent coronavirus disease 2019 (COVID-19) outbreak caused by the SARS-CoV-2. To prevent the transmission of these highly contagious viruses, developing prophylactic tools, such as vaccines, is of considerable interest to the scientific community. Virus-like particles (VLPs) are highly sought after as vaccine platforms for their safety and immunogenicity profiles. Although several VLP-based vaccines against hepatitis B and human papillomavirus have been approved for clinical use by the United States Food and Drug Administration, VLP vaccines against the three aforementioned respiratory viruses are lacking. Here, we summarize the most recent progress in pre-clinical and clinical VLP vaccine development. We also outline various strategies that contributed to improving the efficacy of vaccines against each virus and briefly discuss the stability aspect of VLPs that makes it a highly desired vaccine platform.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Mazur NI, Terstappen J, Baral R, Bardají A, Beutels P, Buchholz UJ, Cohen C, Crowe JE, Cutland CL, Eckert L, Feikin D, Fitzpatrick T, Fong Y, Graham BS, Heikkinen T, Higgins D, Hirve S, Klugman KP, Kragten-Tabatabaie L, Lemey P, Libster R, Löwensteyn Y, Mejias A, Munoz FM, Munywoki PK, Mwananyanda L, Nair H, Nunes MC, Ramilo O, Richmond P, Ruckwardt TJ, Sande C, Srikantiah P, Thacker N, Waldstein KA, Weinberger D, Wildenbeest J, Wiseman D, Zar HJ, Zambon M, Bont L. Respiratory syncytial virus prevention within reach: the vaccine and monoclonal antibody landscape. THE LANCET. INFECTIOUS DISEASES 2023; 23:e2-e21. [PMID: 35952703 PMCID: PMC9896921 DOI: 10.1016/s1473-3099(22)00291-2] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Respiratory syncytial virus is the second most common cause of infant mortality and a major cause of morbidity and mortality in older adults (aged >60 years). Efforts to develop a respiratory syncytial virus vaccine or immunoprophylaxis remain highly active. 33 respiratory syncytial virus prevention candidates are in clinical development using six different approaches: recombinant vector, subunit, particle-based, live attenuated, chimeric, and nucleic acid vaccines; and monoclonal antibodies. Nine candidates are in phase 3 clinical trials. Understanding the epitopes targeted by highly neutralising antibodies has resulted in a shift from empirical to rational and structure-based vaccine and monoclonal antibody design. An extended half-life monoclonal antibody for all infants is likely to be within 1 year of regulatory approval (from August, 2022) for high-income countries. Live-attenuated vaccines are in development for older infants (aged >6 months). Subunit vaccines are in late-stage trials for pregnant women to protect infants, whereas vector, subunit, and nucleic acid approaches are being developed for older adults. Urgent next steps include ensuring access and affordability of a respiratory syncytial virus vaccine globally. This review gives an overview of respiratory syncytial virus vaccines and monoclonal antibodies in clinical development highlighting different target populations, antigens, and trial results.
Collapse
Affiliation(s)
- Natalie I Mazur
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jonne Terstappen
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ranju Baral
- PATH, Center for Vaccine Innovation & Access, Seattle, WA, USA
| | - Azucena Bardají
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Centro de Investigaçao em Saúde de Manhiça, Maputo, Mozambique; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Philippe Beutels
- Centre for Health Economics Research & Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; School of Public Health, The University of New South Wales, Sydney, NSW, Australia
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Cheryl Cohen
- University of the Witwatersrand, Centre for Respiratory Disease and Meningitis at the National Institute for Communicable Diseases, Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James E Crowe
- Vanderbilt Vaccine Center, Pediatrics & Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clare L Cutland
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda Eckert
- Obstetrics & Gynecology, Global Health, University of Washington, Seattle, WA, USA
| | - Daniel Feikin
- Department of Immunisations, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Tiffany Fitzpatrick
- Yale School of Public Health Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Youyi Fong
- Vaccine & Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Deborah Higgins
- PATH, Center for Vaccine Innovation & Access, Seattle, WA, USA
| | | | - Keith P Klugman
- Pneumonia Program, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Philippe Lemey
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Yvette Löwensteyn
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Flor M Munoz
- Department of Pediatrics, Division of Infectious Disease, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Patrick K Munywoki
- Kenyan Medical Research Institute-Wellcome Trust Research Program, Kilifi, Kenya
| | | | - Harish Nair
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Marta C Nunes
- South African Medical Research Council, Wits Vaccines & Infectious Diseases Analytics Research Unit and Department of Science and Technology and National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Octavio Ramilo
- Nationwide Children's Hospital Columbus, Columbus, OH, USA
| | - Peter Richmond
- School of Medicine, Division of Paediatrics, University of Western Australia, Perth, WA, Australia
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Charles Sande
- Kenyan Medical Research Institute-Wellcome Trust Research Program, Kilifi, Kenya; Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - Padmini Srikantiah
- Respiratory Syncytial Virus Program and Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Naveen Thacker
- Deep Children Hospital & Research Centre, Gandhidham, India
| | - Kody A Waldstein
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa, IA, USA
| | - Dan Weinberger
- Yale School of Public Health Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dexter Wiseman
- National Heart & Lung Institute, Imperial College, London, UK
| | - Heather J Zar
- Department of Pediatrics & Child Health, Red Cross Children's Hospital and SA-MRC unit of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Maria Zambon
- Reference Microbiology, Public Health England, Faculty of Medicine, Imperial College, London, UK
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; ReSViNET Foundation, Julius Clinical, Zeist, Netherlands.
| |
Collapse
|
6
|
Qiu X, Xu S, Lu Y, Luo Z, Yan Y, Wang C, Ji J. Development of mRNA vaccines against respiratory syncytial virus (RSV). Cytokine Growth Factor Rev 2022; 68:37-53. [PMID: 36280532 DOI: 10.1016/j.cytogfr.2022.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is a single-stranded negative-sense RNA virus that is the primary etiologic pathogen of bronchitis and pneumonia in infants and the elderly. Currently, no preventative vaccine has been approved for RSV infection. However, advances in the characterization, and structural resolution, of the RSV surface fusion glycoprotein have revolutionized RSV vaccine development by providing a new target for preventive interventions. In general, six different approaches have been adopted in the development of preventative RSV therapeutics, namely, particle-based vaccines, vector-based vaccines, live-attenuated or chimeric vaccines, subunit vaccines, mRNA vaccines, and monoclonal antibodies. Among these preventive interventions, MVA-BN-RSV, RSVpreF3, RSVpreF, Ad26. RSV.preF, nirsevimab, clesrovimab and mRNA-1345 is being tested in phase 3 clinical trials, and displays the most promising in infant or elderly populations. Accompanied by the huge success of mRNA vaccines in COVID-19, mRNA vaccines have been rapidly developed, with many having entered clinical studies, in which they have demonstrated encouraging results and acceptable safety profiles. In fact, Moderna has received FDA approval, granting fast-track designation for an investigational single-dose mRNA-1345 vaccine against RSV in adults over 60 years of age. Hence, mRNA vaccines may represent a new, more successful, chapter in the continued battle to develop effective preventative measures against RSV. This review discusses the structure, life cycle, and brief history of RSV, while also presenting the current advancements in RSV preventatives, with a focus on the latest progress in RSV mRNA vaccine development. Finally, future prospects for this field are presented.
Collapse
Affiliation(s)
- Xirui Qiu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangtian Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuyue Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
7
|
Eichinger KM, Kosanovich JL, Perkins T, Oury TD, Petrovsky N, Marshall CP, Yondola MA, Empey KM. Prior respiratory syncytial virus infection reduces vaccine-mediated Th2-skewed immunity, but retains enhanced RSV F-specific CD8 T cell responses elicited by a Th1-skewing vaccine formulation. Front Immunol 2022; 13:1025341. [PMID: 36268035 PMCID: PMC9577258 DOI: 10.3389/fimmu.2022.1025341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) remains the most common cause of lower respiratory tract infections in children worldwide. Development of a vaccine has been hindered due the risk of enhanced respiratory disease (ERD) following natural RSV exposure and the young age (<6 months) at which children would require protection. Risk factors linked to the development of ERD include poorly neutralizing antibody, seronegative status (never been exposed to RSV), and a Th2-type immune response. Stabilization of the more antigenic prefusion F protein (PreF) has reinvigorated hope for a protective RSV vaccine that elicits potent neutralizing antibody. While anecdotal evidence suggests that children and adults previously exposed to RSV (seropositive) are not at risk for developing vaccine associated ERD, differences in host immune responses in seropositive and seronegative individuals that may protect against ERD remain unclear. It is also unclear if vaccine formulations that skew towards Th1- versus Th2-type immune responses increase pathology or provide greater protection in seropositive individuals. Therefore, the goal of this work was to compare the host immune response to a stabilized prefusion RSV antigen formulated alone or with Th1 or Th2 skewing adjuvants in seronegative and seropositive BALB/c mice. We have developed a novel BALB/c mouse model whereby mice are first infected with RSV (seropositive) and then vaccinated during pregnancy to recapitulate maternal immunization strategies. Results of these studies show that prior RSV infection mitigates vaccine-mediated skewing by Th1- and Th2-polarizing adjuvants that was observed in seronegative animals. Moreover, vaccination with PreF plus the Th1-skewing adjuvant, Advax, increased RSV F85-93-specific CD8 T cells in both seronegative and seropositive dams. These data demonstrate the importance of utilizing seropositive animals in preclinical vaccine studies to assess both the safety and efficacy of candidate RSV vaccines.
Collapse
Affiliation(s)
- Katherine M. Eichinger
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jessica L. Kosanovich
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy N. Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburg, Pittsburgh, PA, United States
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburg, Pittsburgh, PA, United States
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, SA, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | | | - Kerry M. Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Zuniga A, Rassek O, Vrohlings M, Marrero-Nodarse A, Moehle K, Robinson JA, Ghasparian A. An epitope-specific chemically defined nanoparticle vaccine for respiratory syncytial virus. NPJ Vaccines 2021; 6:85. [PMID: 34145291 PMCID: PMC8213762 DOI: 10.1038/s41541-021-00347-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/02/2021] [Indexed: 12/05/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory disease in humans, particularly in infants and the elderly. However, attempts to develop a safe and effective vaccine have so far been unsuccessful. Atomic-level structures of epitopes targeted by RSV-neutralizing antibodies are now known, including that bound by Motavizumab and its clinically used progenitor Palivizumab. We developed a chemically defined approach to RSV vaccine design, that allows control of both immunogenicity and safety features of the vaccine. Structure-guided antigen design and a synthetic nanoparticle delivery platform led to a vaccine candidate that elicits high titers of palivizumab-like, epitope-specific neutralizing antibodies. The vaccine protects preclinical animal models from RSV infection and lung pathology typical of vaccine-derived disease enhancement. The results suggest that the development of a safe and effective synthetic epitope-specific RSV vaccine may be feasible by combining this conformationally stabilized peptide and synthetic nanoparticle delivery system.
Collapse
Affiliation(s)
- Armando Zuniga
- Virometix AG, Schlieren, Switzerland
- Shape Biopharmaceuticals Inc, Cambridge, MA, USA
| | | | - Melissa Vrohlings
- Virometix AG, Schlieren, Switzerland
- CDR-Life, Schlieren, Switzerland
| | | | - Kerstin Moehle
- Chemistry Department, University of Zurich, Zurich, Switzerland
| | - John A Robinson
- Chemistry Department, University of Zurich, Zurich, Switzerland.
| | - Arin Ghasparian
- Virometix AG, Schlieren, Switzerland.
- Shape Biopharmaceuticals Inc, Cambridge, MA, USA.
| |
Collapse
|