1
|
Rahimi HK, Jasim AA, Rezahosseini O, Harboe ZB. Immunogenicity and adverse effects of pneumococcal vaccines co-administered with influenza or SARS-CoV-2 vaccines in adults: A systematic review and Meta-analysis. Vaccine 2025; 59:127293. [PMID: 40412334 DOI: 10.1016/j.vaccine.2025.127293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND This systematic review and meta-analysis aimed to investigate the immunogenicity and adverse effects (AEs) of co-administration of pneumococcal vaccines with influenza or SARS-CoV-2 vaccines. METHODS Following PRISMA 2020 guidelines, we searched MEDLINE, EMBASE, Web of Science, Scopus, and Google for studies published from January 1, 1950, to October 20, 2024. Randomized controlled trials (RCTs) and non-randomized studies were included. Pooled geometric mean titer (GMT) ratios per serotype and risk ratios (RR) for AEs were calculated in the meta-analyses. RESULTS Of 752 search hits, 17 studies were included, consisting of 14 RCTs and three non-randomized studies. One study investigated PCV20 and SARS-CoV-2 vaccine co-administration and found it safe and immunogenic. Six studies examined PPV23 and influenza vaccine co-administration, showing lower immunogenicity for some serotypes but non-inferior to single administration. A meta-analysis of studies on PCV and influenza vaccines showed significantly reduced pooled GMT ratios for several serotypes, with serotype 1 (pooled GMT ratio = 0.74, 95 % CI: [0.63, 0.87]) and 6 A (pooled GMT ratio = 0.78, 95 % CI: [0.71, 0.85]) having the lowest ratios. For AEs, PCV co-administration resulted in a 15 % increase in risk for myalgia/arthralgia (RR: 1.15, 95 % CI: 1.04-1.27) and a 34 % increase for headache (RR: 1.34, 95 % CI: 1.14-1.57). Eight studies were rated as having a moderate or severe risk of bias. CONCLUSIONS In adults, co-administration of pneumococcal vaccines with influenza or SARS-CoV-2 vaccines is non-inferior to single-administration; however, it can increase mild-moderate systemic AEs. Data is scarce, and further studies are needed on immunocompromised adults.
Collapse
Affiliation(s)
- Hana Khajeh Rahimi
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark.
| | - Almas Ayad Jasim
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark.
| | - Omid Rezahosseini
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark.
| | - Zitta Barrella Harboe
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark; Department of Bacteria, Parasites, and Fungi, Statens Serum Institute, Copenhagen, Denmark.
| |
Collapse
|
2
|
Saha A, Choudhary S, Walia P, Kumar P, Tomar S. Transformative approaches in SARS-CoV-2 management: Vaccines, therapeutics and future direction. Virology 2025; 604:110394. [PMID: 39889481 DOI: 10.1016/j.virol.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 02/03/2025]
Abstract
The global healthcare and economic challenges caused by the pandemic of COVID-19 reinforced the urgent demand for quick and effective therapeutic and preventative interventions. While vaccines served as the frontline of defense, antivirals emerged as adjunctive countermeasures, especially for people who developed infection, were immunocompromised, or were reluctant to be vaccinated. Beyond the serious complications of SARS-CoV-2 infection, the threats of long-COVID and the potential for zoonotic spillover continue to be significant health concerns that cannot be overlooked. Moreover, the incessant viral evolution, clinical safety issues, waning immune responses, and the emergence of drug-resistant variants pinpoint towards more severe viral threats in the future and call for broad-spectrum innovative therapies as a pre-pandemic preparedness measure. The present review provides a comprehensive up-to-date overview of the strategies utilized in the development of classical and next-generation vaccines against SARS-CoV-2, the clinical and experimental data obtained from clinical trials, while addressing safety risks that may arise. Besides vaccines, the review also covers recent breakthroughs in anti-SARS-CoV-2 drug discovery, emphasizing druggable viral and host targets, virus- and host-targeting antivirals, and highlighting mechanistically representative molecules that are either approved or are under clinical investigation. In conclusion, the integration of both vaccines and antiviral therapies, along with swift innovative strategies to address viral evolution and drug resistance is crucial to strengthen our preparedness against future viral outbreaks.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Priyanshu Walia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
3
|
Jorda A, Prager M, Pracher L, Haselwanter P, Jackwerth M, Al Jalali V, Yildiz E, Leutzendorff A, Weber M, Yourieva S, Kammerer P, Pecho T, Decaminada A, Ederer L, Wiedermann U, Weseslindtner L, Redlberger-Fritz M, Bergmann F, Zeitlinger M. Immunogenicity, safety, and reactogenicity of concomitant administration of the novavax vaccine against Omicron XBB.1.5 (NVX-CoV2601) and a 20-valent pneumococcal conjugate vaccine in adults aged ≥60 years: A randomised, double-blind, placebo-controlled, non-inferiority trial. J Infect 2025; 90:106405. [PMID: 39756693 DOI: 10.1016/j.jinf.2024.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVES There is conflicting evidence as to whether the combined administration of two vaccines can lead to poorer immunogenicity and reactogenicity. The co-administration of the Omicron-adapted COVID-19 vaccine from Novavax (NVX-CoV2601) and a 20-valent pneumococcal conjugate vaccine (PCV20) has not been previously investigated. METHODS In this randomised, double-blind, placebo-controlled, non-inferiority trial, immunocompetent participants aged ≥60 years were randomised in a 1:1:1:1 ratio to four groups: NVX-CoV2601 plus PCV20 (combination group); NVX-CoV2601 plus placebo (NVX-only group); PCV20 plus placebo (PCV20-only group); or placebo plus placebo (placebo group). The primary outcome was Omicron-specific anti-spike protein IgG ELISA units at day 28 in the combination group compared with the NVX-only group. Non-inferiority was established if the lower limit of the two-sided 95% CI of the geometric mean titre ratio was above the non-inferiority margin of 0.67. Secondary outcomes included anti-pneumococcal capsular polysaccharide (PCP) IgG ELISA units. Solicited local and systemic adverse events were collected for 7 days after vaccination. This study was registered with ClinicalTrials.gov, number NCT05767606, and the EU Clinical Trials Register, EudraCT number 2022-004118-12. RESULTS All 256 randomised participants completed the study. The baseline characteristics were similar in the four groups. Overall, the median age was 64 (IQR 61 to 69) and 105 (41%) of 256 were male. At day 28, the geometric mean anti-spike protein IgG ELISA units were 534 U/mL (95% CI 432-660) in the combination group and 556 U/mL (95% CI 460-672) in the NVX-only group, resulting in a geometric mean titre ratio of 0.96 (95% CI 0.73-1.27), thereby meeting the criteria for non-inferiority. Anti-PCP IgG ELISA units at day 28 were 507 U/mL (95% CI 416-619) in the combination group and 592 U/mL (95% CI 485-723) in the PCV20-only group. Local and systemic reactogenicity was similar in the three active treatment groups. No safety concerns or serious adverse events were observed. CONCLUSIONS Immunogenicity following co-administration of NVX-CoV2601 with PCV20 was non-inferior to administration of NVX-CoV2601 alone. Given the similar safety and reactogenicity profile, our findings may help to overcome concerns about concomitant vaccination and pave the way for combination vaccines. FUNDING Novavax.
Collapse
Affiliation(s)
- Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lena Pracher
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Haselwanter
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Intensive Care Unit 13H1, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Jackwerth
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Valentin Al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erdem Yildiz
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Amelie Leutzendorff
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Infectiology and Tropical Medicine, University Clinic of Internal Medicine I, Medical University Vienna, Vienna, Austria
| | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Schermin Yourieva
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Paula Kammerer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Theresa Pecho
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Decaminada
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lena Ederer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Felix Bergmann
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Debbag R, Rudin D, Ceddia F, Watkins J. The Impact of Vaccination on COVID-19, Influenza, and Respiratory Syncytial Virus-Related Outcomes: A Narrative Review. Infect Dis Ther 2025; 14:63-97. [PMID: 39739199 PMCID: PMC11724835 DOI: 10.1007/s40121-024-01079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/06/2024] [Indexed: 01/02/2025] Open
Abstract
Vaccination represents a core preventive strategy for public health, with interrelated and multifaceted effects across health and socioeconomic domains. Beyond immediate disease prevention, immunization positively influences downstream health outcomes by mitigating complications of preexisting comorbidities and promoting healthy aging. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus, and respiratory syncytial virus (RSV) are common respiratory viruses responsible for broad societal cost and substantial morbidity and mortality, particularly among at-risk individuals, including older adults and people with frailty or certain comorbid conditions. In this narrative review, we summarize the overall impact of vaccination for these 3 viruses, focusing on mRNA vaccines, each of which exhibits unique patterns of infection, risk, and transmission dynamics, but collectively represent a target for preventive strategies. Vaccines for COVID-19 (caused by SARS-CoV-2) and influenza are effective against the most severe outcomes, such as hospitalization and death; these vaccines represent the most potent and cost-effective interventions for the protection of population and individual health against COVID-19 and influenza, particularly for older adults and those with comorbid conditions. Based on promising results of efficacy for the prevention of RSV-associated lower respiratory tract disease, the first RSV vaccines were approved in 2023. Immunization strategies should account for various factors leading to poor uptake, including vaccine hesitancy, socioeconomic barriers to access, cultural beliefs, and lack of knowledge of vaccines and disease states. Coadministration of vaccines and combination vaccines, such as multicomponent mRNA vaccines, offer potential advantages in logistics and delivery, thus improving uptake and reducing barriers to adoption of new vaccines. The success of the mRNA vaccine platform was powerfully demonstrated during the COVID-19 pandemic; these and other new approaches show promise as a means to overcome existing challenges in vaccine development and to sustain protection against viral changes over time.A graphical abstract and video abstract is available with this article.
Collapse
Affiliation(s)
- Roberto Debbag
- Latin American Vaccinology Society, Buenos Aires, Argentina
| | | | | | - John Watkins
- Department of Population Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
5
|
Tapia-Calle G, Aguilar G, Vaissiere N, Truyers C, Ylisastigui P, Buntinx E, Le Gars M, Struyf F, Scheper G, Douoguih M, Ruiz-Guiñazú J. Safety, reactogenicity, and immunogenicity of Ad26.COV2.S co-administered with a quadrivalent standard-dose or high-dose seasonal influenza vaccine: a non-inferiority randomised controlled trial. EClinicalMedicine 2025; 79:103016. [PMID: 39866854 PMCID: PMC11764035 DOI: 10.1016/j.eclinm.2024.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025] Open
Abstract
Background Vaccine co-administration can increase vaccination coverage. We assessed the safety, reactogenicity, and immunogenicity of concomitant administration of Ad26.COV2.S COVID-19 vaccine with seasonal influenza vaccines. Methods This non-inferiority, Phase 3, randomised, double-blind study enrolled 859 healthy adults and was conducted between 02 November 2021 and 28 November 2022. Participants aged ≥18-64 years were randomised to receive a seasonal quadrivalent standard dose (SD) influenza vaccine (Afluria Quadrivalent, Seqirus) concomitantly with Ad26.COV2.S (Coad_SD) or placebo (0.9% NaCl; Control_SD) on Day 1 and placebo or Ad26.COV2.S on Day 29. Participants aged ≥65-years were randomised to the Coad_SD or Control_SD groups, or to Coad_HD or Control_HD groups that received a seasonal quadrivalent HD (high-dose) influenza vaccine (Fluzone High-Dose Quadrivalent, Sanofi Pasteur Inc) in the same schedules. The primary outcomes were haemagglutinin inhibition titres against the four influenza vaccine strains at Day 29, and SARS-CoV-2 Spike-specific antibodies at Day 29 in the Coad_SD group and Day 57 in the Control-SD group, with a non-inferiority margin (Control-SD group/Coad_SD group) of 1.5. Reactogenicity and safety were assessed in all participants (NCT05091307). Findings Non-inferiority criteria for concomitant administration in the SD groups were met for SARS-CoV-2 Spike-specific antibodies (ratio 1.11, 95% CI 0.97-1.26) and haemagglutinin inhibition titres for all influenza strains (A/H3N2 1.23, 95% CI 1.05-1.45; B/Victoria 0.99, 95% CI 0.84-1.19; B/Yamagata, 1.03, 95% CI 0.88-1.21) except A/H1N1 (1.28, 95% CI 1.09-1.53) for which the upper limit of the 95% CI was >1.5. Concomitant administration of Ad26.COV2.S and SD influenza vaccine induced robust immune responses in terms of SARS-CoV-2 Spike-specific antibodies and haemagglutinin inhibition to all four influenza strains. Seroconversion and seroprotection rates against all influenza vaccine strains were comparable in the Coad and Control groups. Anti-Spike antibodies 28 days after receiving Ad26.COV2.S were similar whether administered with influenza vaccine or alone. Antibody responses persisted at least 6 months post-vaccination in all groups. The reactogenicity and safety profile following co-administration was consistent with the known safety profiles of the study vaccines. No safety concerns were identified. Coadministration was immunogenic and well tolerated in adults aged ≥65 years who received HD influenza vaccine. Interpretation Co-administration of seasonal influenza vaccine with Ad26.COV2.S was immunogenic with an acceptable safety profile, supporting co-administration of these vaccines. Funding Janssen Vaccines & Prevention BV and Biomedical Advanced Research and Development Authority.
Collapse
Affiliation(s)
| | - Gloria Aguilar
- Janssen Vaccines and Prevention BV, Leiden, the Netherlands
| | | | | | | | | | | | - Frank Struyf
- Janssen Research and Development, Beerse, Belgium
| | - Gert Scheper
- Janssen Vaccines and Prevention BV, Leiden, the Netherlands
| | | | | |
Collapse
|
6
|
Naficy A, Kuxhausen A, Seifert H, Hastie A, Leav B, Miller J, Anteyi K, Mwakingwe-Omari A. No immunological interference or concerns about safety when seasonal quadrivalent influenza vaccine is co-administered with a COVID-19 mRNA-1273 booster vaccine in adults: A randomized trial. Hum Vaccin Immunother 2024; 20:2327736. [PMID: 38513689 PMCID: PMC10962584 DOI: 10.1080/21645515.2024.2327736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
The objective of the study was to assess the safety and immunogenicity of mRNA-1273 COVID-19 booster vaccination when co-administered with an egg-based standard dose seasonal quadrivalent influenza vaccine (QIV). This was a phase 3, randomized, open-label study. Eligible adults aged ≥ 18 years were randomly assigned (1:1) to receive mRNA-1273 (50 µg) booster vaccination and QIV 2 weeks apart (Seq group) or concomitantly (Coad group). Primary objectives were non-inferiority of haemagglutinin inhibition (HI) and anti-Spike protein antibody responses in the Coad compared to Seq group. 497/498 participants were randomized and vaccinated in the Seq/Coad groups, respectively. The adjusted geometric mean titer/concentration ratios (95% confidence intervals) (Seq/Coad) for HI antibodies were 1.02 (0.89-1.18) for A/H1N1, 0.93 (0.82-1.05) for A/H3N2, 1.00 (0.89-1.14] for B/Victoria, and 1.04 (0.93-1.17) for B/Yamagata; and 0.98 (0.84-1.13) for anti-Spike antibodies, thus meeting the protocol-specified non-inferiority criteria. The most frequently reported adverse events in both groups were pain at the injection site and myalgia. The 2 groups were similar in terms of the overall frequency, intensity, and duration of adverse events. In conclusion, co-administration of mRNA-1273 booster vaccine with QIV in adults was immunologically non-inferior to sequential administration. Safety and reactogenicity profiles were similar in both groups (clinicaltrials.gov NCT05047770).
Collapse
|
7
|
Huang T, Yu J, Zhang S, Teng D, Dai D, Zhu Y, Gao L. Immunogenicity and safety of concomitant administration of recombinant COVID-19 vaccine and quadrivalent inactivated influenza vaccine in Chinese adults: An open-label, randomized, controlled trial. Hum Vaccin Immunother 2024; 20:2330770. [PMID: 38602539 PMCID: PMC11017946 DOI: 10.1080/21645515.2024.2330770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
The immunogenicity and safety of the concomitant administration of recombinant COVID-19 vaccine and quadrivalent inactivated influenza vaccine (Split Virion) (QIIV) in Chinese adults are unclear. In this open-label, randomized controlled trial, participants aged ≥ 18 years were recruited. Eligible healthy adults were randomly assigned (1:1) to receive QIIV at the same time as the first dose of COVID-19 vaccine (simultaneous-group) or 14 days after the second dose of COVID-19 vaccine (non-simultaneous-group). The primary outcome was to compare the difference in immunogenicity of QIIV (H1N1, H3N2, Yamagata, and Victoria) between the two groups. A total of 299 participants were enrolled, 149 in the simultaneous-group and 150 in the non-simultaneous-group. There were no significant differences in geometric mean titer (GMT) [H1N1: 386.4 (95%CI: 299.2-499.0) vs. 497.4 (95%CI: 377.5-655.3); H3N2: 66.9 (95%CI: 56.1-79.8) vs. 81.4 (95%CI: 67.9-97.5); Yamagata: 95.6 (95%CI: 79.0-115.8) vs. 74.3 (95%CI: 58.6-94.0); and Victoria: 48.5 (95%CI: 37.6-62.6) vs. 65.8 (95%CI: 49.0-88.4)] and seroconversion rate (H1N1: 87.5% vs. 90.1%; H3N2: 58.1% vs. 62.0%; Yamagata: 75.0% vs. 64.5%; and Victoria: 55.1% vs. 62.8%) of QIIV antibodies between the simultaneous and non-simultaneous groups. For the seroprotection rate of QIIV antibodies, a higher seroprotection rate of Yamagata antibody was observed only in the simultaneous-group than in the non-simultaneous-group [86.0% vs. 76.0%, p = .040]. In addition, no significant difference in adverse events was observed between the two groups (14.2% vs. 23.5%, p = .053). In conclusion, no immune interference or safety concerns were found for concomitant administration of COVID-19 vaccine with QIIV in adults aged ≥ 18 years.
Collapse
Affiliation(s)
- Tao Huang
- Department of Vaccine Clinical Observation Center, Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, P.R. China
| | - Jun Yu
- Jiangsu GDK Biological Technology Co, Ltd, Taizhou, Jiangsu, P.R. China
| | - Siyuan Zhang
- Department of Vaccine Clinical Observation Center, Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, P.R. China
| | - Dewei Teng
- Department of Vaccine Clinical Observation Center, Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, P.R. China
| | - Defang Dai
- Department of Vaccine Clinical Observation Center, Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, P.R. China
| | - Yinbiao Zhu
- Jiangsu GDK Biological Technology Co, Ltd, Taizhou, Jiangsu, P.R. China
| | - Lidong Gao
- Department of Vaccine Clinical Observation Center, Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, P.R. China
| |
Collapse
|
8
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
9
|
Bai S, Zhou S, Zhang J, Chen W, Lv M, Wang J, Zhang A, Wu J, Zhao W. Immunogenicity and safety of different combinations involving a third booster dose of SARS-CoV-2 inactivated vaccine, inactivated quadrivalent influenza vaccine, and 23-valent pneumococcal polysaccharide vaccine in adults aged ≥60 years: a phase 4, randomized, open-label study. Front Immunol 2024; 15:1437267. [PMID: 39229259 PMCID: PMC11368774 DOI: 10.3389/fimmu.2024.1437267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Background Concomitant administration of COVID-19, influenza, and pneumococcal vaccines could reduce the burden on healthcare systems. However, the immunogenicity and safety of various combinations of a third booster dose of SARS-CoV-2 inactivated vaccine (CoronaVac), inactivated quadrivalent influenza vaccine (IIV4), and 23-valent pneumococcal polysaccharide vaccine (PPV23), particularly in different age groups, is still unknown. Methods A phase 4, randomized, open-label, controlled trial was conducted in Beijing, China. 636 healthy adults were divided into two age groups (18-59 and ≥60 years) and randomized equally into three groups: CoronaVac and IIV4 followed by PPV23; CoronaVac and PPV23 followed by IIV4; or CoronaVac followed by IIV4 and PPV23, with a 28-day interval between vaccinations. Immunogenicity was evaluated by measuring antibody titers, and safety was monitored. ClinicalTrials.gov Identifier: NCT05298800. Results Co-administration of a third dose of CoronaVac, IIV4, and PPV23 in any combination was safe. Among adults aged 18-59, co-administration with PPV23 maintained non-inferiority of antibody levels for CoronaVac and IIV4, despite a slight reduction in antibody responses. This reduction was not observed in participants ≥60 years. Furthermore, co-administration of IIV4 and PPV23 affected seroconversion rates for both vaccines. Conclusions Co-administration of the third dose of SARS-CoV-2 inactivated vaccine with the influenza vaccine, followed by PPV23, may be optimal for adults aged 18-59. In adults ≥60, all vaccine combinations were immunogenic, suggesting a flexible vaccination approach. Since antibody measurements were taken 28 days post-vaccination, ongoing surveillance is essential to assess the longevity of the immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiang Wu
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Wei Zhao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
10
|
Khatami SS, Revheim ME, Høilund-Carlsen PF, Alavi A, Ghorbani Shirkouhi S, Andalib S. Central nervous system manifestations following vaccination against COVID-19. Brain Behav Immun Health 2024; 38:100788. [PMID: 38818372 PMCID: PMC11137405 DOI: 10.1016/j.bbih.2024.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccination has become the most effective countermeasure in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, vaccination is associated with side effects. This narrative review focuses on central nervous system (CNS) manifestations following COVID-19 vaccination and provides a summary of the potential underlying mechanisms and methods of diagnosis and management of the vaccination-related CNS manifestations. Headache, myalgia, optic neuritis, seizure, multiple sclerosis, acute disseminated encephalomyelitis and encephalitis, delirium, acute transverse myelitis, and stroke have been reported after COVID-19 vaccination. Constant headache and myalgia are common manifestations that may necessitate further clinical investigation for stroke. To limit consequences, it is imperative to follow standard treatment protocols for each neurological disorder following COVID-19 vaccination. Immunosuppressive medication can be helpful in the treatment of seizures following vaccination since the immune response is involved in their etiology. Clinicians should be aware of the manifestations after COVID-19 vaccination to respond promptly and effectively. Clinical guidelines for the management of CNS manifestations following COVID-19 vaccination are in high demand and would be useful in each new SARS-CoV-2 variant pandemic.
Collapse
Affiliation(s)
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | | | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
11
|
Handabile C, Ohno M, Sekiya T, Nomura N, Kawakita T, Kawahara M, Endo M, Nishimura T, Okumura M, Toba S, Sasaki M, Orba Y, Chua BY, Rowntree LC, Nguyen THO, Shingai M, Sato A, Sawa H, Ogasawara K, Kedzierska K, Kida H. Immunogenicity and protective efficacy of a co-formulated two-in-one inactivated whole virus particle COVID-19/influenza vaccine. Sci Rep 2024; 14:4204. [PMID: 38378856 PMCID: PMC10879490 DOI: 10.1038/s41598-024-54421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Due to the synchronous circulation of seasonal influenza viruses and severe acute respiratory coronavirus 2 (SARS-CoV-2) which causes coronavirus disease 2019 (COVID-19), there is need for routine vaccination for both COVID-19 and influenza to reduce disease severity. Here, we prepared individual WPVs composed of formalin-inactivated SARS-CoV-2 WK 521 (Ancestral strain; Co WPV) or influenza virus [A/California/07/2009 (X-179A) (H1N1) pdm; Flu WPV] to produce a two-in-one Co/Flu WPV. Serum analysis from vaccinated mice revealed that a single dose of Co/Flu WPV induced antigen-specific neutralizing antibodies against both viruses, similar to those induced by either type of WPV alone. Following infection with either virus, mice vaccinated with Co/Flu WPV showed no weight loss, reduced pneumonia and viral titers in the lung, and lower gene expression of proinflammatory cytokines, as observed with individual WPV-vaccinated. Furthermore, a pentavalent vaccine (Co/qFlu WPV) comprising of Co WPV and quadrivalent influenza vaccine (qFlu WPV) was immunogenic and protected animals from severe COVID-19. These results suggest that a single dose of the two-in-one WPV provides efficient protection against SARS-CoV-2 and influenza virus infections with no evidence of vaccine interference in mice. We propose that concomitant vaccination with the two-in-one WPV can be useful for controlling both diseases.
Collapse
Affiliation(s)
- Chimuka Handabile
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Naoki Nomura
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tomomi Kawakita
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mamiko Kawahara
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | | | - Shinsuke Toba
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Brendon Y Chua
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Masashi Shingai
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Shionogi Pharmaceutical Research Center, Shionogi & Company, Limited, Toyonaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kazumasa Ogasawara
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Katherine Kedzierska
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hiroshi Kida
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
12
|
Paróczai D, Burian K, Bikov A. Bacterial Vaccinations in Patients with Chronic Obstructive Pulmonary Disease. Vaccines (Basel) 2024; 12:213. [PMID: 38400196 PMCID: PMC10893474 DOI: 10.3390/vaccines12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a frequent, often progressive, chronic disease of the lungs. Patients with COPD often have impaired immunity; therefore, they are prone to chest infections, such as pneumonia or bronchitis. Acute exacerbations of COPD are major events that accelerate disease progression, contributing to its symptoms' burden, morbidity, and mortality. Both pneumonia and acute exacerbations in COPD are caused by bacteria against which there are effective vaccinations. Although the number of randomised controlled studies on bacterial vaccinations in COPD is limited, national and international guidelines endorse specific vaccinations in patients with COPD. This review will summarise the different types of vaccinations that prevent pneumonia and COPD exacerbations. We also discuss the results of early phase studies. We will mainly focus on Streptococcus pneumoniae, as this bacterium was predominantly investigated in COPD. However, we also review studies investigating vaccinations against Haemophilus influenzae, Moraxella catarrhalis, and Bordetella pertussis.
Collapse
Affiliation(s)
- Dóra Paróczai
- Department of Medical Microbiology, University of Szeged, H-6720 Szeged, Hungary; (D.P.); (K.B.)
- Albert Szent-Györgyi Health Center, Department of Pulmonology, University of Szeged, H-6720 Szeged, Hungary
| | - Katalin Burian
- Department of Medical Microbiology, University of Szeged, H-6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Andras Bikov
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
13
|
Chavda V, Yadav D, Parmar H, Brahmbhatt R, Patel B, Madhwani K, Jain M, Song M, Patel S. A Narrative Overview of Coronavirus Infection: Clinical Signs and Symptoms, Viral Entry and Replication, Treatment Modalities, and Management. Curr Top Med Chem 2024; 24:1883-1916. [PMID: 38859776 DOI: 10.2174/0115680266296095240529114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV- -2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified "syndrome" condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto94305, CA, USA
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, South Korea
| | - Harisinh Parmar
- Department of Neurosurgery, Krishna institute of medical sciences, Karad, Maharashtra, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Kajal Madhwani
- Department of Life Science, University of Westminster, London, W1B 2HW, United Kingdom
| | - Meenu Jain
- Gajra Raja Medical College, Gwalior, 474009, Madhya Pradesh, India
| | - Minseok Song
- Department of Life Science, Yeungnam University, South Korea
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
14
|
Yang H, Xie Y, Lu S, Sun Y, Wang K, Li S, Wang J, Liao G, Li C. Independent Protection and Influence of the Spike-Specific Antibody Response of SARS-CoV-2 Nucleocapsid Protein (N) in Whole-Virion Vaccines. Vaccines (Basel) 2023; 11:1681. [PMID: 38006013 PMCID: PMC10675215 DOI: 10.3390/vaccines11111681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Of all of the components in SARS-CoV-2 inactivated vaccines, nucleocapsid protein (N) is the most abundant and highly conserved protein. However, the function of N in these vaccines, especially its influence on the targeted spike protein's response, remains unknown. In this study, the immunization of mice with the N protein alone was shown to reduce the viral load, alleviating pulmonary pathological lesions after challenge with the SARS-CoV-2 virus. In addition, co-immunization and pre-immunization with N were found to induce higher S-specific antibody titers rather than compromise them. Remarkably, the same trend was also observed when N was administered as the booster dose after whole inactivated virus vaccination. N-specific IFN-γ-secreting T cell response was detected in all groups and exhibited a certain relationship with S-specific IgG antibody improvements. Together, these data indicate that N has an independent role in vaccine-induced protection and improves the S-specific antibody response to inactivated vaccines, revealing that an interplay mechanism may exist in the immune responses to complex virus components.
Collapse
Affiliation(s)
- Huijie Yang
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China; (H.Y.); (K.W.); (S.L.)
| | - Ying Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650108, China; (Y.X.); (S.L.); (G.L.)
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650108, China; (Y.X.); (S.L.); (G.L.)
| | - Yufang Sun
- Graduate School, Guangzhou Medical University, Guangzhou 511495, China
| | - Kaiqin Wang
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China; (H.Y.); (K.W.); (S.L.)
| | - Shuyan Li
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China; (H.Y.); (K.W.); (S.L.)
| | - Junzhi Wang
- National Institutes for Food and Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Guoyang Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650108, China; (Y.X.); (S.L.); (G.L.)
| | - Changgui Li
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing 102629, China; (H.Y.); (K.W.); (S.L.)
| |
Collapse
|
15
|
Ralise AEG, Camargo TM, Marson FAL. Phase 4 clinical trials in the era of the Coronavirus Disease (COVID-19) pandemic and their importance to optimize the COVID-19 vaccination. Hum Vaccin Immunother 2023; 19:2234784. [PMID: 37449956 DOI: 10.1080/21645515.2023.2234784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Since the appearance of SARS-CoV-2, the scientific community has worked relentlessly to gather enough information about the illness caused by this virus infection. Such great effort has resulted in increased scientific publication, including phase 4 clinical trials addressing the applicability of COVID-19 vaccines. In those trials that investigated the properties of the vaccine among participants with morbidities, mainly immunocompromised individuals, the safety was recommended, but in the presence of immunogenicity, such protection was considered of short and medium terms. It was also observed that a physically active lifestyle might increase the immunogenicity of the COVID-19 vaccination in patients with autoimmune rheumatic diseases and in immunocompromised patients. The coadministration of different types of vaccine such as the combination of the recombinant adenovirus type 5 (AD5)-vectored Convidecia as heterologous reinforcement vs. CoronaVac with homologous reinforcement in adults previously vaccinated with CoronaVac, as well as the coadministration of inactivated COVID-19 vaccine followed by the administration of the tetravalent influenza vaccine (Fragmented, Inactivated) and the pneumococcal vaccine 23 presented satisfactory immunogenicity. However, the heterologous reinforcement had better immunogenicity when compared to the homologous reinforcement. Simultaneous COVID-19 vaccination and vaccines against seasonal influenza did not raise safety issues, producing acceptable levels of adverse reactions and preserving the antibody responses against SARS-CoV-2. In the lot-to-lot consistency evaluation, CoronaVac was seen to induce an immune response considered relatively high, and the lots presented a similar profile of stability and immunogenicity, thus enabling their large-scale distribution. In brief, this article addressed, mainly, the importance of evaluating the immunological response in the COVID-19 vaccination in patients with specific health conditions (e.g., immunocompromised individuals) aiming at enabling adjustments to the vaccine calendar in national vaccination programs.
Collapse
Affiliation(s)
- Ana Eliza Garcia Ralise
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista, Brazil
| | - Tais Mendes Camargo
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista, Brazil
| | | |
Collapse
|
16
|
SARS-CoV-2 versus Influenza A Virus: Characteristics and Co-Treatments. Microorganisms 2023; 11:microorganisms11030580. [PMID: 36985154 PMCID: PMC10051779 DOI: 10.3390/microorganisms11030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
For three years, the novel coronavirus disease 2019 (COVID-19) pandemic, caused by infection of the SARS-CoV-2 virus, has completely changed our lifestyles and prepared us to live with this novel pneumonia for years to come. Given that pre-existing flu is caused by the influenza A virus, we have begun unprecedently co-coping with two different respiratory diseases at the same time. Hence, we draw a comparison between SARS-CoV-2 and influenza A virus based on the general characteristics, especially the main variants’ history and the distribution of the two viruses. SARS-CoV-2 appeared to mutate more frequently and independently of locations than the influenza A virus. Furthermore, we reviewed present clinical trials on combined management against COVID-19 and influenza in order to explore better solutions against both at the same time.
Collapse
|
17
|
Focosi D. From Co-Administration to Co-Formulation: The Race for New Vaccines against COVID-19 and Other Respiratory Viruses. Vaccines (Basel) 2023; 11:vaccines11010109. [PMID: 36679954 PMCID: PMC9860680 DOI: 10.3390/vaccines11010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Combined (concomitant or synchronous) vaccination is crucial to increasing the compliance rate during mass campaigns by reducing the time to deployment (i [...].
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|