1
|
Huang T, Huang X, Shi B, Wang F, Feng W, Yao M. Regulators of Salmonella-host interaction identified by peripheral blood transcriptome profiling: roles of TGFB1 and TRP53 in intracellular Salmonella replication in pigs. Vet Res 2018; 49:121. [PMID: 30541630 PMCID: PMC6292071 DOI: 10.1186/s13567-018-0616-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Peripheral blood transcriptome is an important intermediate data source for investigating the mechanism of Salmonella invasion, proliferation, and transmission. We challenged 4-week old piglets with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood gene expression profile before treatment (d0) and at 2 and 7 days post-inoculation (dpi) using deep sequencing. Regulator pathways were first predicted in silico and validated by wet-lab experiments. In total, 1255, 765, and 853 genes were differentially expressed between 2 dpi/d0, 7 dpi/d0, and 7 dpi/2 dpi, respectively. Additionally, 1333 genes showed a time effect during the investigated Salmonella infection period. Clustering analysis showed that the differentially expressed genes fell into six distinct expression clusters. Pathway annotation of these gene clusters showed that the innate immune system was first significantly upregulated at 2 dpi and then attenuated at 7 dpi. Toll-like receptor cascades, MyD88 cascade, phagosome pathway, cytokine signaling pathway, and lysosome pathway showed a similar expression pattern. Interestingly, we found that the ribosome pathway was significantly inhibited at 2 and 7 dpi. Gene expression regulation network enrichment analysis identified several candidate factors controlling the expression clusters. Further in vitro study showed that TGFB1 can inhibit Salmonella replication whereas TRP53 can promote Salmonella replication in porcine peripheral blood mononuclear cells and murine macrophages. These results provide new insights into the molecular mechanism of Salmonella-host interactions and clues for the genetic improvement of Salmonella infection resistance in pigs.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fangfang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wenzhao Feng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
2
|
Ramos L, Obregon-Henao A, Henao-Tamayo M, Bowen R, Lunney JK, Gonzalez-Juarrero M. The minipig as an animal model to study Mycobacterium tuberculosis infection and natural transmission. Tuberculosis (Edinb) 2017; 106:91-98. [PMID: 28802411 DOI: 10.1016/j.tube.2017.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 02/02/2023]
Abstract
In endemic countries more than 20% of tuberculosis (TB) cases are in infants and children. Current animal models study TB during adulthood but animal models for infant TB are scarce. Here we propose that minipigs can be used as an animal model to study adult, adolescent and infant TB including natural transmission. In these studies, two-month old minipigs (representing infant age in humans) and six-month old minipigs (representing adolescence in humans) were infected via the aerosol route with hyper-virulent clinical strain W-Beijing Mycobacterium tuberculosis (Mtb) HN878 and were monitored for 11 or 36 weeks post-challenge, respectively. In the same studies, infected and unchallenged animals were housed together. Viable bacteria were recovered from pulmonary and thoracic lymph nodes from both -infected and their initially unchallenged natural contacts. Bacillary load, gross lesions and histopathology revealed similarities to the spectrum of disease observed in human TB. The study did not reach terminal end point, thus it was not possible to annotate definitive clinical symptoms of active TB. The results demonstrated that minipigs are experimental hosts of Mtb HN878, and the pathology developed in their lungs resembles pathological findings described in human TB. Importantly, within communities of Mtb infected minipigs natural transmission occurs.
Collapse
Affiliation(s)
- Laylaa Ramos
- Cell and Molecular Biology Colorado State University, Fort Collins, CO 80523, USA
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1682, Fort Collins, CO 80523, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1682, Fort Collins, CO 80523, USA
| | - Richard Bowen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1682, Fort Collins, CO 80523, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Building 1040, Room 103, BARC-East, Beltsville, MD 20705, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1682, Fort Collins, CO 80523, USA.
| |
Collapse
|
5
|
Martins RP, Aguilar C, Graham JE, Carvajal A, Bautista R, Claros MG, Garrido JJ. Pyroptosis and adaptive immunity mechanisms are promptly engendered in mesenteric lymph-nodes during pig infections with Salmonella enterica serovar Typhimurium. Vet Res 2013; 44:120. [PMID: 24308825 PMCID: PMC4028780 DOI: 10.1186/1297-9716-44-120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 11/25/2013] [Indexed: 12/21/2022] Open
Abstract
In this study, we explored the transcriptional response and the morphological changes occurring in porcine mesenteric lymph-nodes (MLN) along a time course of 1, 2 and 6 days post infection (dpi) with Salmonella Typhimurium. Additionally, we analysed the expression of some Salmonella effectors in tissue to complete our view of the processes triggered in these organs upon infection. The results indicate that besides dampening apoptosis, swine take advantage of the flagellin and prgJ expression by Salmonella Typhimuriun to induce pyroptosis in MLN, preventing bacterial dissemination. Furthermore, cross-presentation of Salmonella antigens was inferred as a mechanism that results in a rapid clearance of pathogen by cytotoxic T cells. In summary, although the Salmonella Typhimurium strain employed in this study was able to express some of its major virulence effectors in porcine MLN, a combination of early innate and adaptive immunity mechanisms might overcome virulence strategies employed by the pathogen, enabling the host to protect itself against bacterial spread beyond gut-associated lymph-nodes. Interestingly, we deduced that clathrin-mediated endocytosis could contribute to mechanisms of pathogen virulence and/or host defence in MLN of Salmonella infected swine. Taken together, our results are useful for a better understanding of the critical protective mechanisms against Salmonella that occur in porcine MLN to prevent the spread of infection beyond the intestine.
Collapse
Affiliation(s)
- Rodrigo Prado Martins
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| | - Carmen Aguilar
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| | - James E Graham
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, 40202, Louisville, KY, USA
| | - Ana Carvajal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590, Málaga, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590, Málaga, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel C5, 14071, Córdoba, Spain
| |
Collapse
|
7
|
Dawson HD, Loveland JE, Pascal G, Gilbert JGR, Uenishi H, Mann KM, Sang Y, Zhang J, Carvalho-Silva D, Hunt T, Hardy M, Hu Z, Zhao SH, Anselmo A, Shinkai H, Chen C, Badaoui B, Berman D, Amid C, Kay M, Lloyd D, Snow C, Morozumi T, Cheng RPY, Bystrom M, Kapetanovic R, Schwartz JC, Kataria R, Astley M, Fritz E, Steward C, Thomas M, Wilming L, Toki D, Archibald AL, Bed’Hom B, Beraldi D, Huang TH, Ait-Ali T, Blecha F, Botti S, Freeman TC, Giuffra E, Hume DA, Lunney JK, Murtaugh MP, Reecy JM, Harrow JL, Rogel-Gaillard C, Tuggle CK. Structural and functional annotation of the porcine immunome. BMC Genomics 2013; 14:332. [PMID: 23676093 PMCID: PMC3658956 DOI: 10.1186/1471-2164-14-332] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/03/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. RESULTS The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome. CONCLUSIONS This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig's adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.
Collapse
Affiliation(s)
- Harry D Dawson
- USDA-ARS, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Jane E Loveland
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Géraldine Pascal
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - James GR Gilbert
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Hirohide Uenishi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Katherine M Mann
- USDA ARS BA Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Yongming Sang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jie Zhang
- Laboratory of Animal Genetics, Breeding, and Reproduction, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Denise Carvalho-Silva
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK,Current affiliation: EMBL Outstation-Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambs CB10 1SD, UK
| | - Toby Hunt
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Matthew Hardy
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Zhiliang Hu
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Shu-Hong Zhao
- Laboratory of Animal Genetics, Breeding, and Reproduction, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Anna Anselmo
- Parco Tecnologico Padano, Integrative Biology Unit, via A. Einstein, 26900, Lodi, Italy
| | - Hiroki Shinkai
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Celine Chen
- USDA-ARS, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Bouabid Badaoui
- Parco Tecnologico Padano, Integrative Biology Unit, via A. Einstein, 26900, Lodi, Italy
| | - Daniel Berman
- USDA ARS BA Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Clara Amid
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK,Current affiliation: EMBL Outstation-Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambs CB10 1SD, UK
| | - Mike Kay
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - David Lloyd
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Catherine Snow
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Takeya Morozumi
- Institute of Japan Association for Technology in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki 305-0854, Japan
| | - Ryan Pei-Yen Cheng
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Megan Bystrom
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Ronan Kapetanovic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - John C Schwartz
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | - Ranjit Kataria
- National Bureau of Animal Genetic Resources, P.B. 129, GT Road By-Pass, Karnal 132001, (Haryana), India
| | - Matthew Astley
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Eric Fritz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Charles Steward
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Mark Thomas
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Laurens Wilming
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Daisuke Toki
- Institute of Japan Association for Technology in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki 305-0854, Japan
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Bertrand Bed’Hom
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France
| | - Dario Beraldi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Ting-Hua Huang
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Frank Blecha
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Sara Botti
- Parco Tecnologico Padano, Integrative Biology Unit, via A. Einstein, 26900, Lodi, Italy
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Elisabetta Giuffra
- Parco Tecnologico Padano, Integrative Biology Unit, via A. Einstein, 26900, Lodi, Italy,INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Joan K Lunney
- USDA ARS BA Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jennifer L Harrow
- Informatics Department, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs CB10 1SA, UK
| | - Claire Rogel-Gaillard
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France
| | | |
Collapse
|
9
|
Huang TH, Uthe JJ, Bearson SMD, Demirkale CY, Nettleton D, Knetter S, Christian C, Ramer-Tait AE, Wannemuehler MJ, Tuggle CK. Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: intersection of IFNG, TLR and miRNA pathways. PLoS One 2011; 6:e28768. [PMID: 22174891 PMCID: PMC3236216 DOI: 10.1371/journal.pone.0028768] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 11/15/2011] [Indexed: 12/22/2022] Open
Abstract
Transcriptomic analysis of the response to bacterial pathogens has been reported for several species, yet few studies have investigated the transcriptional differences in whole blood in subjects that differ in their disease response phenotypes. Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of Salmonella is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n = 40) was inoculated with ST and peripheral blood and fecal Salmonella counts were collected between 2 and 20 days post-inoculation (dpi). Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. Global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip® analysis of peripheral blood RNA at day 0 and 2 dpi. ST inoculation triggered substantial gene expression changes in the pigs and there was differential expression of many genes between LS and PS pigs. Analysis of the differential profiles of gene expression within and between PS and LS phenotypic classes identified distinct regulatory pathways mediated by IFN-γ, TNF, NF-κB, or one of several miRNAs. We confirmed the activation of two regulatory factors, SPI1 and CEBPB, and demonstrated that expression of miR-155 was decreased specifically in the PS animals. These data provide insight into specific pathways associated with extremes in Salmonella fecal shedding that can be targeted for further exploration on why some animals develop a carrier state. This knowledge can also be used to develop rational manipulations of genetics, pharmaceuticals, nutrition or husbandry methods to decrease Salmonella colonization, shedding and spread.
Collapse
Affiliation(s)
- Ting-Hua Huang
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jolita J. Uthe
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Shawn M. D. Bearson
- National Animal Disease Center, United States Department of Agriculture- Agricultural Research Service, Ames, Iowa, United States of America
| | | | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Susan Knetter
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Curtis Christian
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Amanda E. Ramer-Tait
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | | | - Christopher K. Tuggle
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|