1
|
Wachino JI. Horizontal Gene Transfer Systems for Spread of Antibiotic Resistance in Gram-Negative Bacteria. Microbiol Immunol 2025. [PMID: 40370256 DOI: 10.1111/1348-0421.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Antibiotic-resistant bacteria have become a significant global threat to public health due to the increasing difficulty in treatment. These bacteria acquire resistance by incorporating various antibiotic resistance genes (ARGs) through specialized gene transfer mechanisms, allowing them to evade antibiotic attacks. Conjugation, transformation, and transduction are well-established mechanisms that drive the acquisition and dissemination of ARGs in Gram-negative bacteria. In particular, the horizontal transfer of plasmids carrying multiple ARGs is highly problematic, as it can instantly convert susceptible bacteria into multidrug-resistant ones. Transduction, mediated by bacteriophages that package ARG-containing chromosomal DNA from host cells, also plays a crucial role in ARG spread without requiring direct cell-to-cell contact. Recently, a novel horizontal gene transfer (HGT) mechanism involving outer membrane vesicles (OMVs) has been identified as a key player in ARG dissemination. OMVs-nanoscale, spherical structures produced by bacteria during growth-have been found to carry small plasmids and chromosomal DNA fragments containing ARGs from their host bacteria. This newly discovered transfer process, termed "vesiduction," enables intercellular DNA exchange and further contributes to the spread of antibiotic resistance. Additionally, mobile genetic elements such as transposons, insertion sequences, and site-specific recombination systems like integrons facilitate rearrangement of ARGs, including their translocation between chromosomes and plasmids. This review explores the molecular mechanisms underlying the HGT of ARGs, with a particular focus on clinically isolated antibiotic-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Jun-Ichi Wachino
- Department of Clinical Microbiology, Faculty of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
2
|
Yan J, Guo Z, Xie J. A Critical Analysis of the Opportunities and Challenges of Phage Application in Seafood Quality Control. Foods 2024; 13:3282. [PMID: 39456344 PMCID: PMC11506950 DOI: 10.3390/foods13203282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Seafood is an important source of food and protein for humans. However, it is highly susceptible to microbial contamination, which has become a major challenge for the seafood processing industry. Bacteriophages are widely distributed in the environment and have been successfully used as biocontrol agents against pathogenic microorganisms in certain food processing applications. However, due to the influence of environmental factors and seafood matrices, using bacteriophages for commercial-scale biocontrol strategies still faces some challenges. This article briefly introduces the current processes used for the production and purification of bacteriophages, lists the latest findings on the application of phage-based biocontrol in seafood, summarizes the challenges faced at the current stage, and provides corresponding strategies for solving these issues.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenghao Guo
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
4
|
Kim H, Kim ES, Cho JH, Song M, Cho JH, Kim S, Keum GB, Kwak J, Doo H, Pandey S, Park SH, Lee JH, Jung H, Hur TY, Kim JK, Oh KK, Kim HB, Lee JH. Exploring the Microbial Community and Functional Characteristics of the Livestock Feces Using the Whole Metagenome Shotgun Sequencing. J Microbiol Biotechnol 2023; 33:51-60. [PMID: 36517072 PMCID: PMC9896000 DOI: 10.4014/jmb.2209.09013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.
Collapse
Affiliation(s)
- Hyeri Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jinok Kwak
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Hyunok Doo
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Tai Young Hur
- Animal Diseases & Health Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kwang Kyo Oh
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea,Corresponding authors H.B. Kim Phone: +82-41-550-3653 E-mail:
| | - Ju-Hoon Lee
- Department of Food Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea,J.H. Lee Phone: +82-2-880-4854 E-mail:
| |
Collapse
|
5
|
Rashed R, Valcheva R, Dieleman LA. Manipulation of Gut Microbiota as a Key Target for Crohn's Disease. Front Med (Lausanne) 2022; 9:887044. [PMID: 35783604 PMCID: PMC9244564 DOI: 10.3389/fmed.2022.887044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) sub-type characterized by transmural chronic inflammation of the gastrointestinal tract. Research indicates a complex CD etiology involving genetic predisposition and immune dysregulation in response to environmental triggers. The chronic mucosal inflammation has been associated with a dysregulated state, or dysbiosis, of the gut microbiome (bacteria), mycobiome (fungi), virome (bacteriophages and viruses), and archeaome (archaea) further affecting the interkingdom syntrophic relationships and host metabolism. Microbiota dysbiosis in CD is largely described by an increase in facultative anaerobic pathobionts at the expense of strict anaerobic Firmicutes, such as Faecalibacterium prausnitzii. In the mycobiome, reduced fungal diversity and fungal-bacteria interactions, along with a significantly increased abundance of Candida spp. and a decrease in Saccharomyces cerevisiae are well documented. Virome analysis also indicates a significant decrease in phage diversity, but an overall increase in phages infecting bacterial groups associated with intestinal inflammation. Finally, an increase in methanogenic archaea such as Methanosphaera stadtmanae exhibits high immunogenic potential and is associated with CD etiology. Common anti-inflammatory medications used in CD management (amino-salicylates, immunomodulators, and biologics) could also directly or indirectly affect the gut microbiome in CD. Other medications often used concomitantly in IBD, such as antibiotics, antidepressants, oral contraceptives, opioids, and proton pump inhibitors, have shown to alter the gut microbiota and account for increased susceptibility to disease onset or worsening of disease progression. In contrast, some environmental modifications through alternative therapies including fecal microbiota transplant (FMT), diet and dietary supplements with prebiotics, probiotics, and synbiotics have shown potential protective effects by reversing microbiota dysbiosis or by directly promoting beneficial microbes, together with minimal long-term adverse effects. In this review, we discuss the different approaches to modulating the global consortium of bacteria, fungi, viruses, and archaea in patients with CD through therapies that include antibiotics, probiotics, prebiotics, synbiotics, personalized diets, and FMT. We hope to provide evidence to encourage clinicians and researchers to incorporate these therapies into CD treatment options, along with making them aware of the limitations of these therapies, and indicate where more research is needed.
Collapse
|
6
|
Flores-Vargas G, Bergsveinson J, Lawrence JR, Korber DR. Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Front Microbiol 2022; 12:766242. [PMID: 34970233 PMCID: PMC8713029 DOI: 10.3389/fmicb.2021.766242] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Characterizing the response of microbial communities to a range of antibiotic concentrations is one of the strategies used to understand the impact of antibiotic resistance. Many studies have described the occurrence and prevalence of antibiotic resistance in microbial communities from reservoirs such as hospitals, sewage, and farm feedlots, where bacteria are often exposed to high and/or constant concentrations of antibiotics. Outside of these sources, antibiotics generally occur at lower, sub-minimum inhibitory concentrations (sub-MICs). The constant exposure to low concentrations of antibiotics may serve as a chemical "cue" that drives development of antibiotic resistance. Low concentrations of antibiotics have not yet been broadly described in reservoirs outside of the aforementioned environments, nor is the transfer and dissemination of antibiotic resistant bacteria and genes within natural microbial communities fully understood. This review will thus focus on low antibiotic-concentration environmental reservoirs and mechanisms that are important in the dissemination of antibiotic resistance to help identify key knowledge gaps concerning the environmental resistome.
Collapse
Affiliation(s)
| | | | - John R Lawrence
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | - Darren R Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Makky S, Dawoud A, Safwat A, Abdelsattar AS, Rezk N, El-Shibiny A. The bacteriophage decides own tracks: When they are with or against the bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100050. [PMID: 34841341 PMCID: PMC8610337 DOI: 10.1016/j.crmicr.2021.100050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages, bacteria-infecting viruses, are considered by many researchers a promising solution for antimicrobial resistance. On the other hand, some phages have shown contribution to bacterial resistance phenomenon by transducing antimicrobial resistance genes to their bacterial hosts. Contradictory consequences of infections are correlated to different phage lifecycles. Out of four known lifecycles, lysogenic and lytic pathways have been riddles since the uncontrolled conversion between them could negatively affect the intended use of phages. However, phages still can be engineered for applications against bacterial and viral infections to ensure high efficiency. This review highlights two main aspects: (1) the different lifecycles as well as the different factors that affect lytic-lysogenic switch are discussed, including the intracellular and molecular factors control this decision. In addition, different models which describe the effect of phages on the ecosystem are compared, besides the approaches to study the switch. (2) An overview on the contribution of the phage in the evolution of the bacteria, instead of eating them, as a consequence of different mode of actions. As well, how phage display has helped in restricting phage cheating and how it could open new gates for immunization and pandemics control will be tacked.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, 16482, Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| |
Collapse
|
8
|
Zemmour A, Dali-Yahia R, Maatallah M, Saidi-Ouahrani N, Rahmani B, Benhamouche N, Al-Farsi HM, Giske CG. High-risk clones of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from the University Hospital Establishment of Oran, Algeria (2011-2012). PLoS One 2021; 16:e0254805. [PMID: 34310625 PMCID: PMC8312963 DOI: 10.1371/journal.pone.0254805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
The purpose of the study was to characterize the resistome, virulome, mobilome and Clustered Regularly Interspaced Short Palindromic Repeats-associated (CRISPR-Cas) system of extended-spectrum β-lactamase producing Klebsiella pneumoniae (ESBL-KP) clinical isolates and to determine their phylogenetic relatedness. The isolates were from Algeria, isolated at the University Hospital Establishment of Oran, between 2011 and 2012. ESBL-KP isolates (n = 193) were screened for several antibiotic resistance genes (ARGs) using qPCR followed by Pulsed-Field Gel Electrophoresis (PFGE). Representative isolates were selected from PFGE clusters and subjected to whole-genome sequencing (WGS). Genomic characterization of the WGS data by studying prophages, CRISPR-Cas systems, Multi-Locus Sequence Typing (MLST), serotype, ARGs, virulence genes, plasmid replicons, and their pMLST. Phylogenetic and comparative genomic were done using core genome MLST and SNP-Based analysis. Generally, the ESBL-KP isolates were polyclonal. The whole genome sequences of nineteen isolates were taken of main PFGE clusters. Sixteen sequence types (ST) were found including high-risk clones ST14, ST23, ST37, and ST147. Serotypes K1 (n = 1), K2 (n = 2), K3 (n = 1), K31 (n = 1), K62 (n = 1), and K151 (n = 1) are associated with hyper-virulence. CRISPR-Cas system was found in 47.4%, typed I-E and I-E*. About ARGs, from 193 ESBL-KP, the majority of strains were multidrug-resistant, the CTX-M-1 enzyme was predominant (99%) and the prevalence of plasmid-mediated quinolone resistance (PMQR) genes was high with aac(6')-lb-cr (72.5%) and qnr's (65.8%). From 19 sequenced isolates we identified ESBL, AmpC, and carbapenemase genes: blaCTX-M-15 (n = 19), blaOXA-48 (n = 1), blaCMY-2 (n = 2), and blaCMY-16 (n = 2), as well as non-ESBL genes: qnrB1 (n = 12), qnrS1 (n = 1) and armA (n = 2). We found IncF, IncN, IncL/M, IncA/C2, and Col replicon types, at least once per isolate. This study is the first to report qnrS in ESBL-KP in Algeria. Our analysis shows the concerning co-existence of virulence and resistance genes and would support that genomic surveillance should be a high priority in the hospital environment.
Collapse
Affiliation(s)
- Assia Zemmour
- Faculté de Sciences de la Nature et la Vie, Département de Génétique Moléculaire Appliquée, Université des Sciences et la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
- Laboratoire de Génétique Médicale Appliquée à l’Ophtalmologie, Université d’Oran 1, Oran, Algérie
| | - Radia Dali-Yahia
- Service de bactériologie, Etablissement Hospitalo-Universitaire 1er Novembre 1954, Oran, Algérie
- Faculté de médicine, Université d’Oran 1, Oran, Algérie
| | - Makaoui Maatallah
- Faculté de pharmacie de Monastir, Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des Produits (LATVPEP: LR01ES16), Université de Monastir, Monastir, Tunisie
| | - Nadjia Saidi-Ouahrani
- Faculté de Sciences de la Nature et la Vie, Département de Génétique Moléculaire Appliquée, Université des Sciences et la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
| | - Bouabdallah Rahmani
- Faculté de Génie Electrique, Département d’Electronique, Université des Sciences et la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
| | - Nora Benhamouche
- Faculté de Sciences de la Nature et la Vie, Département de Génétique Moléculaire Appliquée, Université des Sciences et la Technologie d’Oran Mohamed-Boudiaf USTOMB, Oran, Algérie
| | - Hissa M. Al-Farsi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Central Public Health Laboratories, Ministry of Health, Muscat, Sultanate of Oman
| | - Christian G. Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
9
|
Khan MNK, Das MR, Sabur MA, Rahman MM, Uddin MB, Cho HS, Hossain MM. Isolation, identification, molecular detection and sensitivity to antibiotics of Salmonella from cattle faeces. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study was designed with the aim of isolation and identification of Salmonella by con-ventional culture method and their confirmation by polymerase chain reaction (PCR). Antibacte-rial sensitivity study of isolated Salmonella from cattle faeces was also performed. During the study period of July 2017 to June 2018, a total of 200 faecal samples were collected from different government and private farms in Sylhet district of Bangladesh. Out of 200 samples, 24 (12%) were found to be positive for Salmonella by conventional culture methods. Among the twenty four suspected colonies of Salmonella, seventeen were confirmed by biochemical test and same number was detected by PCR estimating a prevalence of 8.5% (17/200). The prevalence was high-er in calves under 1 year of age (16%) compared with older animals (11.25% of 1–2 years; 10% of above 2 years of age) but without statistically significant differences (χ2=4.835, P=0.089). Moreo-ver, in diarrhoeic animals the prevalence was significantly higher (32.14%, χ2=49.414, P<0.01) than in apparently healthy animals (8.72%). The antibiotic sensitivity test showed that highest number of Salmonella isolates were sensitive to ciprofloxacin (100%), gentamicin (100%) and neomycin (100%). On the other hand, significantly high resistance of Salmonella isolates was detected to erythromycin (100%), amoxicillin (100%), cotrimoxazole (81.48%), streptomycin (62.96%) followed by tetracycline (55.56%).
Collapse
|
10
|
Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation. ISME JOURNAL 2020; 14:2980-2996. [PMID: 32732904 PMCID: PMC7784688 DOI: 10.1038/s41396-020-0726-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/21/2023]
Abstract
Klebsiella species are able to colonize a wide range of environments and include worrisome nosocomial pathogens. Here, we sought to determine the abundance and infectivity of prophages of Klebsiella to understand how the interactions between induced prophages and bacteria affect population dynamics and evolution. We identified many prophages in the species, placing these taxa among the top 5% of the most polylysogenic bacteria. We selected 35 representative strains of the Klebsiella pneumoniae species complex to establish a network of induced phage-bacteria interactions. This revealed that many prophages are able to enter the lytic cycle, and subsequently kill or lysogenize closely related Klebsiella strains. Although 60% of the tested strains could produce phages that infect at least one other strain, the interaction network of all pairwise cross-infections is very sparse and mostly organized in modules corresponding to the strains' capsule serotypes. Accordingly, capsule mutants remain uninfected showing that the capsule is a key factor for successful infections. Surprisingly, experiments in which bacteria are predated by their own prophages result in accelerated loss of the capsule. Our results show that phage infectiousness defines interaction modules between small subsets of phages and bacteria in function of capsule serotype. This limits the role of prophages as competitive weapons because they can infect very few strains of the species complex. This should also restrict phage-driven gene flow across the species. Finally, the accelerated loss of the capsule in bacteria being predated by their own phages, suggests that phages drive serotype switch in nature.
Collapse
|
11
|
Petrovich ML, Zilberman A, Kaplan A, Eliraz GR, Wang Y, Langenfeld K, Duhaime M, Wigginton K, Poretsky R, Avisar D, Wells GF. Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Front Microbiol 2020; 11:153. [PMID: 32140141 PMCID: PMC7042388 DOI: 10.3389/fmicb.2020.00153] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge.
Collapse
Affiliation(s)
- Morgan L. Petrovich
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Adi Zilberman
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Kaplan
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gefen R. Eliraz
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yubo Wang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Kathryn Langenfeld
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rachel Poretsky
- Department of Biological Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Dror Avisar
- The Water Research Center, School of The Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - George F. Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
12
|
Carson C, Li XZ, Agunos A, Loest D, Chapman B, Finley R, Mehrotra M, Sherk LM, Gaumond R, Irwin R. Ceftiofur-resistant Salmonella enterica serovar Heidelberg of poultry origin - a risk profile using the Codex framework. Epidemiol Infect 2019; 147:e296. [PMID: 31679543 PMCID: PMC6836576 DOI: 10.1017/s0950268819001778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Codex published the 'Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance' to standardise the approach for evaluating risk posed by foodborne antimicrobial-resistant bacteria. One of the first steps in the guidelines is to compile a risk profile, which provides the current state of knowledge regarding a food safety issue, describes risk management options and recommends next steps. In Canada, ceftiofur/ceftriaxone-resistant Salmonella enterica subsp. enterica serovar Heidelberg from poultry was identified as an antimicrobial resistance (AMR) food safety issue. The first objective of this article was to contextualise this food safety issue, using the risk profile format of the Codex Guidelines. A second objective was to evaluate the applicability of the Codex Guidelines. This risk profile indicated that ceftiofur/ceftriaxone-resistant S. Heidelberg (CSH) was commonly isolated from poultry and was associated with severe disease in humans. Ceftiofur use in poultry hatcheries temporally mirrored the prevalence of CSH from poultry meat at retail and from people with salmonellosis. The evidence was sufficient to indicate the need for risk management options, such as restricting the use of ceftiofur in poultry. The Codex Guidelines provided a useful approach to summarise data for decision-makers to evaluate an AMR food safety issue.
Collapse
Affiliation(s)
- Carolee Carson
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Agnes Agunos
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Daleen Loest
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Brennan Chapman
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Rita Finley
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Manisha Mehrotra
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | | | - Réjean Gaumond
- Market and Industry Services Branch, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Rebecca Irwin
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Petrovich ML, Ben Maamar S, Hartmann EM, Murphy BT, Poretsky RS, Wells GF. Viral composition and context in metagenomes from biofilm and suspended growth municipal wastewater treatment plants. Microb Biotechnol 2019; 12:1324-1336. [PMID: 31410982 PMCID: PMC6801142 DOI: 10.1111/1751-7915.13464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022] Open
Abstract
Wastewater treatment plants (WWTPs) contain high density and diversity of viruses which can significantly impact microbial communities in aquatic systems. While previous studies have investigated viruses in WWTP samples that have been specifically concentrated for viruses and filtered to exclude bacteria, little is known about viral communities associated with bacterial communities throughout wastewater treatment systems. Additionally, differences in viral composition between attached and suspended growth wastewater treatment bioprocesses are not well characterized. Here, shotgun metagenomics was used to analyse wastewater and biomass from transects through two full-scale WWTPs for viral composition and associations with bacterial hosts. One WWTP used a suspended growth activated sludge bioreactor and the other used a biofilm reactor (trickling filter). Myoviridae, Podoviridae and Siphoviridae were the dominant viral families throughout both WWTPs, which are all from the order Caudovirales. Beta diversity analysis of viral sequences showed that samples clustered significantly both by plant and by specific sampling location. For each WWTP, the overall bacterial community structure was significantly different than community structure of bacterial taxa associated with viral sequences. These findings highlight viral community composition in transects through different WWTPs and provide context for dsDNA viral sequences in bacterial communities from these systems.
Collapse
Affiliation(s)
- Morgan L. Petrovich
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Sarah Ben Maamar
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Erica M. Hartmann
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| | - Brian T. Murphy
- Department of Medicinal Chemistry and PharmacognosyUniversity of Illinois at Chicago900 S. Ashland Ave, MBRB Room 3120; MC 870ChicagoIL60607USA
| | - Rachel S. Poretsky
- Department of Biological SciencesUniversity of Illinois at Chicago950 S. Halsted Street, SEL 4100ChicagoIL60607USA
| | - George F. Wells
- Department of Civil and Environmental EngineeringNorthwestern University2145 Sheridan Rd., Tech A236EvanstonIL60208USA
| |
Collapse
|
14
|
Horizontal Gene Transfer and Acquired Antibiotic Resistance in Salmonella enterica Serovar Heidelberg following In Vitro Incubation in Broiler Ceca. Appl Environ Microbiol 2019; 85:AEM.01903-19. [PMID: 31471306 DOI: 10.1128/aem.01903-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
The chicken gastrointestinal tract harbors microorganisms that play a role in the health and disease status of the host. The cecum is the part of the gut that carries the highest microbial densities, has the longest residence time of digesta, and is a vital site for urea recycling and water regulation. Therefore, the cecum provides a rich environment for bacteria to horizontally transfer genes between one another via mobile genetic elements such as plasmids and bacteriophages. In this study, we used broiler chicken cecum as a model to investigate antibiotic resistance genes that can be transferred in vitro from cecal flora to Salmonella enterica serovar Heidelberg. We used whole-genome sequencing and resistome enrichment to decipher the interactions between S Heidelberg, the gut microbiome, and acquired antibiotic resistance. After 48 h of incubation of ceca under microaerophilic conditions, we recovered one S Heidelberg isolate with an acquired IncK2 plasmid (88 kb) carrying an extended-spectrum-β-lactamase gene (bla CMY-2). In vitro, this plasmid was transferable between Escherichia coli and S Heidelberg strains but transfer was unsuccessful between S Heidelberg strains. An in-depth genetic characterization of transferred plasmids suggests that they share significant homology with P1-like phages. This study contributes to our understanding of horizontal gene transfer between an important foodborne pathogen and the chicken gut microbiome.IMPORTANCE S. Heidelberg is a clinically important serovar, linked to foodborne illness and among the top 5 serovars isolated from poultry in the United States and Canada. Acquisition of new genetic material from the microbial flora in the gastrointestinal tract of food animals, including broilers, may contribute to increased fitness of pathogens like S. Heidelberg and may increase their level of antibiotic tolerance. Therefore, it is critical to gain a better understanding of the interactions that occur between important pathogens and the commensals present in the animal gut and other agroecosystems. In this report, we show that the native flora in broiler ceca were capable of transferring mobile genetic elements carrying the AmpC β-lactamase (bla CMY-2) gene to an important foodborne pathogen, S Heidelberg. The potential role for bacteriophage transduction is also discussed.
Collapse
|
15
|
Zuo T, Lu XJ, Zhang Y, Cheung CP, Lam S, Zhang F, Tang W, Ching JYL, Zhao R, Chan PKS, Sung JJY, Yu J, Chan FKL, Cao Q, Sheng JQ, Ng SC. Gut mucosal virome alterations in ulcerative colitis. Gut 2019; 68:1169-1179. [PMID: 30842211 PMCID: PMC6582748 DOI: 10.1136/gutjnl-2018-318131] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The pathogenesis of UC relates to gut microbiota dysbiosis. We postulate that alterations in the viral community populating the intestinal mucosa play an important role in UC pathogenesis. This study aims to characterise the mucosal virome and their functions in health and UC. DESIGN Deep metagenomics sequencing of virus-like particle preparations and bacterial 16S rRNA sequencing were performed on the rectal mucosa of 167 subjects from three different geographical regions in China (UC=91; healthy controls=76). Virome and bacteriome alterations in UC mucosa were assessed and correlated with patient metadata. We applied partition around medoids clustering algorithm and classified mucosa viral communities into two clusters, referred to as mucosal virome metacommunities 1 and 2. RESULTS In UC, there was an expansion of mucosa viruses, particularly Caudovirales bacteriophages, and a decrease in mucosa Caudovirales diversity, richness and evenness compared with healthy controls. Altered mucosal virome correlated with intestinal inflammation. Interindividual dissimilarity between mucosal viromes was higher in UC than controls. Escherichia phage and Enterobacteria phage were more abundant in the mucosa of UC than controls. Compared with metacommunity 1, metacommunity 2 was predominated by UC subjects and displayed a significant loss of various viral species. Patients with UC showed substantial abrogation of diverse viral functions, whereas multiple viral functions, particularly functions of bacteriophages associated with host bacteria fitness and pathogenicity, were markedly enriched in UC mucosa. Intensive transkingdom correlations between mucosa viruses and bacteria were significantly depleted in UC. CONCLUSION We demonstrated for the first time that UC is characterised by substantial alterations of the mucosa virobiota with functional distortion. Enrichment of Caudovirales bacteriophages, increased phage/bacteria virulence functions and loss of viral-bacterial correlations in the UC mucosa highlight that mucosal virome may play an important role in UC pathogenesis.
Collapse
Affiliation(s)
- Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Xiao-Juan Lu
- Department of Gastroenterology, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Yu Zhang
- Faculty of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Pan Cheung
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Siu Lam
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fen Zhang
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Whitney Tang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Risheng Zhao
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Joseph J Y Sung
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Jun Yu
- State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| | - Francis K L Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qian Cao
- Faculty of Medicine, Zhejiang University, Hangzhou, China,Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, The General Hospital of the People’s Liberation Army, Beijing, China
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese Univetsity of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
16
|
Starikova EV, Prianichnikov NA, Zdobnov E, Govorun VM. [Bioinformatics analysis of antimicrobial resistance genes and prophages colocalized in human gut metagenomes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 63:508-512. [PMID: 29251611 DOI: 10.18097/pbmc20176306508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The constant increase of antibiotic-resistant strains of bacteria is caused by extensive uses of antibiotics in medicine and animal breeding. It was suggested that the gut microbiota serves as a reservoir for antibiotics resistance genes that can be carried from symbiotic bacteria to pathogenic ones, in particular, as a result of transduction. In the current study, we have searched for antibiotics resistance genes that are located inside prophages in human gut microbiota using PHASTER prophage predicting tool and CARD antibiotics resistance database. After analysing metagenomic assemblies of eight samples of antibiotic treated patients, lsaE, mdfA and cpxR/cpxA genes were identified inside prophages. The abovementioned genes confer resistance to antimicrobial peptides, pleuromutilin, lincomycins, streptogramins and multidrug resistance. Three (0.46%) of 659 putative prophages predicted in metagenomic assemblies contained antibiotics resistance genes in their sequences.
Collapse
Affiliation(s)
- E V Starikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - N A Prianichnikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - E Zdobnov
- University of Geneva Medical School, Geneva, Switzerland
| | - V M Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
17
|
Park H, Laffin MR, Jovel J, Millan B, Hyun JE, Hotte N, Kao D, Madsen KL. The success of fecal microbial transplantation in Clostridium difficile infection correlates with bacteriophage relative abundance in the donor: a retrospective cohort study. Gut Microbes 2019; 10:676-687. [PMID: 30866714 PMCID: PMC6867182 DOI: 10.1080/19490976.2019.1586037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Fecal microbial transplantation (FMT) is used in the treatment of relapsing Clostridium difficile infection (rCDI). Failure rate for FMT is as high as 10% but the mechanisms contributing to a failed FMT are not understood. We utilized metagenomic data to identify the role of bacteria and bacteriophages on FMT success.Results: Subjects with rCDI (n = 19) received FMT from volunteer donors (n = 7) via colonoscopy. Twelve patients fully recovered after a single FMT, while seven patients required a subsequent FMT. DNA was extracted from patient and donor stool samples for shotgun metagenomic analysis. Metagenomics libraries were analyzed focusing on bacterial taxonomy and bacteriophage sequences. Gammaproteobacteria were dominant in rCDI patients prior to FMT largely due to elevated levels of Klebsiella and Escherichia. A successful FMT led to increased levels of Clostridia and Bacteroidia and a reduction in Gammaproteobacteria. In contrast, a failed FMT led to no significant changes in bacterial composition. Bacteriophages were classified during whole metagenomic analysis of each sample and were markedly different between rCDI patients, donors, and a healthy control cohort (n = 96). Bacteriophage sequence reads were increased in CDI patients compared with donors and healthy controls. Successful FMT donors had higher bacteriophage α-diversity and lower relative abundance compared to the donors of a failed initial FMT.Conclusions: In this retrospective analysis, FMTs with increased bacteriophage α-diversity were more likely to successfully treat rCDI. In addition, the relative number of bacteriophage reads was lower in donations leading to a successful FMT. These results suggest that bacteriophage abundance may have some role in determining the relative success of FMT.
Collapse
Affiliation(s)
- Heekuk Park
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada,Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Edmonton, AB, Canada
| | | | - Juan Jovel
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada,Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Edmonton, AB, Canada
| | - Braden Millan
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada,Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Edmonton, AB, Canada
| | - Jae E. Hyun
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada,Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Edmonton, AB, Canada
| | - Naomi Hotte
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada,Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Edmonton, AB, Canada
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada,Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Edmonton, AB, Canada
| | - Karen L. Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada,Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Edmonton, AB, Canada,CONTACT Karen L. Madsen Division of Gastroenterology, Department of Medicine, University of Alberta, 7-142 Katz Group Center, Edmonton, AB, Canada
| |
Collapse
|
18
|
Zuo T, Ng SC. The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front Microbiol 2018; 9:2247. [PMID: 30319571 PMCID: PMC6167487 DOI: 10.3389/fmicb.2018.02247] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the twenty first century, the changing epidemiology of inflammatory bowel disease (IBD) globally with increasing disease incidence across many countries relates to the altered gut microbiota, due to a combinatorial effect of environmental factors, human immune responses and genetics. IBD is a gastrointestinal disease associated with a gut microbial dysbiosis, including an expansion of facultative anaerobic bacteria of the family Enterobacteriaceae. Advances in high-throughput sequencing enable us to entangle the gut microbiota in human health and IBD beyond the gut bacterial microbiota, expanding insights into the mycobiota, virobiota and helminthes. Caudovirales (viruses) and Basidiomycota, Ascomycota, and Candida albicans (fungi) are revealed to be increased in IBD. The deconvolution of the gut microbiota in IBD lays the basis for unveiling the roles of these various gut microbiota components in IBD pathogenesis and being conductive to instructing on future IBD diagnosis and therapeutics. Here we comprehensively elucidate the alterations in the gut microbiota in IBD, discuss the effect of diets in the gut microbiota in relation to IBD, and illustrate the potential of manipulation of gut microbiota for IBD therapeutics. The therapeutic strategy of antibiotics, prebiotics, probiotics and fecal microbiota transplantation will benefit the effective application of precision microbiome manipulation in IBD.
Collapse
Affiliation(s)
- Tao Zuo
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Faculty of Medicine, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Cadieux B, Colavecchio A, Jeukens J, Freschi L, Emond-Rheault JG, Kukavica-Ibrulj I, Levesque RC, Bekal S, Chandler JC, Coleman SM, Bisha B, Goodridge LD. Prophage induction reduces Shiga toxin producing Escherichia coli (STEC) and Salmonella enterica on tomatoes and spinach: A model study. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Starikova EV, Prianichnikov NA, Zdobnov E, Govorun VM. Bioinformatics Analysis of Antimicrobial Resistance Genes and Prophages Colocalized in Human Gut Metagenomes. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Zhou W, Liu L, Feng Y, Zong Z. A P7 Phage-Like Plasmid Carrying mcr-1 in an ST15 Klebsiella pneumoniae Clinical Isolate. Front Microbiol 2018; 9:11. [PMID: 29403463 PMCID: PMC5786510 DOI: 10.3389/fmicb.2018.00011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023] Open
Abstract
A Klebsiella pneumoniae clinical strain, named SCKP83, was isolated and found to be resistant to colistin thanks to the presence plasmid-borne colistin resistant gene mcr-1. The strain was subjected to whole genome sequencing and conjugation experiments. The subsequent analysis indicated that the strain belongs to ST15 and the capsular type K41. In SCKP83, mcr-1 was carried by a 97.4-kb non-self-transmissible plasmid, a 90.9-kb region of which was predicted as an intact phage. This phage was 47.79% GC content, encoded 105 proteins and contained three tRNAs. mcr-1 was located downstream of two copies of the insertion sequence ISApl1 (one complete and one truncated) and was inserted in the ant1 gene, which encodes a putative antirepressor for antagonizing C1 repression, in this phage. The phage is highly similar to phage P7 (77% coverage and 98% identity) from Escherichia coli. Several similar mcr-1-carrying plasmids have been found in E. coli at various locations in China, suggesting that these phage-like plasmids have circulated in China. The findings in this study suggest that the P7 phage-like plasmids are not restricted to E. coli and may represent new vehicles to mediate the inter-species spread of mcr-1.
Collapse
Affiliation(s)
- Weilong Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Lu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Chu Y, Jiang MZ, Xu B, Wang WJ, Chen D, Li XW, Zhang YJ, Liang J. Specific changes of enteric mycobiota and virome in inflammatory bowel disease. J Dig Dis 2018; 19:2-7. [PMID: 29266753 DOI: 10.1111/1751-2980.12570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
One of the important features of inflammatory bowel disease (IBD) is dysbiosis of the gut microbiota. It has been well documented that changes in the commensal bacterial population are involved in IBD development. However, the function of the fungal and viral communities in IBD remains unclear. Moreover, the optimal treatment for IBD patients with opportunistic infections is still undecided. This review focused on how the enteric mycobiota and virome changes during the pathogenesis of IBD and discussed potential treatment strategies that open new insights into the managements of IBD.
Collapse
Affiliation(s)
- Yi Chu
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ming Zuo Jiang
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wei Jie Wang
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Di Chen
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Wei Li
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Jie Zhang
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
23
|
Phages in urban wastewater have the potential to disseminate antibiotic resistance. Int J Antimicrob Agents 2017; 50:678-683. [DOI: 10.1016/j.ijantimicag.2017.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 11/22/2022]
|
24
|
Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family - A Review. Front Microbiol 2017; 8:1108. [PMID: 28676794 PMCID: PMC5476706 DOI: 10.3389/fmicb.2017.01108] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Foodborne illnesses continue to have an economic impact on global health care systems. There is a growing concern regarding the increasing frequency of antibiotic resistance in foodborne bacterial pathogens and how such resistance may affect treatment outcomes. In an effort to better understand how to reduce the spread of resistance, many research studies have been conducted regarding the methods by which antibiotic resistance genes are mobilized and spread between bacteria. Transduction by bacteriophages (phages) is one of many horizontal gene transfer mechanisms, and recent findings have shown phage-mediated transduction to be a significant contributor to dissemination of antibiotic resistance genes. Here, we review the viability of transduction as a contributing factor to the dissemination of antibiotic resistance genes in foodborne pathogens of the Enterobacteriaceae family, including non-typhoidal Salmonella and Shiga toxin-producing Escherichia coli, as well as environmental factors that increase transduction of antibiotic resistance genes.
Collapse
Affiliation(s)
- Anna Colavecchio
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Brigitte Cadieux
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Amanda Lo
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| | - Lawrence D Goodridge
- Food Safety and Quality Program, Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-BellevueQC, Canada
| |
Collapse
|
25
|
Davies EV, Winstanley C, Fothergill JL, James CE. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett 2016; 363:fnw015. [PMID: 26825679 DOI: 10.1093/femsle/fnw015] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages are viruses that infect bacteria. There are an estimated 10(31) phage on the planet, making them the most abundant form of life. We are rapidly approaching the centenary of their identification, and yet still have only a limited understanding of their role in the ecology and evolution of bacterial populations. Temperate prophage carriage is often associated with increased bacterial virulence. The rise in use of technologies, such as genome sequencing and transcriptomics, has highlighted more subtle ways in which prophages contribute to pathogenicity. This review discusses the current knowledge of the multifaceted effects that phage can exert on their hosts and how this may contribute to bacterial adaptation during infection.
Collapse
Affiliation(s)
- Emily V Davies
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Chloe E James
- Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| |
Collapse
|
26
|
Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco CL, Zhao G, Fleshner P, Stappenbeck TS, McGovern DPB, Keshavarzian A, Mutlu EA, Sauk J, Gevers D, Xavier RJ, Wang D, Parkes M, Virgin HW. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015; 160:447-60. [PMID: 25619688 DOI: 10.1016/j.cell.2015.01.002] [Citation(s) in RCA: 897] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/13/2014] [Accepted: 12/24/2014] [Indexed: 12/13/2022]
Abstract
Decreases in the diversity of enteric bacterial populations are observed in patients with Crohn's disease (CD) and ulcerative colitis (UC). Less is known about the virome in these diseases. We show that the enteric virome is abnormal in CD and UC patients. In-depth analysis of preparations enriched for free virions in the intestine revealed that CD and UC were associated with a significant expansion of Caudovirales bacteriophages. The viromes of CD and UC patients were disease and cohort specific. Importantly, it did not appear that expansion and diversification of the enteric virome was secondary to changes in bacterial populations. These data support a model in which changes in the virome may contribute to intestinal inflammation and bacterial dysbiosis. We conclude that the virome is a candidate for contributing to, or being a biomarker for, human inflammatory bowel disease and speculate that the enteric virome may play a role in other diseases.
Collapse
Affiliation(s)
- Jason M Norman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan T Baldridge
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine Y Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian C Keller
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amal Kambal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cynthia L Monaco
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Phillip Fleshner
- Division of Colorectal Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dermot P B McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ali Keshavarzian
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ece A Mutlu
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jenny Sauk
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dirk Gevers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Miles Parkes
- Division of Gastroenterology Addenbrooke's Hospital and Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Switt AIM, Sulakvelidze A, Wiedmann M, Kropinski AM, Wishart DS, Poppe C, Liang Y. Salmonella phages and prophages: genomics, taxonomy, and applied aspects. Methods Mol Biol 2015; 1225:237-87. [PMID: 25253259 DOI: 10.1007/978-1-4939-1625-2_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since this book was originally published in 2007 there has been a significant increase in the number of Salmonella bacteriophages, particularly lytic virus, and Salmonella strains which have been fully sequenced. In addition, new insights into phage taxonomy have resulted in new phage genera, some of which have been recognized by the International Committee of Taxonomy of Viruses (ICTV). The properties of each of these genera are discussed, along with the role of phage as agents of genetic exchange, as therapeutic agents, and their involvement in phage typing.
Collapse
Affiliation(s)
- Andrea I Moreno Switt
- Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Escuela de Medicina Veterinaria, Republica 440, 8370251, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
28
|
Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread. Appl Environ Microbiol 2014; 80:4350-62. [PMID: 24814786 DOI: 10.1128/aem.00446-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits ("worst-case scenario") of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 10(8) E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ~2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 10(3) times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli.
Collapse
|
29
|
Borghi AA, Palma MSA. Tetracycline: production, waste treatment and environmental impact assessment. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502011000100003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The frequent occurrence of pharmaceuticals in the aquatic environment requires an assessment of their environmental impact and their negative effects in humans. Among the drugs with high harmful potential to the environment are the antibiotics that reach the environment not only, as may be expected, through the effluents from chemical and pharmaceutical industries, but mainly through the sewage and livestock; because around 25 to 75% of the ingested drugs are excreted in unchanged form after the passage through the Gastro-Intestinal Tract. Tetracycline has high world consumption, representing a human consumption of about 23 kg/day in Brazil in 2007. At the moment, researches are being made to develop new tetracycline that incorporate heavy metals (Hg, Cd, Re, Pt, Pd) to their structures in order to increase their bactericidal effect. The conventional wastewater treatment plants are not able to degrade complex organic molecules to reduce their toxicity and improve their biodegradability. For this reason new technologies, i.e., the advanced oxidation processes, are being developed to handle this demand. The objectives of this study are to review the literature on the processes of obtaining tetracycline, presenting its waste treatment methods and evaluation of their environmental impact.
Collapse
|
30
|
Abstract
Bacteriophages, or simply phages, are viruses infecting bacteria. With an estimated 1031 particles in the biosphere, phages outnumber bacteria by a factor of at least 10 and not surprisingly, they influence the evolution of most bacterial species, sometimes in unexpected ways. “Temperate” phages have the ability to integrate into the chromosome of their host upon infection, where they can reside as “quiescent” prophages until conditions favor their reactivation. Lysogenic conversion resulting from the integration of prophages encoding powerful toxins is probably the most determinant contribution of prophages to the evolution of pathogenic bacteria. We currently grasp only a small fraction of the total phage diversity. Phage biologists keep unraveling novel mechanisms developed by phages to parasitize their host. The purpose of this review is to give an overview of some of the various ways by which prophages change the lifestyle and boost virulence of some of the most dangerous bacterial pathogens.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC Canada.
| | | |
Collapse
|
31
|
Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health? Drug Resist Updat 2013; 16:22-45. [PMID: 23395305 DOI: 10.1016/j.drup.2012.12.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/22/2012] [Indexed: 12/18/2022]
Abstract
Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.
Collapse
|
32
|
Casas V, Maloy S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol 2012; 6:1461-73. [PMID: 22122442 DOI: 10.2217/fmb.11.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent advances in metagenomics research have generated a bounty of information that provides insight into the dynamic genetic exchange occurring between bacteriophage (phage) and their bacterial hosts. Metagenomic studies of the microbiomes from a variety of environments have shown that many of the genes sequenced are of phage origin. Among these genes are phage-encoded exotoxin genes. When phage that carry these genes infect an appropriate bacterial host, the bacterium undergoes lysogenic conversion, converting the bacterium from an avirulent strain to a pathogen that can cause human disease. Transfer of the exotoxin genes between bacteria has been shown to occur in marine environments, animal and human intestines and sewage treatment plants. Surprisingly, phage that encode exotoxin genes are commonly found in environments that lack the cognate bacteria commonly associated with the specific toxin-mediated disease and have been found to be associated with alternative environmental bacterial hosts. These findings suggest that the exotoxin genes may play a beneficial role for the bacterial host in nature, and that this environmental reservoir of exotoxin genes may play a role in the evolution of new bacterial pathogens.
Collapse
Affiliation(s)
- Veronica Casas
- Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | |
Collapse
|
33
|
Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 2011; 35:707-35. [DOI: 10.1111/j.1574-6976.2010.00261.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
34
|
Mathers JJ, Flick SC, Cox LA. Longer-duration uses of tetracyclines and penicillins in U.S. food-producing animals: Indications and microbiologic effects. ENVIRONMENT INTERNATIONAL 2011; 37:991-1004. [PMID: 21435723 DOI: 10.1016/j.envint.2011.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 05/12/2023]
Abstract
We review and analyze regulatory categories for longer duration of use (defined as ≥ 7 day) tetracyclines (TCs) and penicillins (PNs) approved for U.S. livestock and poultry, together with scientific studies, surveillance programs and risk assessments pertaining to antimicrobial resistance. Indications listed on a government database were grouped into three broad categories according to the terminology used to describe their use: disease control (C), treatment (T) and growth improvement (G). Consistent with mostly therapeutic uses, the majority (86%) of listed indications had C and/or T terms. Several studies showed interruption of early disease stages in animals and modulation of intestinal microflora. Longer-duration exposures are consistent with bacteriostatic modes of action, where adequate exposure time as well as concentration is needed for sufficient antimicrobial activity. Other effects identified included reduced animal pathogen prevalence, toxin formation, inflammation, environmental impacts, improved animal health, reproductive measures, nutrient utilization, and others. Several animal studies have shown a limited, dose-proportionate, selective increase in resistance prevalence among commensal animal bacteria following longer-duration exposures. Pathogen surveillance programs showed overall stable or declining resistance trends among sentinel bacteria. Quantitative, microbiologically detailed resistance risk assessments indicate small probabilities of human treatment failure due to resistance under current conditions. Evaluations of longer-duration uses of TCs, PNs, and other antimicrobial classes used in food-producing animals should consider mechanisms of activity, known individual- and population-level health and waste reduction effects in addition to resistance risks.
Collapse
|
35
|
Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed (2009 update). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1431] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
36
|
Lu H, Wang X, Lang X, Wang Y, Dang Y, Zhang F, Tang J, Li X, Feng X. Preparation and application of microarrays for the detection of antibiotic resistance genes in samples isolated from Changchun, China. Mol Biol Rep 2009; 37:1857-65. [DOI: 10.1007/s11033-009-9621-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 07/03/2009] [Indexed: 11/27/2022]
|
37
|
Abstract
New concepts have emerged in the past few years that help us to better understand the emergence and spread of antimicrobial resistance (AMR). These include, among others, the discovery of the mutator state and the concept of mutant selection window for resistances emerging primarily through mutations in existing genes. Our understanding of horizontal gene transfer has also evolved significantly in the past few years, and important new mechanisms of AMR transfer have been discovered, including, among others, integrative conjugative elements and ISCR (insertion sequences with common regions) elements. Simultaneously, large-scale studies have helped us to start comprehending the immense and yet untapped reservoir of both AMR genes and mobile genetic elements present in the environment. Finally, new PCR- and DNA sequencing-based techniques are being developed that will allow us to better understand the epidemiology of classical vectors of AMR genes, such as plasmids, and to monitor them in a more global and systematic way.
Collapse
|