1
|
Garcia-Morante B, De Abreu C, Underwood G, Lara Puente JH, Pieters M. Characterization of a Mycoplasma hyopneumoniae aerosol infection model in pigs. Vet Microbiol 2024; 299:110296. [PMID: 39581076 DOI: 10.1016/j.vetmic.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
The purpose of the present study was to develop and characterize an experimental aerosol model for Mycoplasma hyopneumoniae (M. hyopneumoniae) infection and respiratory disease in pigs. The experiment was carried out to determine the pathogenicity, colonization, mucosal immune response, and clinical course of disease of dose-controlled aerosols of M. hyopneumoniae. Four groups of three M. hyopneumoniae-free gilts each were individually exposed to aerosols of diluted lung homogenate containing M. hyopneumoniae strain 232 in a chamber. Each group was exposed to different doses of viable organisms (105 to 106 color changing units/mL during 15-20 or 30-35 min in two consecutive days). Nasal, laryngeal, and deep-tracheal secretions were collected from each gilt at 0, 7, 14, 21, and 28 days post-exposure (dpe). Blood samples were collected at 0 and 28 dpe. At necropsy, lung lesions were assessed, and bronchial secretions and bronchoalveolar lavage fluid (BALF) were collected from each lung set. Blood was used to assess seroconversion by means of an indirect ELISA, while BALF, deep-tracheal and nasal secretions were tested by modifying the ELISA to evaluate mucosal IgG and IgA production. Nasal, laryngeal, deep-tracheal, and bronchial secretions were tested by real-time PCR to evaluate bacterial load. Gilts became infected irrespective of the infectious dose, as determined by M. hyopneumoniae detection in deep-tracheal secretions from all gilts at 7 dpe. A specific local humoral immune response starting at 14 dpe was detected in all gilts. While all experimental groups presented gilts with some extent of mycoplasmal pneumonia, only the exposure of gilts to high-dose aerosols consistently reproduced typical clinical signs and severe lung lesions. These results showed that the reproduction of mycoplasmal pneumonia by means of infectious aerosols can be successfully achieved at experimental level, making this model a valuable alternative to evaluate preventive and treatment measures against M. hyopneumoniae.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Campus, Bellaterra, Catalonia 08193, Spain; WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra 08193, Spain; Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Cipriano De Abreu
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
2
|
Stadler J, Lillie-Jaschniski K, Zwickl S, Zoels S, Theuns S, Ritzmann M, Vereecke N. Cross-Correlation between Biosecurity Measures and the Detection of Viral and Bacterial Agents on German Farms with Respiratory Disease. Transbound Emerg Dis 2024; 2024:6205899. [PMID: 40303019 PMCID: PMC12017083 DOI: 10.1155/2024/6205899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/25/2024] [Indexed: 05/02/2025]
Abstract
Effective porcine health management relies majorly on diagnostic tests, vaccination, treatment strategies, and a proper biosecurity management plan. However, understanding the link between circulating microbes and biosecurity measures on a pig farm is not evident. Substantial progress has been made in recent years with the availability of new diagnostic tools (e.g., sequencing-based diagnostics) and extensive biosecurity management questionnaires. However, the interpretation and correlation of these results are hampered by the abundance of gained (meta)data. Therefore, we aimed to cross-correlate viral and bacterial pathogens with respiratory tropism detected by third-generation nanopore metagenomic sequencing with biosecurity measures assessed by Biocheck.UGent™. The study was conducted on 25 sow farms with attached nurseries in Germany with known respiratory distress. The biosecurity level of the study farms complied with the European averages. Interestingly, the farms with the highest biosecurity score showed the lowest overall prevalence of porcine reproductive and respiratory syndrome virus (PRRSV) and Actinobacillus sp.; the circulation of well-studied pathogenic viruses, such as PRRSV, was correlated with overall lower biosecurity scores, a higher number of stillborn piglets, and cocirculation of porcine parvovirus type 7. Moreover, potential risk factors for lesser-known agents (e.g., porcine hemagglutinating and encephalomyelitis virus, porcine respiratory coronavirus, and porcine polyomavirus) could also be addressed. For the bacterial pathogen Glaesserella sp., a correlation with increased clinical signs was observed, whereas Lactobacillus sp. and Moraxella sp. are putative biomarkers for pig farms with better biosecurity scores. In conclusion, in-depth cross-correlation of (meta)data from new diagnostic platforms with biosecurity measures on pig farms may contribute to a better understanding of new actions in adapting biosecurity measures. This will not only contribute to improved animal welfare and economic productivity but also helping to address (new) zoonotic disease threats and potential treatments.
Collapse
Affiliation(s)
- Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary MedicineLudwig-Maximilians-University München, München, Germany
| | | | - Sophia Zwickl
- Clinic for Swine at the Centre for Clinical Veterinary MedicineLudwig-Maximilians-University München, München, Germany
| | - Susanne Zoels
- Clinic for Swine at the Centre for Clinical Veterinary MedicineLudwig-Maximilians-University München, München, Germany
| | | | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary MedicineLudwig-Maximilians-University München, München, Germany
| | - Nick Vereecke
- PathoSense BV, Lier, Belgium
- Laboratory of VirologyFaculty of Veterinary MedicineGhent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Delsart M, Répérant JM, Benoit C, Boudin E, Da-Costa JF, Dorenlor V, Eono F, Eveno E, Kerphérique S, Poulain G, Souquière M, Thomas-Hénaff M, Pol F, Dufour B, Rose N, Fablet C. Bayesian estimation of the sensitivity and specificity of coprological and serological diagnostic tests for the detection of Ascaris suum infection on pig farms. Int J Parasitol 2024; 54:523-533. [PMID: 38677398 DOI: 10.1016/j.ijpara.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Coprological and serological diagnostic tests were compared to define the status of a pig farm with regard to Ascaris suum. On each of the 100 farms in France visited for the study, 10 blood samples were taken from pigs at the end of fattening (at least 22 weeks old) and 20 to 30 faecal samples were taken, depending on the category of animals present on the farm (10 sows, 10 piglets aged 10 to 12 weeks and 10 pigs at the end of fattening, aged at least 22 weeks). A SERASCA® ELISA test (Laboratory of Parasitology, Ghent University) was performed on each blood sample (cut-off 0.5) and a coprological analysis on each faecal sample. A Bayesian approach was used to estimate the sensitivity and specificity of the coprological and serological tests. A farm was considered positive if at least one A. suum egg was observed in the faecal samples. With regard to the serological test, various hypotheses were tested in order to define the number of seropositive animals required to consider a farm positive for A. suum. The coprological test has very good specificity in the search for A. suum, whether 20 or 30 samples are taken per farm. However, even with an increase in the number of samples, the sensitivity of this diagnostic approach is very low (less than 30%). On the other hand, the serological diagnostic method, which consists of taking blood samples from 10 animals at the end of fattening, has good sensitivity and seems better suited to defining the status of a farm with regard to A. suum, provided that a farm is considered seropositive only if two out of 10 samples are positive.
Collapse
Affiliation(s)
- Maxime Delsart
- ANSES, École Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale USC EPIMAI, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France.
| | - Jean-Michel Répérant
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Chantal Benoit
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Edouard Boudin
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Jean-François Da-Costa
- ANSES, École Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale USC EPIMAI, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - Virginie Dorenlor
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Florent Eono
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Eric Eveno
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Stéphane Kerphérique
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Gilles Poulain
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Marie Souquière
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | | | | | - Barbara Dufour
- ANSES, École Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale USC EPIMAI, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - Nicolas Rose
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Christelle Fablet
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| |
Collapse
|
4
|
Canturri A, Pieters M. Characterizing the detection of inactivated Mycoplasma hyopneumoniae DNA in the respiratory tract of pigs. Vet Res 2024; 55:19. [PMID: 38360700 PMCID: PMC10870464 DOI: 10.1186/s13567-024-01273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 02/17/2024] Open
Abstract
A positive Mycoplasma hyopneumoniae PCR result in a clinical specimen may eventually represent the mere detection of non-viable bacteria, complicating the diagnostic interpretation. Thus, the objective of this study was to evaluate the PCR detection of non-viable M. hyopneumoniae and its residual cell-free DNA in live pigs. Pigs were inoculated with either active or inactivated M. hyopneumoniae and were sampled for up to 14 days. Mycoplasma hyopneumoniae was not detected by PCR at any timepoint in pigs inoculated with the inactivated bacterium, suggesting that in healthy pigs, the non-viable M. hyopneumoniae DNA was rapidly sensed and cleared.
Collapse
Affiliation(s)
- Albert Canturri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
- Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
5
|
Sponheim A, Alvarez J, Fano E, Rovira A, McDowell E, Toohill E, Dalquist L, Pieters M. A diagnostic approach to confirm Mycoplasma hyopneumoniae "Day zero" for pathogen eradication. Prev Vet Med 2023; 221:106057. [PMID: 37931354 DOI: 10.1016/j.prevetmed.2023.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Breeding herds in the US are trending toward eradication of Mycoplasma hyopneumoniae (M. hyopneumoniae) due to the positive impact on welfare and downstream production. In an eradication program, "Day 0″ is the time point when the last replacement gilts to enter the herd were exposed to M. hyopneumoniae and marks the beginning of a herd closure. However, no specific diagnostic protocols are available for confirmation of successful exposure to define Day 0. Therefore, the objective of this study was to develop diagnostic guidelines, including sample collection approaches, for two common gilt exposure methods to confirm an entire population has been infected with M. hyopneumoniae following purposeful exposure. Forty gilts, age 21-56 days, were ear-tagged for longitudinal sample collection at five commercial gilt developer units (GDUs) and were exposed to M. hyopneumoniae by natural contact or aerosolization. Study gilts originated from sources known to be negative to major swine pathogens, including M. hyopneumoniae, and were sampled prior to exposure to confirm negative status, then every two weeks. Blood samples were collected for antibody detection, while laryngeal and deep tracheal secretions and pen based oral fluids were collected for PCR, and sampling continued until at least 85% of samples were positive by PCR. Detection of M. hyopneumoniae varied greatly based on sample type. Oral fluids showed the lowest detection in groups of gilts detected positive by other sample types. Detection by PCR in deep tracheal secretions was higher than in laryngeal secretions. Seroconversion to and PCR detection of M. hyopneumoniae on oral fluids were delayed compared to PCR detection at the individual level. By two weeks post-exposure, at least 85% of study gilts in three GDUs exposed by aerosolization were PCR positive in deep tracheal secretions. Natural contact exposure resulted in 22.5% of study gilts becoming PCR positive by two weeks post-initial exposure, 61.5% at four weeks, and 100% at six weeks on deep tracheal secretions. Deep tracheal secretions required the lowest number of gilts to sample for the earliest detection compared to all other samples evaluated. As observed in one of the GDUs using aerosolization, demonstration of failure to expose gilts to M. hyopneumoniae allowed for early intervention in the exposure protocol and delay of Day 0, for accurate timing of the eradication protocol. Sampling guidelines proposed in this study can be used for verification of M. hyopneumoniae infection of gilts following exposure to determine Day 0 of herd closure.
Collapse
Affiliation(s)
- Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Rovira
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Emily McDowell
- Pipestone Veterinary Services, 1300 S Highway 75, Pipestone, MN 56164, USA
| | - Elise Toohill
- The Maschhoffs, 6996 State Route 127, Carlyle, IL 62231, USA
| | - Laura Dalquist
- Swine Vet Center, 1608 S Minnesota Ave., St. Peter, MN 56082, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
6
|
McDowell E, Pieters M, Spronk T, Nerem J, Fano E, Dee S, Sponheim A. Duration of Mycoplasma hyopneumoniae detection in pigs following purposeful aerosol exposure. Vet Microbiol 2023; 282:109758. [PMID: 37167891 DOI: 10.1016/j.vetmic.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/17/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
Swine disease elimination programs for Mycoplasma hyopneumoniae are commonly applied in the North American swine industry and may include the aerosolization of medium containing lung tissue to achieve population exposure prior to start. Field data has indicated M. hyopneumoniae PCR detection in pigs beyond 240 days post-herd closure (dphc; planned end of an elimination program) and is thought to contribute to disease elimination programs' failure. Here, the duration of M. hyopneumoniae detection in sows and replacement gilts following aerosolized lung homogenate exposure, as part of a dual disease elimination program, was determined. A subset of sows and gilts from a commercial sow herd and off-site gilt development unit were longitudinally sampled to collect deep tracheal catheter secretions at various times post-exposure. Samples were tested for M. hyopneumoniae using a species-specific real-time PCR. A proportion of 58, 51, 52, 19, and 2% females were detected positive at 30, 60, 120, 180 and 240 dphc, respectively. Noteworthy, a greater proportion of gilts exposed at the off-site GDU were detected PCR positive for M. hyopneumoniae at each sampling event, compared to sows. In this study, assaying for genetic material in live female pigs showed extended detection of M. hyopneumoniae until at least 240 dphc. This data suggests persistence of M. hyopneumoniae longer than previously reported and highlights the importance of performing diagnostic testing to confirm negativity to the bacterium, prior to opening sow herds, especially late in the herd closure timeline.
Collapse
Affiliation(s)
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | - Joel Nerem
- Pipestone Veterinary Services, Pipestone, MN, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Scott Dee
- Pipestone Applied Research, Pipestone, MN, USA
| | - Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA.
| |
Collapse
|
7
|
Ferreira GC, Sanches TV, Mechler-Dreibi ML, Almeida HM, Storino GY, Sonalio K, Petri FA, Martins TS, da Silva LCC, Montassier HJ, Sant'Anna OA, Fantini MC, de Oliveira LG. Efficacy evaluation of a novel oral silica-based vaccine in inducing mucosal immunity against Mycoplasma hyopneumoniae. Res Vet Sci 2023; 158:141-150. [PMID: 37004428 DOI: 10.1016/j.rvsc.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Mycoplasma hyopneumoniae, the main etiological agent of Porcine Enzootic Pneumonia, is widely spread in swine production worldwide. Its prevention is of great interest for the productive system, since its colonization in the lung tissue leads to intense production losses. This study aimed to compare the M. hyopneumoniae shedding and acute-phase response in 30 pigs submitted to different vaccination protocols: an experimental oral vaccine using a nanostructured mesoporous silica (SBA-15) as adjuvant (n = 10); an intramuscular commercially available vaccine at 24 days of age (n = 10); and a control group (n = 10) following experimental challenge with M. hyopneumoniae. Laryngeal and nasal swabs were collected weekly and oral fluids were collected at 7, 10, 14, 17, 23, 28, 35, 42, and 49 days post-infection to monitor pathogen excretion by qPCR. Nasal swabs were also used to detect anti-M. hyopneumoniae IgA by ELISA. Blood samples were collected for monitoring acute phase proteins. The antibody response was observed in both immunized groups seven days after vaccination, while the control group became positive for this immunoglobulin at 4 weeks after challenge. Lung lesion score was similar in the immunized groups, and lower than that observed in the control. SBA-15-adjuvanted oral vaccine provided immunological response, decreased shedding of M. hyopneumoniae and led to mucosal protection confirmed by the reduced pulmonary lesions. This study provides useful data for future development of vaccines against M. hyopneumoniae.
Collapse
|
8
|
Vereecke N, Zwickl S, Gumbert S, Graaf A, Harder T, Ritzmann M, Lillie-Jaschniski K, Theuns S, Stadler J. Viral and Bacterial Profiles in Endemic Influenza A Virus Infected Swine Herds Using Nanopore Metagenomic Sequencing on Tracheobronchial Swabs. Microbiol Spectr 2023; 11:e0009823. [PMID: 36853049 PMCID: PMC10100764 DOI: 10.1128/spectrum.00098-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Swine influenza A virus (swIAV) plays an important role in porcine respiratory infections. In addition to its ability to cause severe disease by itself, it is important in the multietiological porcine respiratory disease complex. Still, to date, no comprehensive diagnostics with which to study polymicrobial infections in detail have been offered. Hence, veterinary practitioners rely on monospecific and costly diagnostics, such as Reverse Transcription quantitative PCR (RT-qPCR), antigen detection, and serology. This prevents the proper understanding of the entire disease context, thereby hampering effective preventive and therapeutic actions. A new, nanopore-based, metagenomic diagnostic platform was applied to study viral and bacterial profiles across 4 age groups on 25 endemic swIAV-infected German farms with respiratory distress in the nursery. Farms were screened for swIAV using RT-qPCR on nasal and tracheobronchial swabs (TBS). TBS samples were pooled per age, prior to metagenomic characterization. The resulting data showed a correlation between the swIAV loads and the normalized reads, supporting a (semi-)quantitative interpretation of the metagenomic data. Interestingly, an in-depth characterization using beta diversity and PERMANOVA analyses allowed for the observation of an age-dependent interplay of known microbial agents. Also, lesser-known microbes, such as porcine polyoma, parainfluenza, and hemagglutinating encephalomyelitis viruses, were observed. Analyses of swIAV incidence and clinical signs showed differing microbial communities, highlighting age-specific observations of various microbes in porcine respiratory disease. In conclusion, nanopore metagenomics were shown to enable a panoramic view on viral and bacterial profiles as well as putative pathogen dynamics in endemic swIAV-infected herds. The results also highlighted the need for better insights into lesser studied agents that are potentially associated with porcine respiratory disease. IMPORTANCE To date, no comprehensive diagnostics for the study of polymicrobial infections that are associated with porcine respiratory disease have been offered. This precludes the proper understanding of the entire disease landscape, thereby hampering effective preventive and therapeutic actions. Compared to the often-costly diagnostic procedures that are applied for the diagnostics of porcine respiratory disease nowadays, a third-generation nanopore sequencing diagnostics workflow presents a cost-efficient and informative tool. This approach offers a panoramic view of microbial agents and contributes to the in-depth observation and characterization of viral and bacterial profiles within the respiratory disease context. While these data allow for the study of age-associated, swIAV-associated, and clinical symptom-associated observations, it also suggests that more effort should be put toward the investigation of coinfections and lesser-known pathogens (e.g., PHEV and PPIV), along with their potential roles in porcine respiratory disease. Overall, this approach will allow veterinary practitioners to tailor treatment and/or management changes on farms in a quicker, more complete, and cost-efficient way.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Sophia Zwickl
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Sophie Gumbert
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | | | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| |
Collapse
|
9
|
Andrade MR, Daniel AG, Zarate JB, Sato JP, Santos LF, Guedes RM. Genetic diversity of Mycoplasma hyopneumoniae in finishing pigs in Minas Gerais. PESQUISA VETERINÁRIA BRASILEIRA 2023. [DOI: 10.1590/1678-5150-pvb-7155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
ABSTRACT: Mycoplasma hyopneumoniae is one of the most challenging respiratory pathogens involved with swine pneumonia worldwide, responsible for a chronic infection with high morbidity, which predisposes secondary bacterial infections in growing and finishing pigs. Advances in diagnostic techniques allowed identification of genetic characteristics associated with high antigenic and proteomic variability among bacterial strains. This study aimed to evaluate the genetic diversity of M. hyopneumoniae strains in lungs with pneumonic lesions obtained from 52 pig farms located in Minas Gerais, one of the largest swine production states in Brazil. Genotyping was performed using multilocus variable number of tandem repeat (VNTR) analysis (MLVA), targeting two loci encoding P97 and P146 adhesins VNTR. The results showed that this agent is widely disseminated in pig farms and there is a high polymorphism of M. hyopneumoniae variants circulating in the state of Minas Gerais. Different M. hyopneumoniae genotypes are randomly distributed in several regions of the state, with no specific geographic population structure pattern. M. hyopneumoniae association with viral agents was sporadic (3.17% with Influenza A and 1.9% with PCV2).
Collapse
|
10
|
Garcia-Morante B, Maes D, Sibila M, Betlach AM, Sponheim A, Canturri A, Pieters M. Improving Mycoplasma hyopneumoniae diagnostic capabilities by harnessing the infection dynamics. Vet J 2022; 288:105877. [PMID: 35901923 DOI: 10.1016/j.tvjl.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Mycoplasma hyopneumoniae remains one of the most problematic bacterial pathogens for pig production. Despite an abundance of observational and laboratory testing capabilities for this organism, diagnostic interpretation of test results can be challenging and ambiguous. This is partly explained by the chronic nature of M. hyopneumoniae infection and its tropism for lower respiratory tract epithelium, which affects diagnostic sensitivities associated with sampling location and stage of infection. A thorough knowledge of the available tools for routine M. hyopneumoniae diagnostic testing, together with a detailed understanding of infection dynamics, are essential for optimizing sampling strategies and providing confidence in the diagnostic process. This study reviewed known information on sampling and diagnostic tools for M. hyopneumoniae and summarized literature reports of the dynamics of key infection outcomes, including clinical signs, lung lesions, pathogen detection, and humoral immune responses. Such knowledge could facilitate better understanding of the performance of different diagnostic approaches at various stages of infection.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Salisburylaan, 133 B-9820 Merelbeke, Belgium
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Vet Center, 1608 S Minnesota Ave, St. Peter, MN 56082, USA
| | - Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Canturri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St Paul, 55108 MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
11
|
Chemotherapeutic Strategies with Valnemulin, Tilmicosin, and Tulathromycin to Control Mycoplasma hyopneumoniae Infection in Pigs. Antibiotics (Basel) 2022; 11:antibiotics11070893. [PMID: 35884148 PMCID: PMC9311983 DOI: 10.3390/antibiotics11070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma hyopneumoniae is the primary agent of Swine Enzootic Pneumonia (SEP). Vaccines reduce the clinical manifestation of the disease but do not prevent infection. The present study aimed to evaluate the use of antimicrobial drugs to minimize the impact of M. hyopneumoniae. For this, 32 pregnant female pigs and their litters were selected and then followed from birth to slaughter. The study involved three experimental groups that received metaphylactic treatment with different protocols involving tilmicosin, valnemulin, tulathromycin, and a control group to compare the effect of treatments against M. hyopneumoniae infection throughout the phases. Performance data were recorded, and the piglets were evaluated for the occurrence of cough. Nasal swab and blood collection was conducted periodically to detect M. hyopneumoniae shedding and anti-M. hyopneumoniae IgG, respectively. At slaughter, the lungs of animals from all groups were evaluated, and samples were collected for histopathological examination and qPCR for M. hyopneumoniae detection. All protocols promoted a reduction in consolidation lung lesions when compared to the control group. Individuals treated with valnemulin showed increased performance results, lower mortality, and low bacterial load in the lung. The results are promising and may indicate an alternative in the strategic control of M. hyopneumoniae infection in pigs.
Collapse
|
12
|
Biebaut E, Chantziaras I, Boyen F, Devriendt B, Haesebrouck F, Gomez-Duran CO, Maes D. Influence of parity and reproductive stage on the prevalence of Mycoplasma hyopneumoniae in breeding animals in belgian farrow-to-finish pig herds. Porcine Health Manag 2022; 8:26. [PMID: 35681230 PMCID: PMC9178894 DOI: 10.1186/s40813-022-00267-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Dam-to-piglet transmission plays an important role in the epidemiology of enzootic pneumonia on farms. Although Mycoplasma hyopneumoniae (M. hyopneumoniae) infections in breeding animals are often subclinical, their control could have a positive effect on M. hyopneumoniae infection levels in fattening pigs. This study investigated the presence of M. hyopneumoniae in the breeding population of ten Belgian farrow-to-finish farms suspected by the herd veterinarian to be M. hyopneumoniae infected. Gilt vaccination against M. hyopneumoniae prior to first insemination was practiced on nine of the ten farms. At four different time points in the reproductive cycle 20 animals were sampled on each farm, namely 30–40 days of gestation, 75–85 days of gestation, 3–5 days after farrowing, and 1–3 days after weaning. In total, tracheobronchial swabs and blood samples were collected from 344 gilts and 456 sows (n = 80/farm). Swabs were analysed for the presence of M. hyopneumoniae DNA using nested PCR and M. hyopneumoniae-specific antibodies were detected in serum with a commercial ELISA. Generalized linear mixed models with farm as random factor were used to test the effect of time point in the reproductive cycle and parity on M. hyopneumoniae PCR prevalence and seroprevalence. Results M. hyopneumoniae PCR prevalence ranged between 0% and 43.8% at the farm level and the seroprevalence between 32.5% and 93.8%. Gilts were significantly more M. hyopneumoniae PCR positive than sows at the 2-4th parity (P = 0.02) and > 4th parity (P = 0.02). At 30–40 days of gestation, significantly more breeding animals were PCR positive as compared to 75–85 days of gestation (P = 0.04), 3–5 days after farrowing (P = 0.02) and 1–3 days after weaning (P = 0.02). Gilts had significantly more often M. hyopneumoniae-specific antibodies than sows (P = 0.03). Conclusions M. hyopneumoniae PCR prevalence varied a lot between farms and due to gilt vaccination the number of animals with M. hyopneumoniae-specific antibodies was high on most farms. Gilts were more often M. hyopneumoniae PCR positive than sows and positive animals were mostly found at 30–40 days of gestation. This emphasizes the importance of a sufficiently long quarantine period and proper gilt acclimation practices before introducing gilts to the sow herd. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-022-00267-w.
Collapse
Affiliation(s)
- Evelien Biebaut
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Ilias Chantziaras
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Takeuti KL, Michaelsen TR, Sabedot C, Nagae RY, Forner RAN, Mazzarollo A, de Barcellos DESN, Pieters M. Mycoplasma hyopneumoniae detection by PCR in naturally infected finishing pigs. METHODS IN MICROBIOLOGY 2022; 197:106475. [PMID: 35487292 DOI: 10.1016/j.mimet.2022.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
The aim of this study was to compare the sensitivity of different in vivo and post-mortem samples collected from finishing pigs under field conditions on Mycoplasma hyopneumoniae detection by PCR. Results suggested that tracheobronchial secretions and bronchial swabs conferred the highest sensitivity in vivo and post-mortem, respectively.
Collapse
Affiliation(s)
- Karine Ludwig Takeuti
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Ricardo Yuiti Nagae
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Seara Alimentos, Itajaí, SC, Brazil
| | - Ricardo Augusto Neves Forner
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Mazzarollo
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Maria Pieters
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
14
|
Tameling A, Könighoff P, Beilage EG, Menrath A, Heimann M, Köhrmann A, Hennig-Pauka I. [Performance parameters and pathogen detection in pig groups differently vaccinated with respect to Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50:21-29. [PMID: 35235980 DOI: 10.1055/a-1696-1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Respiratory diseases, mostly multifactorial, cause problems in pig farms worldwide. Next to infectious agents, such as Porcine Circovirus Type 2 (PCV2) and Mycoplasma hyopneumoniae (M. hyopneumoniae) management, housing, and environmental factors are decisive for the development of disease. In a conventional, closed swine farm in Lower Saxony, Germany, which did not vaccinate against PCV2, the effect of an implementation of PCV2 vaccination (Suvaxyn® Circo + MH RTU) onto animal health was evaluated. In addition, the effect of this combination vaccine was assessed in comparison to simultaneous administration of mono-vaccines against PCV2 and M. hyopneumoniae. MATERIAL AND METHOD: In a two-phase trial, 524 (phase 1) or 521 (phase 2) clinically healthy piglets were included at the first week of life. In the first phase, performance parameters were compared in animals vaccinated against M. hyopneumoniae only (group A) or vaccinated against PCV2 and M. hyopneumoniae (group B). In phase 2, vaccination against PCV2 and M. hyopneumoniae with different vaccines were compared (groups C and D). Performance parameters included lifetime animal losses, daily weight gains during suckling, weaning and fattening, and randomly sampled pathogen loads in serum (PCV2) or tracheobronchial secretions (M. hyopneumoniae). In addition, an assessment of the lungs was performed after slaughter. RESULTS In the first phase, it was shown that the group vaccinated against PCV2 (Group B: Suvaxyn® Circo + MH RTU) had higher daily growth rates during the fattening period (+ 37 g, p = 0.012) as well as during the complete period (+ 16 g, p = 0.013) in comparison to the group without PCV2 vaccination (Group A). In group A a significantly higher proportion of animals showed a PCV2 viremia. In the second phase, it was shown that group D was not inferior to the established vaccination regiment of group C. In fattening pigs in week 22 of life, detection rates for M. hyopneumoniae in tracheobronchial secretions were in the range of 27-80 % irrespective of the vaccination group. CONCLUSION Vaccination against PCV2 leads to improved animal health and higher daily weight gains. CLINICAL RELEVANCE The combined vaccine studied here provides farmers and veterinarians with an additional option for the improvement of animal health in pig production.
Collapse
Affiliation(s)
- Andrea Tameling
- Außenstelle für Epidemiologie, Stiftung Tierärztliche Hochschule Hannover
| | - Philipp Könighoff
- Außenstelle für Epidemiologie, Stiftung Tierärztliche Hochschule Hannover
| | | | - Andrea Menrath
- Außenstelle für Epidemiologie, Stiftung Tierärztliche Hochschule Hannover
| | - Marcus Heimann
- Außenstelle für Epidemiologie, Stiftung Tierärztliche Hochschule Hannover
| | | | | |
Collapse
|
15
|
Environmental detection of Mycoplasma hyopneumoniae in breed-to-wean farms. Res Vet Sci 2022; 145:188-192. [DOI: 10.1016/j.rvsc.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022]
|
16
|
Deffner P, Maurer R, Cvjetković V, Sipos W, Krejci R, Ritzmann M, Eddicks M. Cross-sectional study on the in-herd prevalence of Mycoplasma hyopneumoniae at different stages of pig production. Vet Rec 2022; 191:e1317. [PMID: 35032397 DOI: 10.1002/vetr.1317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/04/2021] [Accepted: 11/28/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND A cross-sectional study was carried out to assess the prevalence of Mycoplasma hyopneumoniae infections before vaccination in 3-week-old piglets and to gain information about infection dynamics. METHODS In 13 German and three Austrian farms with a known history of enzootic pneumonia, 790 piglets and 158 sows were sampled (blood samples, tracheobronchial swabs [TBS] [piglets], laryngeal swabs [LS] [sows]), and 525 pen-based oral fluids (OFs) were collected in growing and fattening pigs. Laboratory diagnostics included enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR) analyses. RESULTS Antibodies to M. hyopneumoniae were present in 87.5 per cent of all herds. Seroprevalence ranged from 0.0 to 100.0 per cent and 0.0 to 88.0 per cent in sows and piglets, respectively. M. hyopneumoniae-deoxyribonucleic acid (DNA) was present in 3.8 and 0.4 per cent of LS and TBS, respectively. Gilts had a 10.9 times higher chance being M. hyopneumoniae PCR-positive than older sows. In 75.0 per cent of all farms, M. hyopneumoniae-DNA was present in OFs. Detection rate was significantly higher in OFs of 20-week-old than in younger pigs (p < 0.001). CONCLUSION Results indicate that M. hyopneumoniae infections of the lower respiratory tract in piglets are rare but highlight the role of gilts in maintaining infection in the herd. Collecting OFs seems promising for surveillance, if coughing occurs simultaneously.
Collapse
Affiliation(s)
- Pauline Deffner
- Clinic for Swine, Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Roland Maurer
- Clinic for Swine, Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | | | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Mathias Ritzmann
- Clinic for Swine, Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - Matthias Eddicks
- Clinic for Swine, Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| |
Collapse
|
17
|
Betlach AM, Baumert D, Utrera V, Galina Pantoja L, Pieters M. Effect of antibiotic treatment on Mycoplasma hyopneumoniae detection and infectious potential. Vet Microbiol 2021; 262:109222. [PMID: 34544009 DOI: 10.1016/j.vetmic.2021.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) causes significant economic losses in the swine industry. Antibiotics with activity against Mycoplasma spp. are employed for disease mitigation and pathogen elimination. However, veterinarians are often challenged with the detection of M. hyopneumoniae by PCR after antibiotic treatment, thus raising the question whether the bacterium is still infectious. The objective of this study was to evaluate the effect of tulathromycin treatment on M. hyopneumoniae detection and infectious potential during the acute and chronic phases of infection. For each infection phase, one age-matched naïve gilt was placed in contact with one M. hyopneumoniae infected gilt that was either treated with tulathromycin, treated and vaccinated, or non-treated, for 14 days. Four replicates per treatment group were performed for each infection phase. A numerical reduction in relative bacterial load was observed in acutely treated gilts compared to non-treated gilts. The rate at which naïve gilts became infected with M. hyopneumoniae was numerically reduced when co-housed with treated, acutely infected gilts compared to those housed with non-treated, infected gilts. During the chronic infection phase, M. hyopneumoniae was detected by PCR in more than 50 % of treated infected gilts and persisted for up to three months post-treatment. Transmission was not detected in all treatment groups however, the possibility that the pathogen was infectious could not be completely ruled out. Further research focused on assessing M. hyopneumoniae detection and viability post-treatment is necessary to guide control and elimination efforts.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Vet Center, St. Peter, MN, USA
| | | | | | | | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
18
|
Vangroenweghe FACJ, Thas O. Seasonal Variation in Prevalence of Mycoplasma hyopneumoniae and Other Respiratory Pathogens in Peri-Weaned, Post-Weaned, and Fattening Pigs with Clinical Signs of Respiratory Diseases in Belgian and Dutch Pig Herds, Using a Tracheobronchial Swab Sampling Technique, and Their Associations with Local Weather Conditions. Pathogens 2021; 10:pathogens10091202. [PMID: 34578234 PMCID: PMC8471121 DOI: 10.3390/pathogens10091202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Besides Mycoplasma hyopneumoniae (M. hyopneumoniae), many other viruses and bacteria can concurrently be present in pigs. These pathogens can provoke clinical signs, known as porcine respiratory disease complex (PRDC). A sampling technique on live animals, namely tracheobronchial swab (TBS) sampling, was applied to detect different PRDC pathogens in pigs using PCR. The objective was to determine prevalence of different PRDC pathogens and their variations during different seasons, including correlations with local weather conditions. A total of 974 pig farms and 22,266 pigs were sampled using TBS over a 5-year period. TBS samples were analyzed using mPCR and results were categorized and analyzed according to the season of sampling and local weather data. In samples of peri-weaned and post-weaned piglets, influenza A virus in swine (IAV-S), porcine reproductive and respiratory syndrome virus-European strain (PRRSV1), and M. hyopneumoniae were found as predominant pathogens. In fattening pigs, M. hyopneumoniae, porcine circovirus type 2 (PCV-2) and PRRSV1 were predominant pathogens. Pathogen prevalence in post-weaned and finishing pigs was highest during winter, except for IAV-S and A. pleuropneumoniae, which were more prevalent during autumn. Associations between prevalence of several PRDC pathogens, i.e., M. hyopneumoniae, PCV-2 and PRRSV, and specific weather conditions could be demonstrated. In conclusion, the present study showed that many respiratory pathogens are present during the peri-weaning, post-weaning, and fattening periods, which may complicate the clinical picture of respiratory diseases. Interactions between PRDC pathogens and local weather conditions over the 5-year study period were demonstrated.
Collapse
Affiliation(s)
- Frédéric A. C. J. Vangroenweghe
- Business Unit Swine & Ruminants, Elanco Animal Health, Plantijn en Moretuslei 1A, 2018 Antwerpen, Belgium
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Correspondence: ; Tel.: +32-477-558-562
| | - Olivier Thas
- I-BioStat, Data Science Institute, Campus Diepenbeek, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium;
- Department of Applied Mathematics, Computer Science and Statistics, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
- National Institute of Applied Statistics Research Australia (NIASRA), University of Wollongong, Northfield Ave, Wollongong, NSW 2522, Australia
| |
Collapse
|
19
|
Almeida HMS, Mechler-Dreibi ML, Sonálio K, Ferreira MM, Martinelli PEB, Gatto IRH, Maes D, Montassier HJ, Oliveira LG. Dynamics and chronology of Mycoplasma hyopneumoniae strain 232 infection in experimentally inoculated swine. Porcine Health Manag 2021; 7:42. [PMID: 34193314 PMCID: PMC8243732 DOI: 10.1186/s40813-021-00221-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022] Open
Abstract
Direct detection of Mycoplasma hyopneumoniae through molecular tools is a growing trend for early diagnosis, highlighting the importance of knowing M. hyopneumoniae dynamics in the respiratory tract upon infection. This study focused on monitoring the infection level and its effects in different anatomic sites of the respiratory tract of experimentally infected swine in four time-points post-infection. To this end, 24 pigs were allocated to either non-inoculated group (n = 8) or inoculated group (n = 16). On day 0 post-infection (dpi), animals of the inoculated group were intratracheally inoculated with M. hyopneumoniae. Nasal swabs were collected weekly for qPCR detection of bacterial shedding. At 14, 28, 42, and 56 dpi, four animals from the inoculated group and two from the control group were necropsied. Bronchoalveolar lavage fluid (BALF) and samples from three different anatomical tracheal sections (cranial - CT, medium - MT, lower - LT) were collected for qPCR and histopathology. Bacterial loads (qPCR) in tracheal samples were: 4.47 × 102 copies∕μL (CT), 1.5 × 104- copies∕ μL (MT) and 1.4 × 104 copies∕μL (LT samples). M. hyopneumoniae quantification in BALF showed the highest load at 28 dpi (2.0 × 106 copies∕ μL). Microscopic lesions in LT samples presented the highest scores at 56 dpi and were significantly correlated with the pathogen load on 14 dpi (0.93) and 28 dpi (0.75). The greatest bacterial load of M. hyopneumoniae in CT samples and BALF was registered at 28 dpi, and it remained high in BALF and LT throughout the 56 dpi. The pathogen was able to persist during the whole experimental period, however higher estimated quantification values were registered in the lower parts of the respiratory tract, especially at 56 dpi. These findings are important for improving diagnostics, treatment, and control measures of M. hyopneumoniae infection in swine herds.
Collapse
Affiliation(s)
- Henrique M S Almeida
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marina L Mechler-Dreibi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Karina Sonálio
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marcela M Ferreira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Paulo E B Martinelli
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Igor R H Gatto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hélio J Montassier
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Luís G Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
20
|
Biebaut E, Beuckelaere L, Boyen F, Haesebrouck F, Gomez-Duran CO, Devriendt B, Maes D. Transfer of Mycoplasma hyopneumoniae-specific cell mediated immunity to neonatal piglets. Vet Res 2021; 52:96. [PMID: 34193259 PMCID: PMC8247214 DOI: 10.1186/s13567-021-00968-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 01/22/2023] Open
Abstract
Mycoplasma hyopneumoniae is the primary agent of enzootic pneumonia in pigs. Although cell mediated immunity (CMI) may play a role in protection against M. hyopneumoniae, its transfer from sows to their offspring is poorly characterized. Therefore, maternally-derived CMI was studied in piglets from vaccinated and non-vaccinated sows. The potential influence of cross-fostering before colostrum ingestion on the transfer of CMI from dam to piglets was also investigated. Six M. hyopneumoniae vaccinated sows from an endemically infected herd and 47 of their piglets, of which 24 piglets were cross-fostered, were included, as well as three non-vaccinated control sows from an M. hyopneumoniae-free herd and 24 of their piglets. Vaccinated sows received a commercial bacterin intramuscularly at 6 and 3 weeks prior to farrowing. The TNF-α, IFN-γ and IL-17A production by different T-cell subsets in blood of sows, colostrum and blood of piglets was assessed using a recall assay. In blood of sows cytokine producing T-cells were increased upon M. hyopneumoniae vaccination. Similarly, M. hyopneumoniae-specific T-cells were detected in blood of 2-day-old piglets born from these vaccinated sows. In contrast, no M. hyopneumoniae-specific cytokine producing T-cells were found in blood of piglets from control sows. No difference was found in M. hyopneumoniae-specific CMI between cross-fostered and non-cross-fostered piglets. In conclusion, different M. hyopneumoniae-specific T-cell subsets are transferred from the sow to the offspring. Further studies are required to investigate the role of these transferred cells on immune responses in piglets and their potential protective effect against M. hyopneumoniae infections.
Collapse
Affiliation(s)
- Evelien Biebaut
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Lisa Beuckelaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | | | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
21
|
Ding H, Wen Y, Xu Z, Zhou B, Tlili C, Tian Y, Wang Z, Ning Y, Xin J. Development of an ELISA for distinguishing convalescent sera with Mycoplasma hyopneumoniae infection from hyperimmune sera responses to bacterin vaccination in pigs. Vet Med Sci 2021; 7:1831-1840. [PMID: 34021737 PMCID: PMC8464267 DOI: 10.1002/vms3.539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Vaccination with inactivated bacterin is the most popular and practical measure to control enzootic pneumonia. After immunisation with inactivated bacterin, Mycoplasma hyopneumoniae colonised on the respiratory tract and lung stimulates the humoural immune responses and produces IgG and IgA antibodies. ELISA is a widely used serological method to detect M. hyopneumoniae antibodies. However, commercial IgG‐ELISA kit cannot distinguish between inactivated bacterin‐induced hyperimmune sera and convalescent sera stimulated by natural infection. SIgA‐ELISA method needs to collect nasal swabs, but collecting nasal swabs is not easy to operate. Establishment of a discriminative ELISA detecting humoural IgG from convalescent sera but not hyperimmune sera facilitates to evaluate the natural infection of M. hyopneumoniae after inactivated bacterin vaccination. We expressed and purified a recombinant protein named Mhp366‐N which contains an epitope recognised by the convalescent sera but not hyperimmune sera. The developed discriminative IgG‐ELISA could discriminate between inactivated bacterin‐induced hyperimmune sera and convalescent sera and was reproducible, sensitive and specific to M. hyopneumoniae antibody produced by natural infection. Compared to SIgA‐ELISA method, discriminative IgG‐ELISA was more convenient to detect IgG antibody from sera than IgA from nasal swabs, although it has limited sensitivity in the early stages of infection. Additionally, to some extent, it has a potential to avoid the interference of maternally derived IgG antibodies. The established discriminative IgG‐ELISA was efficient to judge the serological IgG antibodies induced from natural infection or inactivated vaccine stimulation and provided a useful method to investigate and evaluate the live organism infection after the application of inactivated bacterin.
Collapse
Affiliation(s)
- Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yukang Wen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zuobo Xu
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bingqian Zhou
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaker Tlili
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yaqin Tian
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhaodi Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yaru Ning
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Science, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
22
|
Clavijo MJ, Hu D, Krantz S, Cano JP, Pereira Maróstica T, Henao-Diaz A, Poeta Silva APS, Hemker D, Tapia E, Zimmerman S, Fano E, Polson D, Fitzgerald R, Tucker A, Main R, Wang C, Zimmerman JJ, Rotolo ML. Mycoplasma hyopneumoniae Surveillance in Pig Populations: Establishing Sampling Guidelines for Detection in Growing Pigs. J Clin Microbiol 2021; 59:e03051-20. [PMID: 33597256 PMCID: PMC8091834 DOI: 10.1128/jcm.03051-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/06/2021] [Indexed: 02/04/2023] Open
Abstract
Antemortem detection of Mycoplasma hyopneumoniae infection in swine production systems has relied on antibody testing, but the availability of tests based on DNA detection and novel diagnostic specimens, e.g., tracheal swabs and oral fluids, has the potential to improve M. hyopneumoniae surveillance. A field study was performed over a 14-week period during which 10 pigs in one pen at the center of a room with 1,250 6-week-old pigs housed in 46 pens were intratracheally inoculated with M. hyopneumoniae Thereafter, one tracheal sample, four serum samples, and one oral fluid sample were collected from every pen at 2-week intervals. Tracheal and oral fluid samples were tested for M. hyopneumoniae DNA and serum samples for M. hyopneumoniae antibody. Test results were modeled using a hierarchical Bayesian model, based on a latent spatial piecewise exponential survival model, to estimate the probability of detection by within-pen prevalence, number of positive pens in the barn, sample allocation, sample size, and sample type over time. Analysis showed that tracheal samples provided the earliest detection, especially at large sample sizes. While serum samples are more commonly collected and are less expensive to test, high probability of detection estimates were only obtained 30 days postexposure at large sample sizes. In all scenarios, probability of detection estimates for oral fluids within 30 days were significantly lower than those for tracheal and serum samples. Ultimately, the choice of specimen type, sample number, and assay will depend on testing objectives and economics, but the estimates provided here will assist in the design of M. hyopneumoniae surveillance and monitoring programs for different situations.
Collapse
Affiliation(s)
- Maria Jose Clavijo
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
- Pig Improvement Company, Hendersonville, Tennessee, USA
| | - Dapeng Hu
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
- Department of Statistics, Iowa State University, Ames, Iowa, USA
| | | | - Jean Paul Cano
- Pig Improvement Company, Hendersonville, Tennessee, USA
- Pipestone Veterinary Clinic, Pipestone, Minnesota, USA
| | - Thairê Pereira Maróstica
- Departamento de Clínica e Cirurgia Veterinárias, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandra Henao-Diaz
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
- Pig Improvement Company, Hendersonville, Tennessee, USA
| | - Ana Paula S Poeta Silva
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Deanne Hemker
- Pig Improvement Company, Hendersonville, Tennessee, USA
| | | | | | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA, Inc., Atlanta, Georgia, USA
| | - Dale Polson
- Boehringer Ingelheim Animal Health USA, Inc., Atlanta, Georgia, USA
| | | | | | - Rodger Main
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Chong Wang
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
- Department of Statistics, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Zimmerman
- Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
23
|
Tian Y, Xu Z, Wen Y, Yang M, Ning Y, Wang Z, Ding H. Development of an indirect ELISA for detection of anti-Mycoplasma hyopneumoniae IgG in naturally infected pathogen-induced convalescent sera. BMC Vet Res 2021; 17:123. [PMID: 33726780 PMCID: PMC7968261 DOI: 10.1186/s12917-021-02828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Immunization of pigs with an inactivated Mycoplasma hyopneumoniae vaccine (bacterin) generates hyperimmune serum that contains high concentrations of anti-M. hyopneumoniae IgG. Commercially available IgG-ELISA kits cannot distinguish between anti-M. hyopneumoniae IgG in inactivated bacterin-induced hyperimmune sera and convalescent sera resulting from natural M. hyopneumoniae infection. Establishment of an ELISA to detect anti-M. hyopneumoniae IgG in convalescent sera will facilitate the evaluation of the M. hyopneumoniae status of pig farms. RESULTS In this study, we expressed and purified recombinant Mhp366-N protein, which contains an epitope recognized by M. hyopneumoniae convalescent sera but not hyperimmune sera, for use as a coating antigen. For the M. hyopneumoniae convalescent serum IgG-ELISA, the optimal antigen concentration, blocking buffer, blocking time, dilution of serum, incubation time with serum, secondary antibody dilution, secondary antibody incubation time and colorimetric reaction time were 0.25 µg/mL, 2.5 % skim milk, 1 h, 1:500, 0.5 h, 1:10,000, 1 h and 15 min, respectively. Validation of the M. hyopneumoniae convalescent serum IgG-ELISA showed a cut-off value of 0.323, the intra-assay CV ranged from 3.27 to 7.26 %, the inter-assay CV ranged from 3.46 to 5.93 %, and the assay was able to differentiate convalescent sera from antibodies to 7 other porcine respiratory pathogens. The convalescent serum IgG-ELISA detected no anti-M. hyopneumoniae IgG in hyperimmune serum samples while a commercial IgG-ELISA identified 95/145 of these sera as positive. The accuracy of the M. hyopneumoniae convalescent serum IgG-ELISA was comparable to the sIgA-ELISA but better than the commercial IgG-ELISA. CONCLUSIONS The convalescent serum IgG-ELISA is a reproducible, sensitive, and specific indirect ELISA to detect anti-M. hyopneumoniae IgG in naturally infected pathogen-induced convalescent sera. This ELISA could be used to carry out large scale surveillance of M. hyopneumoniae infection in pig farms regardless of vaccination status.
Collapse
Affiliation(s)
- Yaqin Tian
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Zuobo Xu
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Yukang Wen
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Mei Yang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Yaru Ning
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Zhaodi Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China. .,Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Road, Beibei District, 400715, Chongqing, China.
| |
Collapse
|
24
|
Polinski MP, Laurin E, Delphino MKVC, Lowe GJ, Meyer GR, Abbott CL. Evaluation of histopathology, PCR, and qPCR to detect Mikrocytos mackini in oysters Crassostrea gigas using Bayesian latent class analysis. DISEASES OF AQUATIC ORGANISMS 2021; 144:21-31. [PMID: 33704089 DOI: 10.3354/dao03566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Latent class analysis (LCA) is a common method to evaluate the diagnostic sensitivity (DSe) and specificity (DSp) for pathogen detection assays in the absence of a perfect reference standard. Here we used LCA to evaluate the diagnostic accuracy of 3 tests for the detection of Mikrocytos mackini in Pacific oysters Crassostrea gigas: conventional polymerase chain reaction (PCR), real-time quantitative PCR (qPCR), and histopathology. A total of 802 Pacific oysters collected over 12 sampling events from 9 locations were assessed. Preliminary investigations indicated that standard LCA assumptions of test independence and constant detection accuracy across locations were likely unrealistic. This was mitigated by restructuring the LCA in a Bayesian framework to include test-derived knowledge about pathogen prevalence and load for categorizing populations into 2 classes of infection severity (low or high) and assessing separate DSe and DSp estimates for each class. Median DSp estimates were high (>96%) for all 3 tests in both population classes. DSe estimates varied between tests and population classes but were consistently highest for qPCR (87-99%) and lowest for histopathology (21-51%). Acknowledging that detection of M. mackini may be fitted to multiple diagnostic and management purposes, qPCR had the highest DSe while maintaining similar DSp to both conventional PCR and histopathology and thus is generally well-suited to most applications.
Collapse
Affiliation(s)
- Mark P Polinski
- Department of Fisheries and Oceans, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Sponheim A, Munoz-Zanzi C, Fano E, Polson D, Pieters M. Pooled-sample testing for detection of Mycoplasma hyopneumoniae during late experimental infection as a diagnostic tool for a herd eradication program. Prev Vet Med 2021; 189:105313. [PMID: 33676323 DOI: 10.1016/j.prevetmed.2021.105313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Early and accurate detection of Mycoplasma hyopneumoniae infection in live pigs is a critical component to measure the success of disease eradication strategies. However, the imperfect sensitivity of in vivo diagnostic tools, change in sensitivity over the course of infection, and expected low prevalence level at the end of an eradication program create a challenging diagnostic scenario. Here, the individual and pool sensitivities for detection of M. hyopneumoniae during the chronic phase of infection was determined using deep tracheal catheter samples, the in vivo sample type with the highest reported diagnostic sensitivity. Fifty samples from known infected pigs collected at 113 days post-M. hyopneumoniae intra-tracheal inoculation, were diluted in known negative samples to form pools of 1:3 and 1:5. Samples were tested for M. hyopneumoniae by a species-specific PCR. Ninety-eight percent (49/50) of individual samples, 84 % (42/50) of pools of 1:3, and 82 % (41/50) of 1:5 were detected positive for M. hyopneumoniae. To apply the sensitivity estimates for detection of M. hyopneumoniae in a low prevalence scenario, sample sizes with associated sample collection costs were calculated for individual and pooled testing using algorithms within the program EpiTools One-Stage Freedom Analyses. Assumptions included a ≥95 % population sensitivity, infinite population size, prevalence levels of ≥0.5 %, ≥1 %, ≥2 %, ≥3 %, ≥4 %, or ≥5 %, 100 % specificity, along with the mean and lower confidence limit of the individual or pool sensitivity for each pool size, when appropriate. For instance, following completion of a herd eradication program, if a low risk approach is targeted, sample size estimates for ≥2 % prevalence using the lower limit of the diagnostic or pool sensitivity 95 %CI may be followed. If samples were to be tested individually, 167 individuals would be sampled at a cost of 6,012 USD. If pooled by 3, 213 would be sampled (testing cost 3,266 USD), and for pools of 5, 220 individuals would be sampled (testing cost 2,464 USD). Population sensitivity was also calculated for a range of testing scenarios. Our study indicated that pooling samples by 3 or 5 was a cost-effective method for M. hyopneumoniae detection in low prevalence scenarios. Cost-effective detection was evidenced despite the increased sample collection costs associated with large sample sizes in order to offset decreased testing sensitivity attributable to pooling. The post-eradication sample collection scheme, combined with pooling, suggested lower cost options than individual sampling for testing to be applied at the end of an eradication program, without significantly compromising the likelihood of detection.
Collapse
Affiliation(s)
- Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN, 55108, USA; Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA, 30096, USA
| | - Claudia Munoz-Zanzi
- School of Public Health, Division Environmental Health Sciences, University of Minnesota, 1260 Mayo Building, 420 Delaware Street SE, Minneapolis, MN, 55454, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA, 30096, USA
| | - Dale Polson
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA, 30096, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN, 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
26
|
Pirolo M, Espinosa-Gongora C, Bogaert D, Guardabassi L. The porcine respiratory microbiome: recent insights and future challenges. Anim Microbiome 2021; 3:9. [PMID: 33499988 PMCID: PMC7934557 DOI: 10.1186/s42523-020-00070-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
Understanding the structure of the respiratory microbiome and its complex interactions with opportunistic pathogenic bacteria has become a topic of great scientific and economic interest in livestock production, given the severe consequences of respiratory disease on animal health and welfare. The present review focuses on the microbial structures of the porcine upper and lower airways, and the factors that influence microbiome development and onset of respiratory disease. Following a literature search on PubMed and Scopus, 21 articles were selected based on defined exclusion criteria (20 studies performed by 16S rRNA gene sequencing and one by shotgun metagenomics). Analysis of the selected literature indicated that the microbial structure of the upper respiratory tract undergoes a remarkable evolution after birth and tends to stabilise around weaning. Antimicrobial treatment, gaseous ammonia concentration, diet and floor type are amongst the recognized environmental factors influencing microbiome structure. The predominant phyla of the upper respiratory tract are Proteobacteria and Firmicutes with significant differences at the genus level between the nasal and the oropharyngeal cavity. Only five studies investigated the lower respiratory tract and their results diverged in relation to the relative abundance of these two phyla and even more in the composition of the lung microbiome at the genus level, likely because of methodological differences. Reduced diversity and imbalanced microbial composition are associated with an increased risk of respiratory disease. However, most studies presented methodological pitfalls concerning specimen collection, sequencing target and depth, and lack of quality control. Standardization of sampling and sequencing procedures would contribute to a better understanding of the structure of the microbiota inhabiting the lower respiratory tract and its relationship with pig health and disease.
Collapse
Affiliation(s)
- Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Science, Roma Tre University, Rome, Italy
| | - Carmen Espinosa-Gongora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Debby Bogaert
- Center for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark. .,Department of Pathobiology & Population Sciences, Royal Veterinary College, United Kingdom, Hawkhead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| |
Collapse
|
27
|
Betlach AM, Fano E, VanderWaal K, Pieters M. Effect of multiple vaccinations on transmission and degree of Mycoplasma hyopneumoniae infection in gilts. Vaccine 2020; 39:767-774. [PMID: 33342634 DOI: 10.1016/j.vaccine.2020.10.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) infections continue to result in significant respiratory challenges in the swine industry worldwide. Vaccination for M. hyopneumoniae is commonly utilized, as reduction in bacterial loads and clinical severity in vaccinated pigs have been shown. However, the effect of M. hyopneumoniae vaccination on transmission across different pig populations has been minimally investigated. The aim of this pilot study was to evaluate the effect of multiple vaccinations on M. hyopneumoniae infection, transmission, and genetic variability in infected and susceptible gilt populations. Thirty-two naïve gilts were allocated to four treatment groups: (1) Vaccinated seeder (VS); (2) Non-vaccinated seeder (NVS); (3) Vaccinated contact (VC); and (4) Non-vaccinated contact (NVC). At 5, 7, and 9 weeks of age, all gilts selected to be vaccinated received a commercial M. hyopneumoniae bacterin for a total of 3 doses. At 11 weeks of age, VS and NVS gilts were inoculated with M. hyopneumoniae to become seeders. At 28 days post-inoculation (dpi), VS and NVS gilts were individually relocated to clean experimental rooms, where they were placed in contact with one age-matched VC or NVC gilt (1:1 ratio) for 14 days. Blood and tracheal samples, bronchial swabs, and lung lesions were collected and/or evaluated for M. hyopneumoniae infection. In this study, a three-dose vaccination strategy against M. hyopneumoniae significantly reduced bacterial load in seeder gilts. Furthermore, a numerical reduction in M. hyopneumoniae lung lesions at 28 dpi was observed in VS gilts. All VC gilts in the VS:VC treatment group pairing remained M. hyopneumoniae negative, compared to other groups in which 1-2 transmission events occurred per treatment group. Results from this investigation provide insight on the potential impact of multiple vaccinations on reducing M. hyopneumoniae transmission and infection. Further research encompassing vaccinations of gilt groups in field settings is necessary to validate findings.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Swine Vet Center, St. Peter, MN, USA
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
28
|
Natural transmission and detection of Mycoplasma hyopneumoniae in a naïve gilt population. Vet Microbiol 2020; 248:108819. [PMID: 32891949 DOI: 10.1016/j.vetmic.2020.108819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) continues to be a prevalent and economically important swine respiratory pathogen. For M. hyopneumoniae surveillance, blood samples and/or oral fluids are commonly collected from incoming replacement gilts prior to entering sow farms. However, limitations to this approach exist, particularly due to low sensitivity during acute stages of natural infection, leading to diagnostic uncertainty. Therefore, the objective of this study was to evaluate the natural transmission and detection of M. hyopneumoniae based on the introduction of one infected gilt to a naïve population. Twenty-nine naïve gilts were housed with one M. hyopneumoniae naturally exposed gilt for 8 weeks. Deep tracheal catheters, laryngeal swabs, and blood samples were individually collected from each gilt at 0, 1, 2, 4, 6, and 8 weeks post-contact (wpc), along with one pen-based oral fluid sample. Blood samples were assayed by ELISA, while all other samples were tested by real-time PCR. The transmission rate of M. hyopneumoniae (ꞵ) was estimated using a Bayesian mixed-effects generalized linear model. At 8 wpc, 27 % (8/29) of the naïve gilts had become infected (ꞵ = 0.73 new infected gilts/gilt-week). Seroconversion was detected in 3% of contact gilts at 8 wpc. Oral fluids were negative for M. hyopneumoniae at all samplings. In this study, the natural transmission of M. hyopneumoniae was slow and detection varied based on sample type and timing. Thus, M. hyopneumoniae surveillance protocols should include lower respiratory tract samples that are tested by real-time PCR to avoid the introduction of potentially infected gilts into naïve sow farms.
Collapse
|
29
|
Vilalta C, Garcia‐Morante B, Sanhueza JM, Schwartz M, Pieters M. PCR detection of
Mycoplasma hyopneumoniae
in piglet processing fluids in the event of a clinical respiratory disease outbreak. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2019-001045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Carles Vilalta
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| | | | | | - Mark Schwartz
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| | - Maria Pieters
- Veterinary Population MedicineUniversity of MinnesotaSt PaulMinnesotaUSA
| |
Collapse
|
30
|
Surendran Nair M, Yao D, Chen C, Pieters M. Serum metabolite markers of early Mycoplasma hyopneumoniae infection in pigs. Vet Res 2019; 50:98. [PMID: 31771624 PMCID: PMC6878661 DOI: 10.1186/s13567-019-0715-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 01/22/2023] Open
Abstract
Mycoplasma hyopneumoniae, the primary pathogenic bacterium causing enzootic pneumonia, significantly affects worldwide swine production. The infection is usually persistent and bacterial identification and isolation of M. hyopneumoniae in clinical samples are challenging due to the fastidious requirements for its growth. Hence, new practical surveillance tools that improve or complement existing diagnostics on M. hyopneumoniae are desirable, especially in early infection. The objective of this study was to identify potential metabolite markers of early M. hyopneumoniae infection in pigs through metabolomics analysis. Samples obtained from pigs in a previous M. hyopneumoniae experimental infection were used in this study. Briefly, two pigs served as mock inoculated controls and ten pigs were intra-tracheally inoculated with M. hyopneumoniae. Sera, laryngeal swabs (LS), and tracheo-bronchial lavage fluid (TBLF) were collected from all pigs at 0, 2, 5, 9, 14, 21 and 28 days post-inoculation (dpi). Bronchial swabs (BS) were collected post-mortem at 28 dpi. Mycoplasma hyopneumoniae infection was confirmed by PCR in LS, TBLF and BS. Serum metabolites were profiled using high-resolution liquid chromatography-mass spectrometry (LC-MS) analysis. Metabolite markers were identified by structural analysis following multivariate analysis of LC-MS data. The results showed that M. hyopneumoniae infection time-dependently altered the serum levels of selective amino acids and fatty acids. α-Aminobutyric acid and long-chain fatty acids were markedly increased at 14 and 21 dpi in inoculated pigs (p < 0.05). These results indicated that M. hyopneumoniae infection caused systemic changes in host metabolism, warranting further studies to determine underlying biochemical and physiological mechanisms responsible for the observed changes.
Collapse
Affiliation(s)
- Meera Surendran Nair
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Dan Yao
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55018 USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55018 USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
31
|
Moiso N, Pieters M, Degano F, Vissio C, Camacho P, Estanguet A, Parada J, Tamiozzo PJ. Detection of Mycoplasma hyopneumoniae in nasal and laryngeal swab specimens in endemically infected pig herds. Vet Rec 2019; 186:27. [PMID: 31732508 DOI: 10.1136/vr.105525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Apparently, laryngeal swabs (LS) are more sensitive than nasal swabs (NS) and allow earlier detection of Mycoplasma hyopneumoniae by PCR. However, antecedents about the compared detection of M hyopneumoniae with NS and LS in growing pigs, from naturally infected herds, are lacking in the literature. Thus, this study compared the PCR detection of M hyopneumoniae from NS and LS in pigs of various ages. METHODS A longitudinal study was performed at two farms where NS and LS were collected from three consecutive groups of 20 pigs at 3, 6, 10, 16 and 22 weeks of age. All samples were analysed by nested PCR for M hyopneumoniae detection. RESULTS The probability of PCR detection of M hyopneumoniae was higher in LS for pigs of all ages (odds ratio (OR)=1.87; 95 per cent confidence interval (CI) 1.31-2.67) and in 22-week-old pigs (OR=4.87; 95 per cent CI 2.86-8.30). The agreement between both sample types was low to moderate (kappa 0.087-0.508), highlighting that M hyopneumoniae does not appear to colonise the respiratory tract in a generalised and consistent fashion. CONCLUSIONS The results suggest that LS could be employed at different ages to achieve greater bacterial detection. Considering that LS is a minimally invasive, highly sensitive sample compared with the traditional NS, it could be suggested to employ this sample type for M hyopneumoniae detection in naturally infected pigs.
Collapse
Affiliation(s)
- Nicolás Moiso
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Maria Pieters
- Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Facundo Degano
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Claudina Vissio
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Instituto para el Desarrollo Agroindustrial y de Salud (IDAS), UNRC- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
| | - Pablo Camacho
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Abel Estanguet
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Julián Parada
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto, Argentina
| | - Pablo J Tamiozzo
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
32
|
Sponheim A, Alvarez J, Fano E, Schmaling E, Dee S, Hanson D, Wetzell T, Pieters M. Comparison of the sensitivity of laryngeal swabs and deep tracheal catheters for detection of Mycoplasma hyopneumoniae in experimentally and naturally infected pigs early and late after infection. Vet Microbiol 2019; 241:108500. [PMID: 31767388 DOI: 10.1016/j.vetmic.2019.108500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Detection of Mycoplasma hyopneumoniae infection in live pigs is a critical component to measure the success of disease control or elimination strategies. However, in vivo diagnosis of M. hyopneumoniae is difficult and the imperfect sensitivity of diagnostic tools has been deemed as one of the main challenges. Here, the sensitivity of laryngeal swabs and deep tracheal catheters for detection of M. hyopneumoniae early and late after infection was determined using inoculation status as a gold standard in experimentally infected pigs and a Bayesian approach in naturally infected pigs. Three-hundred and twenty 8-week old seeder pigs were intra-tracheally inoculated with M. hyopneumoniae strain 232 and immediately placed with 1920 contact pigs to achieve a 1:6 seeder-to-contact ratio. A subset of seeders and contacts were longitudinally sampled at 7, 28, 97, and 113 days post-inoculation (dpi) and at 28, 56, 84, and 113 days post-exposure (dpe), respectively, using laryngeal swabs and deep tracheal catheters. Samples were tested for M. hyopneumoniae by a species-specific real-time PCR. The sensitivity of deep tracheal catheters was higher than the one obtained in laryngeal swabs at all samplings (seeders: 36% higher than laryngeal swabs at 7 dpi, 29% higher at 97 dpi, and 44% higher at 113 dpi; contacts: 51% higher at 56 dpe, 42% higher at 84 dpe, and 32% higher at 113 dpe). Our study indicates that deep tracheal catheters were a more sensitive sample than laryngeal swabs. The sensitivity of both sample types varied over time and by exposure method, and these factors should be considered when designing diagnostic strategies.
Collapse
Affiliation(s)
- Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA; Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Julio Alvarez
- Centro de Vigilancia Sanitaria Veterinaria VISAVET, Universidad Complutense, Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Eduardo Fano
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Ethan Schmaling
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Scott Dee
- Pipestone Applied Research, Pipestone, MN, USA
| | - Dan Hanson
- Pipestone Applied Research, Pipestone, MN, USA
| | - Thomas Wetzell
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
33
|
Yeske P, Valeris-Chacin R, Singer RS, Pieters M. Survival analysis of two Mycoplasma hyopneumoniae eradication methods. Prev Vet Med 2019; 174:104811. [PMID: 31710945 DOI: 10.1016/j.prevetmed.2019.104811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022]
Abstract
Mycoplasma hyopneumoniae is an important respiratory pathogen causing significant losses in the swine industry. Eradication of this bacterium from herds results in increased pig performance, productivity, and animal welfare. The objective of this study was to compare the time-to-detection of M. hyopneumoniae in breed-to-wean farms after the application of one of two methods for M. hyopneumoniae eradication. The two methods compared in this study were: 1) Herd closure and medication, and 2) Whole herd medication without extended closure. Fifty-six breed-to-wean farms located in the US Midwest constituted the cohort for this investigation. Herd closure and medication was applied in 45 farms, while whole herd medication was applied in 11 farms. Two mutually exclusive events were recorded for each farm, either detection of M. hyopneumoniae, which was considered the event of interest, or end of follow-up, which was the right-censored event. Farms were monitored until recording the event of interest, or until the end of follow-up, whichever occurred first. Detection of M. hyopneumoniae was assessed by identification of antibodies against the bacterium in sentinel pigs using a commercially available ELISA assay within 6 months post-eradication completion. Moreover, clinical presentation of disease was recorded if observed post-eradication completion. The censored event occurred at the end of the study in November 2016 (administrative censoring). Time-to-detection of M. hyopneumoniae was analyzed with a Cox proportional hazards model. The proportional hazards assumption was assessed using graphical methods. A sensitivity analysis to evaluate the assumption of outcome-independent censoring was also performed. The cumulative incidence of M. hyopneumoniae detection at the end of follow-up was 18.6 % (95% CI: 6.5%, 46.8%) for herd closure and medication, and 36.4% (95% CI: 15.5%, 70.3%) for whole herd medication. An interaction term between the type of eradication method and follow-up time was included in the model to account for the non-proportional hazards. An overall effect of eradication method was present (P = 0.0442). The hazard ratio associated to the time-invariant effect of eradication method was 29.2 (95% CI: 0.95, 894; P = 0.053). The hazard ratio associated with the interaction term was 0.88 (95% CI: 0.65, 1.2; P = 0.405). Under these conditions, eradication using herd closure and medication reduced the likelihood of detecting cases of M. hyopneumoniae in breed-to-wean farms compared to whole herd medication. Detection of M. hyopneumoniae was concentrated during the first 64 months of follow-up in herd closure and medication, and in the first 8 months in whole herd medication.
Collapse
Affiliation(s)
- Paul Yeske
- Swine Vet Center, St. Peter, MN, United States
| | - Robert Valeris-Chacin
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
34
|
Fourour S, Tocqueville V, Paboeuf F, Lediguerher G, Morin N, Kempf I, Marois-Créhan C. Pathogenicity study of Mycoplasma hyorhinis and M. flocculare in specific-pathogen-free pigs pre-infected with M. hyopneumoniae. Vet Microbiol 2019; 232:50-57. [PMID: 31030844 DOI: 10.1016/j.vetmic.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 11/17/2022]
Abstract
Mycoplasma (M.) hyopneumoniae is the initiator agent of the porcine respiratory disease complex (PRDC) and the etiological agent of enzootic pneumonia. M. hyorhinis and M. flocculare are also found in extensive gross pneumonia-like lesions, but their role is not known. We investigated the pathogenicity of M. hyorhinis and M. flocculare in specific-pathogen-free pigs pre-infected or not with M. hyopneumoniae. Mono-inoculated pigs with M. flocculare showed no clinical signs, hematological changes or macroscopic lesions upon necropsy. Mono-inoculated pigs with M. hyorhinis showed, overall seven days after inoculation, an increase in mean temperature with increases in white blood cell (monocyte) counts and in concentrations of pig major acute phase protein, whereas the average daily weight gain (ADWG) decreased compared with non-infected animals. M. hyorhinis was detected in serous membranes (polyserositis) but not in bronchi. Co-infected pigs with M. hyopneumoniae and M. hyorhinis or M. flocculare showed lower ADWG during the third week of the experiment and higher haptoglobin concentrations in contrast to pigs only mono-infected with M. hyopneumoniae. In pigs co-infected with M. hyopneumoniae and M. hyorhinis, it was interesting to observe that (i) M. hyorhinis was detected in bronchi of six pigs, (ii) M. hyopneumoniae was detected in polyserositis and (iii) there was a slight delay in the production of anti-M. hyopneumoniae IgG. The extent of pneumonia was not statistically different between groups. These results suggest that mycoplasmal associations appear to induce an additive effect and increase the inflammatory status in pigs, probably involving in the impairment of the immune system.
Collapse
Affiliation(s)
- Sarah Fourour
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan, France; Bretagne Loire University, Rennes, France
| | - Véronique Tocqueville
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan, France; Bretagne Loire University, Rennes, France
| | - Frédéric Paboeuf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, SPF Pig Production and Experimental Unit, Ploufragan, France; Bretagne Loire University, Rennes, France
| | - Gérald Lediguerher
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, SPF Pig Production and Experimental Unit, Ploufragan, France; Bretagne Loire University, Rennes, France
| | - Nadège Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, SPF Pig Production and Experimental Unit, Ploufragan, France; Bretagne Loire University, Rennes, France
| | - Isabelle Kempf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, SPF Pig Production and Experimental Unit, Ploufragan, France; Bretagne Loire University, Rennes, France
| | - Corinne Marois-Créhan
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan, France; Bretagne Loire University, Rennes, France.
| |
Collapse
|
35
|
Arsenakis I, Michiels A, Schagemann G, Gomez-Duran CO, Boyen F, Haesebrouck F, Maes DGD. Effects of pre-farrowing sow vaccination against Mycoplasma hyopneumoniae on offspring colonisation and lung lesions. Vet Rec 2019; 184:222. [PMID: 30630875 PMCID: PMC6589467 DOI: 10.1136/vr.104972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 11/06/2022]
Abstract
This study investigated Mycoplasma hyopneumoniae colonisation and lung lesions at slaughter in pigs from vaccinated (V) and non-vaccinated (NV) sows, in two herds (A and B). In each herd, two sow batches were V against M. hyopneumoniae with a commercial bacterin at six and three weeks before farrowing and two sow batches remained NV. From each sow batch, laryngeal swabs were collected from the litters of five primiparous sows at weaning and seven days post-weaning. All samples were tested for M. hyopneumoniae by nested PCR. In total, 488 piglets were sampled. At slaughter, the extent of Mycoplasma-like pneumonia lesions (lung lesion score (LLS)) was assessed. The colonisation rates with M. hyopneumoniae at weaning and seven days post-weaning were (V-A=14.2, NV-A=20.0 (P=0.225); V-B=0.9, NV-B=0.8 (P=0.948)) and (V-A=0.8, NV-A=7.0 (P=0.039); V-B=1.8, NV-B=2.5 (P=0.738)), respectively. The average LLS (in per cent) was V-A=15.5, NV-A=26.4 (P=0.021); V-B=9.7, NV-B=8.4 (P=0.541). In conclusion, in herd A, with a substantially higher level of piglet colonisation at weaning than herd B, offspring from V sows had a significantly lower colonisation rate seven days post-weaning and a significantly lower LLS at slaughter compared with the offspring of the NV sows. This implies that sow vaccination might be useful for control of M. hyopneumoniae infections, although significant results may not be achieved at all times (such as in herd B).
Collapse
Affiliation(s)
- Ioannis Arsenakis
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies Michiels
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominiek G D Maes
- Unit Porcine Health Management, Department of Reproduction, Obstetrics & Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
36
|
Bai Y, Gan Y, Hua LZ, Nathues H, Yang H, Wei YN, Wu M, Shao GQ, Feng ZX. Application of a sIgA-ELISA method for differentiation of Mycoplasma hyopneumoniae infected from vaccinated pigs. Vet Microbiol 2018; 223:86-92. [DOI: 10.1016/j.vetmic.2018.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
|
37
|
Vangroenweghe FACJ, Willems E, Thas O, Maes DGD. Confirmation of Mycoplasma hyopneumoniae in a breeding herd through tracheobronchial swab sampling and PCR. Vet Rec 2018; 183:325. [PMID: 30007933 DOI: 10.1136/vr.104712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/28/2018] [Accepted: 06/06/2018] [Indexed: 11/04/2022]
Affiliation(s)
| | - Eveline Willems
- Topigs Norsvin International, Technical Services, Vught, Netherlands
| | - Olivier Thas
- Department of Data Analysis and Mathematical Modelling, Faculty of Bio-engineering Sciences, Ghent University, Ghent, Belgium.,National Institute for Applied Statistics Research (NIASRA), University of Wollongong, Wollongong, New South Wales, Australia
| | - Dominiek G D Maes
- Department of Swine Herd Health and Reproduction, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
38
|
Vangroenweghe F, Willems E, Malášek J, Thas O, Maes D. Use of trachea-bronchial swab qPCR testing to confirm Mycoplasma hyopneumoniae seropositivity in an SPF breeding herd. Porcine Health Manag 2018; 4:12. [PMID: 29881637 PMCID: PMC5984420 DOI: 10.1186/s40813-018-0088-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/29/2018] [Indexed: 11/10/2022] Open
Abstract
Background A dedicated program to monitor for freedom of several economically important diseases is present within most of the breeding companies that currently deliver high health breeding animals to their customers. Serology is therefore the preferential approach in order to screen for most of these diseases, including Mycoplasma hyopneumoniae (M. hyopneumoniae). However, in case of positive serology, further decisions on farm health status and the related consequences should be based on additional confirmation tests. Case presentation The current case report demonstrates that tracheo-bronchial swab (TBS) sampling is a suitable alternative to confirm a suspect M. hyopneumoniae-seropositive situation. A Central-European SPF herd was shown positive (90% positive, 10% suspect; n = 10) for M. hyopneumoniae using the conventional ELISA serology (Idexx HerdChek Mhyo ELISA) and a second ELISA test (IDEIA™ Mycoplasma hyopneumoniae EIA kit) did not exclude potential M. hyopneumoniae infection (10% positive, 70% suspect; n = 10). Further follow-up remained inconclusive on both tests. Throughout the entire monitoring period of 6 months, no coughing, necropsy lesions or lesions at slaughter could be detected which could confirm the M. hyopneumoniae health status. TBS sampling was used to confirm the health status for M. hyopneumoniae. In total, 162 samples were collected at different ages (n = 18 per age category): piglets at 3-6-9-12 and 15 wks of age, rearing gilts at 18-21-24 and 27 weeks of age. Collected TBS samples were negative for M. hyopneumoniae until 15 wks of age, but rearing gilts were highly M. hyopneumoniae-positive from 18 wks onwards with 87-100% M. hyopneumoniae-positive animals and PCR Ct-values between 25 and 33. Conclusions This case report shows that collection of TBS samples to confirm the M. hyopneumoniae infection status of a breeding herd was able to provide additional information to serology in order to make crucial decisions concerning health management and eradication strategies within the breeding herd.
Collapse
Affiliation(s)
- Frédéric Vangroenweghe
- Elanco Animal Health Benelux, Benelux, Plantijn en Moretuslei 1 - 3rd floor, 2018 Antwerpen, Belgium
| | | | | | - Olivier Thas
- 4Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,5National Institute for Applied Statistics Research Australia (NIASRA), University of Wollongong, Wollongong, NSW Australia
| | - Dominiek Maes
- 6Department of Swine Herd Health and Reproduction, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
39
|
Liang QL, Zou Y, Gao YH, Nie LB, Zhang XX, Hu GX, Du R, Zhu XQ. First report of Mycoplasma hyopneumoniae seroprevalence in farmed wild boars in China. Acta Trop 2018; 182:212-214. [PMID: 29545154 DOI: 10.1016/j.actatropica.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/24/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
Abstract
Porcine enzootic pneumonia caused by Mycoplasma hyopneumoniae affects the global pig industry with significant economic losses. It is yet to know whether wild boars in China were infected with M. hyopneumoniae. The present study was conducted to examine the seroprevalence and to evaluate risk factors of M. hyopneumoniae infection in farmed wild boars in China. A total of 882 serum samples were collected from farmed wild boars in Jilin City, Siping City and Baishan City in Jilin Province, northeastern China from April 2015 to February 2016, and were examined by the double sandwich enzyme-linked immunosorbent assay (ELISA). Seventy-eight out of 882 (8.8%) serum samples were M. hyopneumoniae-seropositive. Among region groups, wild boars from Jilin city (11.7%, 33/281) had the highest seropositivity, followed by Siping city (11%, 29/263) and Baishan city (4.7%, 16/338), and the difference was statistically significant (P = 0.0031). The M. hyopneumoniae seroprevalence in the female wild boars (9.0%, 75/831) was higher than that in the male wild boars (5.9%, 3/51) (P = 0.4429). The results of this investigation showed that farmed wild boars were susceptible to M. hyopneumoniae. Logistic regression analysis showed that there is a significant correlation between the geographical area and M. hyopneumoniae infection, which may be related to the regional environment. This is the first report of M. hyopneumoniae seroprevalence in farmed wild boars in China, which provided baseline information for further studies and control of M. hyopneumoniae infection in wild boars in China.
Collapse
|
40
|
Lu D, Zhou C, Tang L, Tan M, Yuan A, Chan L. Evaluating accuracy of diagnostic tests without conditional independence assumption. Stat Med 2018; 37:2809-2821. [PMID: 29691895 DOI: 10.1002/sim.7688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/01/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022]
Abstract
Evaluating the accuracy (ie, estimating the sensitivity and specificity) of new diagnostic tests without the presence of a gold standard is of practical meaning and has been the subject of intensive study for several decades. Existing methods use 2 or more diagnostic tests under several basic assumptions and then estimate the accuracy parameters via the maximum likelihood estimation. One of the basic assumptions is the conditional independence of the tests given the disease status. This assumption is impractical in many real applications in veterinary research. Several methods have been proposed with various dependence models to relax this assumption. However, these methods impose subjective dependence structures, which may not be practical and may introduce additional nuisance parameters. In this article, we propose a simple method for addressing this problem without the conditional independence assumption, using an empirical conditioning approach. The proposed method reduces to the popular Hui-Walter model in the case of conditional independence. Also, our likelihood function is of order-2 polynomial in parameters, while that of Hui-Walter is of order-3. The reduced model complexity increases the stability in estimation. Simulation studies are conducted to evaluate the performance of the proposed method, which shows overall smaller biases in estimation and is more stable than the existing method, especially when tests are conditionally dependent. Two real data examples are used to illustrate the proposed method.
Collapse
Affiliation(s)
- Di Lu
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, 20057, Washington,DC, USA
| | - Chunxiao Zhou
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Larry Tang
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, 20892, MD, USA
- Department of Statistics, George Mason University, Fairfax, 22030, VA, USA
| | - Ming Tan
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, 20057, Washington,DC, USA
| | - Ao Yuan
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, 20057, Washington,DC, USA
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Leighton Chan
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, 20892, MD, USA
| |
Collapse
|
41
|
Garza-Moreno L, Segalés J, Pieters M, Romagosa A, Sibila M. Acclimation strategies in gilts to control Mycoplasma hyopneumoniae infection. Vet Microbiol 2018; 219:23-29. [PMID: 29778201 DOI: 10.1016/j.vetmic.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary causative agent of enzootic pneumonia (EP), one of the most economically important infectious disease for the swine industry worldwide. M. hyopneumoniae transmission occurs mainly by direct contact (nose-to-nose) between infected to susceptible pigs as well as from infected dams to their offspring (sow-to-piglet). Since disease severity has been correlated with M. hyopneumoniae prevalence at weaning in some studies, and gilts are considered the main bacterial shedders, an effective gilt acclimation program should help controlling M. hyopneumoniae in swine farms. The present review summarizes the different M. hyopneumoniae monitoring strategies of incoming gilts and recipient herd and proposes a farm classification according to their health statuses. The medication and vaccination programs against M. hyopneumoniae most used in replacement gilts are reviewed as well. Gilt replacement acclimation against M. hyopneumoniae in Europe and North America indicates that vaccination is the main strategy used, but there is a current trend in US to deliberately expose gilts to the pathogen.
Collapse
Affiliation(s)
- Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra Spain.
| | - Maria Pieters
- Departament of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States.
| | - Anna Romagosa
- PIC Europe, C/ Pau Vila 22, 2º 6ª, 08174 Sant Cugat del Vallés, Barcelona, Spain.
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CRESA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
42
|
Bayesian estimation of true prevalence, sensitivity and specificity of three diagnostic tests for detection of Escherichia coli O157 in cattle feces. Prev Vet Med 2017; 148:21-27. [DOI: 10.1016/j.prevetmed.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/28/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
|
43
|
Fablet C, Rose N, Bernard C, Messager I, Piel Y, Grasland B. Estimation of the diagnostic performance of two ELISAs to detect PCV2 antibodies in pig sera using a Bayesian method. J Virol Methods 2017; 249:121-125. [DOI: 10.1016/j.jviromet.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/21/2017] [Accepted: 09/03/2017] [Indexed: 01/13/2023]
|
44
|
Takeuti KL, de Barcellos DE, Pieters M. Mycoplasma hyopneumoniae detection in nylon-flocked and rayon-bud swabs. J Microbiol Methods 2017; 141:118-120. [DOI: 10.1016/j.mimet.2017.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/24/2022]
|
45
|
Maes D, Sibila M, Kuhnert P, Segalés J, Haesebrouck F, Pieters M. Update on Mycoplasma hyopneumoniae infections in pigs: Knowledge gaps for improved disease control. Transbound Emerg Dis 2017; 65 Suppl 1:110-124. [PMID: 28834294 DOI: 10.1111/tbed.12677] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Indexed: 02/07/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary pathogen of enzootic pneumonia, a chronic respiratory disease in pigs. Infections occur worldwide and cause major economic losses to the pig industry. The present paper reviews the current knowledge on M. hyopneumoniae infections, with emphasis on identification and analysis of knowledge gaps for optimizing control of the disease. Close contact between infected and susceptible pigs is the main route of M. hyopneumoniae transmission. Management and housing conditions predisposing for infection or disease are known, but further research is needed to better understand M. hyopneumoniae transmission patterns in modern pig production systems, and to assess the importance of the breeding population for downstream disease control. The organism is primarily found on the mucosal surface of the trachea, bronchi and bronchioles. Different adhesins and lipoproteins are involved in the adherence process. However, a clear picture of the virulence and pathogenicity of M. hyopneumoniae is still missing. The role of glycerol metabolism, myoinositol metabolism and the Mycoplasma Ig binding protein-Mycoplasma Ig protease system should be further investigated for their contribution to virulence. The destruction of the mucociliary apparatus, together with modulating the immune response, enhances the susceptibility of infected pigs to secondary pathogens. Clinical signs and severity of lesions depend on different factors, such as management, environmental conditions and likely also M. hyopneumoniae strain. The potential impact of strain variability on disease severity is not well defined. Diagnostics could be improved by developing tests that may detect virulent strains, by improving sampling in live animals and by designing ELISAs allowing discrimination between infected and vaccinated pigs. The currently available vaccines are often cost-efficient, but the ongoing research on developing new vaccines that confer protective immunity and reduce transmission should be continued, as well as optimization of protocols to eliminate M. hyopneumoniae from pig herds.
Collapse
Affiliation(s)
- D Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - P Kuhnert
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - J Segalés
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Haesebrouck
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
46
|
Quantification of Pasteurella multocida in experimentally infected pigs using a real-time PCR assay. Res Vet Sci 2017; 112:177-184. [PMID: 28499212 DOI: 10.1016/j.rvsc.2017.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022]
Abstract
The aim of the study was to quantify Pasteurella multocida in experimentally infected pigs using a new qPCR assay based on the sodA gene and validated with 35 P. multocida strains, including strains isolated from pigs with pneumonia, clinically healthy pigs (nasal cavities), and human infections. The specificity of the test was verified with a collection of 60 strains of bacterial species other than P. multocida. The estimated detection threshold was 10 genome equivalents per microliter. The amplification efficiency and value of the correlation coefficients were 95.5% (±3.5%) and 0.995 (±0.005), respectively. Analysis of P. multocida suspensions in Buffered Peptone Water Broth and of samples prepared from lungs experimentally spiked with P. multocida revealed detection thresholds of 1.4CFU/μl and 8.4CFU/μl, respectively. In live pigs, experimentally-infected, approximately 105, 107 and 108genomeequivalents/ml of P. multocida DNA was detected on Day 8 post-infection in the nasal cavities, tonsils and trachea samples, respectively. In dead pigs, approximatively 107genomeequivalents/ml of P. multocida DNA was detected in the lung tissue with pneumonia. The qPCR assay's diagnostic specificity and sensitivity were 100% and 96%, respectively. This new qPCR assay should be a very useful tool for controlling enzootic pneumonia and studying the dynamics of infections in pig herds.
Collapse
|
47
|
Fablet C, Renson P, Pol F, Dorenlor V, Mahé S, Eono F, Eveno E, Le Dimna M, Liegard-Vanhecke D, Eudier S, Rose N, Bourry O. Oral fluid versus blood sampling in group-housed sows and finishing pigs: Feasibility and performance of antibody detection for porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbiol 2017; 204:25-34. [PMID: 28532802 DOI: 10.1016/j.vetmic.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 11/19/2022]
Abstract
The feasibility of using individual and pen-based oral fluid samples to detect PRRSV antibodies in growing-finishing pigs and group-housed sows was investigated. The diagnostic performances of a commercial oral fluid ELISA (OF-ELISA) and a serum ELISA (SER-ELISA) performed on individual or pooled samples from 5 or 10 pigs and sows was evaluated. The performance of the OF-ELISA was also assessed for pen-based oral fluids. Eight hundred and thirty-four pigs and 1598 sows from 42 PRRSV-infected and 3 PRRSV-negative herds were oral fluid sampled and bled. PRRSV antibodies were detected by an OF-ELISA performed at individual, pool (5 or 10 samples) and pen levels. Serum samples were tested by a SER-ELISA at individual and pool levels. The sensitivity and specificity of ELISAs for individual samples were assessed by Bayesian analysis. The relative diagnostic performance for the pools was calculated by taking individual samples as the gold standard. SER-ELISA and individual OF-ELISA results were used as references for estimating OF-ELISA performance for pen-based samples. Individual oral fluid collection was feasible in all kinds of pigs, whereas pen-based samples were unsuccessful in 40% of the group-housed sow pens. High levels of sensitivity comparable to those of the SER-ELISA were found for the OF-ELISA when performed on individual, 5-sample pool or pen-based samples from pigs or sows. The OF-ELISA lacked specificity for individual samples from sows. Pooling 5 individual oral fluid samples or using pen-based samples increased test specificity.
Collapse
Affiliation(s)
- C Fablet
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Epidémiologie et Bien-Etre du Porc, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France.
| | - P Renson
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Virologie Immunologie Porcines, B.P. 53, 22440 Ploufragan, France; Union des Groupements de Producteurs de Viande de Bretagne (UGPVB), 104 rue Eugène Pottier, CS 26553, 35065 Rennes, France; Université Bretagne-Loire, France
| | - F Pol
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Epidémiologie et Bien-Etre du Porc, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - V Dorenlor
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Epidémiologie et Bien-Etre du Porc, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - S Mahé
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Virologie Immunologie Porcines, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - F Eono
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Epidémiologie et Bien-Etre du Porc, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - E Eveno
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Epidémiologie et Bien-Etre du Porc, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - M Le Dimna
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Virologie Immunologie Porcines, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - D Liegard-Vanhecke
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Epidémiologie et Bien-Etre du Porc, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - S Eudier
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Epidémiologie et Bien-Etre du Porc, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - N Rose
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Epidémiologie et Bien-Etre du Porc, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| | - O Bourry
- Agence Nationale de Sécurité Sanitaire (ANSES), Unité Virologie Immunologie Porcines, B.P. 53, 22440 Ploufragan, France; Université Bretagne-Loire, France
| |
Collapse
|
48
|
Takeuti KL, de Barcellos DESN, de Lara AC, Kunrath CF, Pieters M. Detection of Mycoplasma hyopneumoniae in naturally infected gilts over time. Vet Microbiol 2017; 203:215-220. [PMID: 28619147 DOI: 10.1016/j.vetmic.2017.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/15/2022]
Abstract
Mycoplasma hyopneumoniae causes a chronic respiratory infection in pigs and its transmission occurs mainly by direct contact and by vertical transmission (sow-to-piglet). The objective of this study was to assess the detection dynamics and persistence of M. hyopneumoniae natural infection in replacement gilts. Forty-four twenty-day-old gilts were selected from a M. hyopneumoniae positive farm and followed up to one day prior to their first weaning. Laryngeal swabs were collected every 30days, starting at day 20, for M. hyopneumoniae detection by real-time PCR, resulting in 12 samplings. Piglets born to selected females were sampled via laryngeal swabs one day prior to weaning to evaluate sow-to-piglet transmission. The M. hyopneumoniae prevalence was estimated at each one of the 12 samplings in gilts and a multiple comparison test and Bonferroni correction were performed. Bacterial detection in gilts started at 110days of age (doa) and a significant increase (p<0.05) occurred at 140 doa. The M. hyopneumoniae prevalence remained above 20% from 140 to 230 doa, decreasing thereafter. However, it did not reach 0% at any sampling after 110 doa. In this study, M. hyopneumoniae was not detected in piglets sampled prior to weaning. The M. hyopneumoniae detection pattern showed that in natural infections, gilts were positive for M. hyopneumoniae for one to three months, but occasionally long-term detection may occur. Moreover, the lack of M. hyopneumoniae detection throughout the study in 18.2% of gilts indicated the existence of negative subpopulations in positive herds.
Collapse
Affiliation(s)
- Karine L Takeuti
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - David E S N de Barcellos
- Department of Animal Medicine, College of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.
| |
Collapse
|
49
|
Pieters M, Daniels J, Rovira A. Comparison of sample types and diagnostic methods for in vivo detection of Mycoplasma hyopneumoniae during early stages of infection. Vet Microbiol 2017; 203:103-109. [PMID: 28619131 DOI: 10.1016/j.vetmic.2017.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Detection of Mycoplasma hyopneumoniae in live pigs during the early stages of infection is critical for timely implementation of control measures, but is technically challenging. This study compared the sensitivity of various sample types and diagnostic methods for detection of M. hyopneumoniae during the first 28days after experimental exposure. Twenty-one 8-week old pigs were intra-tracheally inoculated on day 0 with M. hyopneumoniae strain 232. Two age matched pigs were mock inoculated and maintained as negative controls. On post-inoculation days 0, 2, 5, 9, 14, 21 and 28, nasal swabs, laryngeal swabs, tracheobronchial lavage fluid, and blood samples were obtained from each pig and oral fluid samples were obtained from each room in which pigs were housed. Serum samples were assayed by ELISA for IgM and IgG M. hyopneumoniae antibodies and C-reactive protein. All other samples were tested for M. hyopneumoniae DNA by species-specific real-time PCR. Serum antibodies (IgG) to M. hyopneumoniae were detected in challenge-inoculated pigs on days 21 and 28. M. hyopneumoniae DNA was detected in samples from experimentally inoculated pigs beginning at 5days post-inoculation. Laryngeal swabs at all samplings beginning on day 5 showed the highest sensitivity for M. hyopneumoniae DNA Detection, while oral fluids showed the lowest sensitivity. Although laryngeal swabs are not considered the typical M. hyopneumoniae diagnostic sample, under the conditions of this study laryngeal swabs tested by PCR proved to be a practical and reliable diagnostic sample for M. hyopneumoniae detection in vivo during early-stage infection.
Collapse
Affiliation(s)
- Maria Pieters
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA.
| | - Jason Daniels
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA; Present address: Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Albert Rovira
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave., St. Paul, MN 55108, USA
| |
Collapse
|
50
|
|