1
|
Carlsen L, Grottker M, Heim M, Knobling B, Schlauß S, Wellbrock K, Knobloch JK. High Genetic Diversity in Third-Generation Cephalosporin-Resistant Escherichia coli in Wastewater Systems of Schleswig-Holstein. Pathogens 2024; 13:90. [PMID: 38276163 PMCID: PMC10820474 DOI: 10.3390/pathogens13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The spread of multidrug-resistant bacteria from humans or livestock is a critical issue. However, the epidemiology of resistant pathogens across wastewater pathways is poorly understood. Therefore, we performed a detailed comparison of third-generation cephalosporin-resistant Escherichia coli (3GCREC) from wastewater treatment plants (WWTPs) to analyze dissemination pathways. A total of 172 3GCREC isolated from four WWTPs were characterized via whole genome sequencing. Clonal relatedness was determined using multi-locus sequence typing (MLST) and core genome MLST. Resistance genotypes and plasmid replicons were determined. A total of 68 MLST sequence types were observed with 28 closely related clusters. Resistance genes to eight antibiotic classes were detected. In fluoroquinolone-resistant isolates, resistance was associated with three-or-more point mutations in target genes. Typing revealed high genetic diversity with only a few clonal lineages present in all WWTPs. The distribution paths of individual lines could only be traced in exceptional cases with a lack of enrichment of certain lineages. Varying resistance genes and plasmids, as well as fluoroquinolone resistance-associated point mutations in individual isolates, further corroborated the high diversity of 3GCREC in WWTPs. In total, we observed high diversity of 3GCREC inside the tested WWTPs with proof of resistant strains being released into the environment even after treatment processes.
Collapse
Affiliation(s)
- Laura Carlsen
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| | - Matthias Grottker
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Malika Heim
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Birte Knobling
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| | - Sebastian Schlauß
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Kai Wellbrock
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Johannes K. Knobloch
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| |
Collapse
|
2
|
Orsi H, Guimarães FF, Leite DS, Guerra ST, Joaquim SF, Pantoja JCF, Hernandes RT, Lucheis SB, Ribeiro MG, Langoni H, Rall VLM. Characterization of mammary pathogenic Escherichia coli reveals the diversity of Escherichia coli isolates associated with bovine clinical mastitis in Brazil. J Dairy Sci 2023; 106:1403-1413. [PMID: 36567244 DOI: 10.3168/jds.2022-22126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022]
Abstract
Mammary pathogenic Escherichia coli (MPEC) is one of the most common pathogens associated with clinical mastitis. We analyzed isolates obtained from milk samples of cows with clinical mastitis, collected from 10 farms in Brazil, to verify molecular and phenotypic characteristics. A total of 192 (4.5%) mammary pathogenic E. coli isolates were obtained from 4,275 milk samples analyzed, but we tested 161. We assigned most of these isolates to E. coli phylogroups B1 (52.8%) and A (36.6%), although phylogroups B2, C, D, E, and unknown also occurred. All isolates were assessed for the presence of several genes encoding virulence factors, such as adhesins (sfaDE, papC, afaBC III, ecpA, fimH, papA, and iha), toxins (hlyA, cnf1, sat, vat, and cdt), siderophores (iroN, irp2, iucD, ireA, and sitA), an invasion protein (ibeA), and serum resistance proteins (traT, KpsMTII, and ompT), and isolates from phylogroups B1, B2, and E showed up to 8 genes. Two isolates harbored the locus of enterocyte effacement (escN+) and lack the bundle-forming pilus (bfpB-) operon, which corresponds to a molecular profile of a subgroup of diarrheagenic E. coli (aEPEC), thus being classified as hybrid MPEC/aEPEC isolates. These isolates displayed a localized adherence-like pattern of adherence in HeLa cells and were able to promote F-actin polymerization underneath adherent bacteria. Based on the pulsed-field gel electrophoresis analyses, considerable genetic variability was observed. A low index of antimicrobial resistance was observed and 2 extended-spectrum β-lactamase-producing E. coli were identified, both harboring blaCTX-M15 gene, and were classified as ST10 and ST993 using multilocus sequence typing. A total of 148 (91.2%) isolates were weak biofilm producers or formed no biofilm. Because raw milk is still frequently consumed in Brazil, the occurrence of virulence factor-encoding genes from extraintestinal or diarrheagenic E. coli added to the presence of extended-spectrum β-lactamase-producing isolates can turn this veterinary medicine problem into a public health concern.
Collapse
Affiliation(s)
- Henrique Orsi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Felipe F Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Domingos S Leite
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, SP 13083 970, Brazil
| | - Simony T Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Sâmea F Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Rodrigo T Hernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Simone B Lucheis
- Paulista Agency of Agribusiness Technology, Bauru, SP 17030 000, Brazil
| | - Márcio G Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil.
| |
Collapse
|
3
|
Louge Uriarte EL, González Pasayo RA, Massó M, Carrera Paez L, Domínguez Moncla M, Donis N, Malena R, Méndez A, Morrell E, Giannitti F, Armendano JI, Faverin C, Centrón D, Parreño V, Odeón AC, Quiroga MP, Moreira AR. Molecular characterization of multidrug-resistant Escherichia coli of the phylogroups A and C in dairy calves with meningitis and septicemia. Microb Pathog 2022; 163:105378. [PMID: 34982979 DOI: 10.1016/j.micpath.2021.105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::blaCTX-M-2) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.
Collapse
Affiliation(s)
- Enrique L Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina.
| | - Ramón A González Pasayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Mariana Massó
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Laura Carrera Paez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Manuel Domínguez Moncla
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Nicolás Donis
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Rosana Malena
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Alejandra Méndez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Eleonora Morrell
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Federico Giannitti
- Instituto Nacional de Investigación Agropecuaria (INIA), Ruta 50 km 11, Estación Experimental La Estanzuela, Semillero, 70006, Colonia, Uruguay
| | - Joaquín I Armendano
- Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil, 7000, Argentina
| | - Claudia Faverin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Daniela Centrón
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Viviana Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, 1712, Buenos Aires, Argentina
| | - Anselmo C Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - María Paula Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.
| | - Ana Rita Moreira
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| |
Collapse
|
4
|
Characterisation of Early Positive mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics (Basel) 2021; 10:antibiotics10091041. [PMID: 34572623 PMCID: PMC8466100 DOI: 10.3390/antibiotics10091041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
An antibiotic susceptibility monitoring programme was conducted from 2004 to 2010, resulting in a collection of 143 Escherichia coli cultured from bovine faecal samples (diarrhoea) and milk-aliquots (mastitis). The isolates were subjected to whole-genome sequencing and were distributed in phylogroups A, B1, B2, C, D, E, and G with no correlation for particular genotypes with pathotypes. In fact, the population structure showed that the strains belonging to the different phylogroups matched broadly to ST complexes; however, the isolates are randomly associated with the diseases, highlighting the necessity to investigate the virulence factors more accurately in order to identify the mechanisms by which they cause disease. The antimicrobial resistance was assessed phenotypically, confirming the genomic prediction on three isolates that were resistant to colistin, although one isolate was positive for the presence of the gene mcr-1 but susceptible to colistin. To further characterise the genomic context, the four strains were sequenced by using a single-molecule long read approach. Genetic analyses indicated that these four isolates harboured complex and diverse plasmids encoding not only antibiotic resistant genes (including mcr-1 and bla) but also virulence genes (siderophore, ColV, T4SS). A detailed description of the plasmids of these four E. coli strains, which are linked to bovine mastitis and diarrhoea, is presented for the first time along with the characterisation of the predicted antibiotic resistance genes. The study highlighted the diversity of incompatibility types encoding complex antibiotic resistance elements such as Tn6330, ISEcp1, Tn6029, and IS5075. The mcr-1 resistance determinant was identified in IncHI2 plasmids pCFS3273-1 and pCFS3292-1, thus providing some of the earliest examples of mcr-1 reported in Europe, and these sequences may be a representative of the early mcr-1 plasmidome characterisation in the EU/EEA.
Collapse
|
5
|
Hennessey M, Whatford L, Payne-Gifford S, Johnson KF, Van Winden S, Barling D, Häsler B. Antimicrobial & antiparasitic use and resistance in British sheep and cattle: a systematic review. Prev Vet Med 2020; 185:105174. [PMID: 33189057 DOI: 10.1016/j.prevetmed.2020.105174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
A variety of antimicrobials and antiparasitics are used to treat British cattle and sheep to ensure animal welfare, a safe food supply, and maintain farm incomes. However, with increasing global concern about antimicrobial resistance in human and animal populations, there is increased scrutiny of the use of antimicrobials in food-producing animals. This systematic review sought to identify and describe peer and non-peer reviewed sources, published over the last ten years, detailing the usage of, and resistance to, antimicrobials and antiparasitics in sheep and cattle farming systems in Britain as well as identify knowledge gaps. Applying the PRISMA review protocol and guidelines for including grey literature; Scopus, Web of Science, Medline, and government repositories were searched for relevant articles and reports. Seven hundred and seventy titles and abstracts and 126 full-text records were assessed, of which 40 scholarly articles and five government reports were included for data extraction. Antibiotic usage in sheep and cattle in Britain appear to be below the UK average for all livestock and tetracyclines and beta-lactam antibiotics were found to be the most commonly used. However, the poor level of coverage afforded to these species compared to other livestock reduced the certainty of these findings. Although resistance to some antibiotics (using Escherichia coli as a marker) appeared to have decreased in sheep and cattle in England and Wales over a five-year period (2013-2018), levels of resistance remain high to commonly used antibiotics. The small number and fragmented nature of studies identified by this review describing anthelmintic usage, and the lack of available national sales data, prevented the identification of trends in either sheep or cattle. We recommend that additional efforts are taken to collect farm or veterinary level data and argue that extraction of this data is imperative to the development of antimicrobial and antiparasitic resistance strategies in Britain, both of which are needed to reduce usage of these anti-infective agents, curb the development of resistance, and safeguard national agricultural production. Finally, metrics produced by this data should be generated in a way to allow for maximum comparability across species, sectors, and countries.
Collapse
Affiliation(s)
- Mathew Hennessey
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.
| | - Louise Whatford
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Sophie Payne-Gifford
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Kate F Johnson
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Steven Van Winden
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - David Barling
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, UK
| | - Barbara Häsler
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
6
|
McKinnon J, Roy Chowdhury P, Djordjevic SP. Molecular Analysis of an IncF ColV-Like Plasmid Lineage That Carries a Complex Resistance Locus with a Trackable Genetic Signature. Microb Drug Resist 2020; 26:787-793. [DOI: 10.1089/mdr.2019.0277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica McKinnon
- ithree Institute, University of Technology Sydney, Sydney, Australia
| | - Piklu Roy Chowdhury
- ithree Institute, University of Technology Sydney, Sydney, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, NSW, Australia
| | | |
Collapse
|
7
|
Zelendova M, Dolejska M, Masarikova M, Jamborova I, Vasek J, Smola J, Manga I, Cizek A. CTX-M-producing Escherichia coli in pigs from a Czech farm during production cycle. Lett Appl Microbiol 2020; 71:369-376. [PMID: 32452042 DOI: 10.1111/lam.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
We evaluated the prevalence and epidemiology of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates in pigs during production cycle on a Czech farm with the history of previous use of ceftiofur. ESBL-producing E. coli isolates were obtained from rectal swabs from pigs of different age groups (suckling piglets, weaned piglets, growers and sows). Collected samples were directly cultivated on MacConkey agar with cefotaxime (2 mg l-1 ), whereas intestinal swabs of slaughtered pigs and surface swabs from pig carcasses were also pre-enriched in buffered peptone water without antimicrobials before the cultivation. Clonal relationship of selected isolates was determined by XbaI pulse-field gel electrophoresis and multi-locus sequence typing. The transferability of plasmids carrying blaCTX-M genes was tested by conjugation experiments. From all examined samples, 141 (43·7%, n = 323) were positive for ESBL-producing E. coli. All ESBL-producing isolates showed resistance to multiple antimicrobials and were positive for blaCTX-M genes. The blaCTX-M-1 was carried by conjugative IncN/ST1 plasmids (c. 40-45 kb) while the blaCTX-M-15 was located on conjugative F plasmids with F:18:A5:B1 formula (c. 165 kb). This study demonstrated the persistence of CTX-M-positive E. coli isolates 2 months after banner of ceftiofur usage and indicated possible risk of transmission of these isolates to humans via the food chain.
Collapse
Affiliation(s)
- M Zelendova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - M Dolejska
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - M Masarikova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - I Jamborova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - J Vasek
- Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - J Smola
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - I Manga
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - A Cizek
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
8
|
Joshi PR, Thummeepak R, Leungtongkam U, Pooarlai R, Paudel S, Acharya M, Dhital S, Sitthisak S. The emergence of colistin-resistant Escherichia coli in chicken meats in Nepal. FEMS Microbiol Lett 2020; 366:5637862. [PMID: 31755930 DOI: 10.1093/femsle/fnz237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
The emergence and dissemination of colistin resistance among Gram-negative bacteria is a global problem. We initiated a surveillance of colistin-resistant and -susceptible Escherichia coli in raw meats from chicken in Nepal. A total of 180 meat samples were collected; from these, 60 E. coli strains were isolated (33.33%), of which 16 (26.66%) were colistin-resistant and harboured the mcr-1 gene. All isolates were characterised by antibiotic susceptibility testing, the presence of antibiotic resistance genes, phylogenetic analysis and plasmid replicon typing. Most of the colistin-resistant E. coli had the antibiotic resistant pattern CIP/CN/SXT/TE (43.75%). Coexistence of tet, qnr, sul and dfr genes was detected in both colistin-resistant and -susceptible E. coli. Most colistin-resistant E. coli strains belonged to phylogroup C, whereas 10% of isolates belonged to phylogroup D. Inc FIB was the dominant plasmid Inc type in the isolates. Dissemination of antibiotic-resistant E. coli in raw meats is a public health concern in Nepal and requires further investigation to ascertain the sources of contamination.
Collapse
Affiliation(s)
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Udomluk Leungtongkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Renukar Pooarlai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Saroj Paudel
- Nepalese Farming Institute, Maitidevi, Kathmandu, Nepal
| | | | - Samita Dhital
- Nepalese Farming Institute, Maitidevi, Kathmandu, Nepal
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
9
|
Jiang L, Li M, Tang J, Zhao X, Zhang J, Zhu H, Yu X, Li Y, Feng T, Zhang X. Effect of Different Disinfectants on Bacterial Aerosol Diversity in Poultry Houses. Front Microbiol 2018; 9:2113. [PMID: 30271388 PMCID: PMC6142877 DOI: 10.3389/fmicb.2018.02113] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
To better understand the effect of different disinfectants on the types and quantities of microorganisms in a broiler chicken house, five different types of disinfectants, including ozone, available chlorine, quaternary ammonium salt, glutaraldehyde, and mixed disinfectant, were used. The broiler house microbial communities were analyzed by high-throughput sequencing combined with air sampling. The results showed that the concentrations of airborne aerobic bacteria in the empty broiler houses after application of different disinfectants were significantly reduced compared to a house untreated with disinfectant (P < 0.05 or P < 0.01), and the number of inhalable particles of airborne aerobic bacteria sharply decreased after disinfection. Of the five disinfectants, the mixed disinfectant had the best disinfection efficacy on the total microbial communities (P < 0.05). A total of 508,143 high-quality sequences were obtained by high-throughput sequencing, which identified 1995 operational taxonomic units. In total, 42 phyla and 312 genera were identified. The structures of airborne microbial communities in the broiler houses after the different disinfectants were applied differed. In the house treated with the mixed disinfectant, the microbial communities containing opportunistic pathogens, such as Escherichia-Shigella, Bacillus, and Pseudomonas, had the lowest abundance, with a significant decrease compared to the house untreated with disinfectant. The alpha diversity index showed low diversity of the microbial communities in the house treated with mixed disinfectant. In contrast to the other four disinfectants, only a small amount of bacteria was detected in the air sample in the house treated with the mixed disinfectant; specifically, only four phyla were found (Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes). The mixed disinfectant produced a positive effect on disinfection for four phyla; however, it didn’t thoroughly eliminate them. At genus level, Bacillus, Arenimonas, and Shinella could not be detected in the house treated with the mixed disinfectant, but were detected in houses treated with other disinfectants. The high-throughput sequencing results revealed that the combination of multiple disinfectants exhibited a good disinfection efficacy and that this technique could disinfect the air of broiler houses. These results will help guide the development of a reasonable program for broiler house disinfection.
Collapse
Affiliation(s)
- Linlin Jiang
- Ludong University School of Life Sciences, Yantai, China
| | - Meng Li
- Ludong University School of Life Sciences, Yantai, China
| | - Jinxiu Tang
- Ludong University School of Life Sciences, Yantai, China
| | - Xiaoyu Zhao
- Ludong University School of Life Sciences, Yantai, China
| | - Jianlong Zhang
- Ludong University School of Life Sciences, Yantai, China
| | - Hongwei Zhu
- Ludong University School of Life Sciences, Yantai, China
| | - Xin Yu
- Ludong University School of Life Sciences, Yantai, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
| | - Tao Feng
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
| | - Xingxiao Zhang
- Ludong University School of Life Sciences, Yantai, China
| |
Collapse
|
10
|
Norizuki C, Kawamura K, Wachino JI, Suzuki M, Nagano N, Kondo T, Arakawa Y. Detection of Escherichia coli Producing CTX-M-1-Group Extended-Spectrum β-Lactamases from Pigs in Aichi Prefecture, Japan, between 2015 and 2016. Jpn J Infect Dis 2017; 71:33-38. [PMID: 29279444 DOI: 10.7883/yoken.jjid.2017.206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the prevalence and characteristics of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from Japanese pigs. A total of 345 pig fecal specimens were collected from 30 farms in the Aichi prefecture of Japan between June 2015 and April 2016, and 22 unique ESBL-producing E. coli were isolated from 16 samples spanning 8 farms. The ESBL types included CTX-M-15 (54.5%), CTX-M-55 (27.2%), CTX-M-3 (0.9%), and CTX-M-14 (0.9%). The predominant plasmid replicon type was IncN, and the isolates carried blaCTX-M-55. Nine sequence type (ST)s, including ST117, ST1706, ST38, and ST10, were detected in the ESBL-producers, but no B2-O25-ST131 was found. ESBL producers were highly resistant to cefotaxime, ceftiofur, and tetracycline, but were susceptible to imipenem, amikacin, and fosfomycin (FOM), although 2 ST354 isolates showed resistance to ciprofloxacin. All 11 chloramphenicol-resistant isolates, including ST117 (n = 6) and ST38 (n = 3) isolates, harbored floR, and the 2 FOM-resistant ST38 isolates harbored fosA3. Our results suggest that pigs do not act as direct reservoirs in the transmission of ESBL genes to E. coli in humans. However, ST117 E. coli carrying IncN-type plasmids mediating blaCTX-M-55 were isolated from several different farms, suggesting the potential for future spread in Japan. Therefore, plasmid sequence analyses and continuous surveillance are necessary from an epidemiological point of view and are required to better protect against ESBL-producer transmission.
Collapse
Affiliation(s)
- Chihiro Norizuki
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine
| | - Kumiko Kawamura
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine
| | - Jun-Ichi Wachino
- Department of Bacteriology, Nagoya University Graduate School of Medicine
| | - Masahiro Suzuki
- Laboratory of Bacteriology, Aichi Prefectural Institute of Public Health
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine
| | - Takaaki Kondo
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine
| |
Collapse
|
11
|
Stromberg ZR, Johnson JR, Fairbrother JM, Kilbourne J, Van Goor A, Curtiss R, Mellata M. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PLoS One 2017; 12:e0180599. [PMID: 28671990 PMCID: PMC5495491 DOI: 10.1371/journal.pone.0180599] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/16/2017] [Indexed: 11/18/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy production chickens could cause diseases in a chicken model of avian colibacillosis and three rodent models of ExPEC-associated human infections. From 304 E. coli isolates from chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes associated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset that causes extraintestinal infections in poultry. Selected isolates genetically identified as ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated phenotypes, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, meningitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled avian and human clinical ExPEC isolates in causing one or more ExPEC-associated illnesses in experimental animal infection models. Additionally, some isolates that were classified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and thus future studies are needed to elucidate their mechanisms of virulence. These findings show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in animal models, and thus may pose a health threat to poultry and consumers.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
| | - James R Johnson
- Veterans Affairs Medical Center and University of Minnesota, Minneapolis, Minnesota, United States of America
| | - John M Fairbrother
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Jacquelyn Kilbourne
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Angelica Van Goor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
| | - Roy Curtiss
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
12
|
Madoshi BP, Kudirkiene E, Mtambo MMA, Muhairwa AP, Lupindu AM, Olsen JE. Characterisation of Commensal Escherichia coli Isolated from Apparently Healthy Cattle and Their Attendants in Tanzania. PLoS One 2016; 11:e0168160. [PMID: 27977751 PMCID: PMC5158034 DOI: 10.1371/journal.pone.0168160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/26/2016] [Indexed: 12/13/2022] Open
Abstract
While pathogenic types of Escherichia coli are well characterized, relatively little is known about the commensal E. coli flora. In the current study, antimicrobial resistance in commensal E. coli and distribution of ERIC-PCR genotypes among isolates of such bacteria from cattle and cattle attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle isolates were highly resistant to tetracycline (40.8% and 33.1%), sulphamethazole-trimethoprim (49.0% and 8.8%) and ampicillin (44.9% and 21.3%). However, higher proportion of resistant E. coli and higher frequency of resistance to more than two antimicrobials was found in isolates from cattle attendants than isolates from cattle. Sixteen out of 66 ERIC-PCR genotypes were shared between the two hosts, and among these ones, seven types contained isolates from cattle and cattle attendants from the same farm, suggesting transfer of strains between hosts. Genome-wide analysis showed that the majority of the sequenced cattle isolates were assigned to phylogroups B1, while human isolates represented phylogroups A, C, D and E. In general, in silico resistome and virulence factor identification did not reveal differences between hosts or phylogroups, except for lpfA and iss found to be cattle and B1 phylogroup specific. The most frequent plasmids replicon genes found in strains from both hosts were of IncF type, which are commonly associated with carriage of antimicrobial and virulence genes. Commensal E. coli from cattle and attendants were found to share same genotypes and to carry antimicrobial resistance and virulence genes associated with both intra and extraintestinal E. coli pathotypes.
Collapse
Affiliation(s)
- Balichene P. Madoshi
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Livestock Training Agency – Mpwapwa Campus, Mpwapwa, Dodoma
| | - Egle Kudirkiene
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Madundo M. A. Mtambo
- Tanzania Industrial Research Developments Organisation, TIRDO Complex, Dar es Salaam, Tanzania
| | - Amandus P. Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Athumani M. Lupindu
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - John E. Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
13
|
Multilocus Sequence Typing and Virulence Profiles in Uropathogenic Escherichia coli Isolated from Cats in the United States. PLoS One 2015; 10:e0143335. [PMID: 26587840 PMCID: PMC4654559 DOI: 10.1371/journal.pone.0143335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
The population structure, virulence, and antimicrobial resistance of uropathogenic E. coli (UPEC) from cats are rarely characterized. The aim of this study was to compare and characterize the UPEC isolated from cats in four geographic regions of USA in terms of their multilocus sequence typing (MLST), virulence profiles, clinical signs, antimicrobial resistance and phylogenetic grouping. The results showed that a total of 74 E. coli isolates were typed to 40 sequence types with 10 being novel. The most frequent phylogenetic group was B2 (n = 57). The most frequent sequence types were ST73 (n = 12) and ST83 (n = 6), ST73 was represented by four multidrug resistant (MDR) and eight non-multidrug resistant (SDR) isolates, and ST83 were significantly more likely to exhibit no drug resistant (NDR) isolates carrying the highest number of virulence genes. Additionally, MDR isolates were more diverse, and followed by SDR and NDR isolates in regards to the distribution of the STs. afa/draBC was the most prevalent among the 29 virulence-associated genes. Linking virulence profile and antimicrobial resistance, the majority of virulence-associated genes tested were more prevalent in NDR isolates, and followed by SDR and MDR isolates. Twenty (50%) MLST types in this study have previously been associated with human isolates, suggesting that these STs are potentially zoonotic. Our data enhanced the understanding of E. coli population structure and virulence association from cats. The diverse and various combinations of virulence-associated genes implied that the infection control may be challenging.
Collapse
|
14
|
Herrero-Fresno A, Larsen I, Olsen JE. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains. J Appl Microbiol 2015; 119:342-53. [PMID: 25963647 DOI: 10.1111/jam.12840] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
AIMS To determine the genetic relatedness and the presence of virulence and antibiotic resistance genes in commensal Escherichia coli from nursery pigs in Danish intensive production. METHODS AND RESULTS The genetic diversity of 1000 E. coli strains randomly picked (N = 50 isolates) from cultured faecal samples (N = 4 pigs) from five intensive Danish pigs farms was analysed by repetitive extragenic palindromic-PCR (REP-PCR) and 42 unique REP-profiles were detected (similarity <92%). One profile was dominant (67.2% of strains) but farms differed significantly in the diversity of commensal E. coli: between eight and 21 different profiles per farm were detected. One to three strains representing each REP-profile were characterized by multilocus typing scheme-typing, as well as for presence of antimicrobial and virulence genes and serogrouping through microarray analysis. The 42 REP-profiles were classified into 22 different sequence types (ST) with ST10 being the most common, encompassing 10 REP-profiles. Resistance and virulence genes were detected in most of the isolates. Genes encoding AmpC-β-lactamases and quinolone resistance were found in one and three isolates, respectively. Toxin-producing genes were observed in 20 isolates. CONCLUSIONS A low genetic diversity was found in commensal gut E. coli from nursery pigs in Denmark. No correlation was observed between REP-profiles, ST-types and resistance/virulence patterns. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study analysing in depth the genetic variability of commensal E. coli from pigs in Danish intensive pig production. A tendency for higher diversity was observed with in nursery pigs that were treated with zinc oxide only, in absence of other antimicrobials. Strains with potential to disseminate virulence and antibiotic resistance genes to pathogenic subgroups of E. coli were found to be wide-spread.
Collapse
Affiliation(s)
- A Herrero-Fresno
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - I Larsen
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - J E Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
15
|
Bok E, Mazurek J, Stosik M, Wojciech M, Baldy-Chudzik K. Prevalence of virulence determinants and antimicrobial resistance among commensal Escherichia coli derived from dairy and beef cattle. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:970-85. [PMID: 25607605 PMCID: PMC4306905 DOI: 10.3390/ijerph120100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/22/2014] [Indexed: 01/30/2023]
Abstract
Cattle is a reservoir of potentially pathogenic E. coli, bacteria that can represent a significant threat to public health, hence it is crucial to monitor the prevalence of the genetic determinants of virulence and antimicrobial resistance among the E. coli population. The aim of this study was the analysis of the phylogenetic structure, distribution of virulence factors (VFs) and prevalence of antimicrobial resistance among E. coli isolated from two groups of healthy cattle: 50 cows housed in the conventional barn (147 isolates) and 42 cows living on the ecological pasture (118 isolates). The phylogenetic analysis, identification of VFs and antimicrobial resistance genes were based on either multiplex or simplex PCR. The antimicrobial susceptibilities of E. coli were examined using the broth microdilution method. Two statistical approaches were used to analyse the results obtained for two groups of cattle. The relations between the dependent (VFs profiles, antibiotics) and the independent variables were described using the two models. The mixed logit model was used to characterise the prevalence of the analysed factors in the sets of isolates. The univariate logistic regression model was used to characterise the prevalence of these factors in particular animals. Given each model, the odds ratio (OR) and the 95% confidence interval for the population were estimated. The phylogroup B1 was predominant among isolates from beef cattle, while the phylogroups A, B1 and D occurred with equal frequency among isolates from dairy cattle. The frequency of VFs-positive isolates was significantly higher among isolates from beef cattle. E. coli from dairy cattle revealed significantly higher resistance to antibiotics. Some of the tested resistance genes were present among isolates from dairy cattle. Our study showed that the habitat and diet may affect the genetic diversity of commensal E. coli in the cattle. The results suggest that the ecological pasture habitat is related to the increased spreading rate of the VFs, while the barn habitat is characterised by the higher levels of antimicrobial resistance among E. coli.
Collapse
Affiliation(s)
- Ewa Bok
- Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Monte Cassino St. 21b, 65-561 Zielona Góra, Poland.
| | - Justyna Mazurek
- Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Monte Cassino St. 21b, 65-561 Zielona Góra, Poland.
| | - Michał Stosik
- Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Monte Cassino St. 21b, 65-561 Zielona Góra, Poland.
| | - Magdalena Wojciech
- Department of Mathematical Statistics and Econometrics, Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Prof. Z. Szafrana St. 4a, 65-516 Zielona Góra, Poland.
| | - Katarzyna Baldy-Chudzik
- Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Monte Cassino St. 21b, 65-561 Zielona Góra, Poland.
| |
Collapse
|
16
|
Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl Environ Microbiol 2014; 81:648-57. [PMID: 25381245 DOI: 10.1128/aem.02459-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains of Escherichia coli were investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n = 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistant E. coli isolates and 355 (33%) E. coli isolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistant E. coli isolates carried the following ESBL genes: blaCTX-M-1 (n = 39 isolates), blaCTX-M-15 (n = 25), blaCTX-M-24 (n = 4), blaTEM-52 (n = 4), blaCTX-M-14 (n = 2), blaCTX-M-55 (n = 2), blaSHV-12 (n = 2), blaCTX-M-8 (n = 1), blaCTX-M-25 (n = 1), blaCTX-M-28 (n = 1), and an unspecified gene (n = 1). Forty-seven (31%) cefotaxime-resistant E. coli isolates carried the blaCMY-2 AmpC beta-lactamase gene. Sixty-two (17%) of the E. coli isolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genes qnrS1 (n = 54), qnrB19 (n = 4), qnrS1 and qnrB19 (n = 2), qnrS2 (n = 1), and aac(6')-Ib-cr (n = 1). Eleven isolates from the Czech Republic (n = 8) and Serbia (n = 3) were identified to be CTX-M-15-producing E. coli clone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positive E. coli isolates were determined, with ST58 (n = 15), ST10 (n = 14), and ST131 (n = 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positive E. coli isolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.
Collapse
|
17
|
Wu G, Day MJ, Mafura MT, Nunez-Garcia J, Fenner JJ, Sharma M, van Essen-Zandbergen A, Rodríguez I, Dierikx C, Kadlec K, Schink AK, Wain J, Helmuth R, Guerra B, Schwarz S, Threlfall J, Woodward MJ, Woodford N, Coldham N, Mevius D. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, The Netherlands and Germany. PLoS One 2013; 8:e75392. [PMID: 24086522 PMCID: PMC3784421 DOI: 10.1371/journal.pone.0075392] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/12/2013] [Indexed: 11/26/2022] Open
Abstract
The putative virulence and antimicrobial resistance gene contents of extended spectrum β-lactamase (ESBL)-positive E. coli (n=629) isolated between 2005 and 2009 from humans, animals and animal food products in Germany, The Netherlands and the UK were compared using a microarray approach to test the suitability of this approach with regard to determining their similarities. A selection of isolates (n=313) were also analysed by multilocus sequence typing (MLST). Isolates harbouring blaCTX-M-group-1 dominated (66%, n=418) and originated from both animals and cases of human infections in all three countries; 23% (n=144) of all isolates contained both blaCTX-M-group-1 and blaOXA-1-like genes, predominantly from humans (n=127) and UK cattle (n=15). The antimicrobial resistance and virulence gene profiles of this collection of isolates were highly diverse. A substantial number of human isolates (32%, n=87) did not share more than 40% similarity (based on the Jaccard coefficient) with animal isolates. A further 43% of human isolates from the three countries (n=117) were at least 40% similar to each other and to five isolates from UK cattle and one each from Dutch chicken meat and a German dog; the members of this group usually harboured genes such as mph(A), mrx, aac(6’)-Ib, catB3, blaOXA-1-like and blaCTX-M-group-1. forty-four per cent of the MLST-typed isolates in this group belonged to ST131 (n=18) and 22% to ST405 (n=9), all from humans. Among animal isolates subjected to MLST (n=258), only 1.2% (n=3) were more than 70% similar to human isolates in gene profiles and shared the same MLST clonal complex with the corresponding human isolates. The results suggest that minimising human-to-human transmission is essential to control the spread of ESBL-positive E. coli in humans.
Collapse
Affiliation(s)
- Guanghui Wu
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
- * E-mail:
| | | | - Muriel T. Mafura
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Javier Nunez-Garcia
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Jackie J. Fenner
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Meenaxi Sharma
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Alieda van Essen-Zandbergen
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI) of Wageningen, Lelystad, the Netherlands
| | - Irene Rodríguez
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Cindy Dierikx
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI) of Wageningen, Lelystad, the Netherlands
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Anne-Kathrin Schink
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - John Wain
- Public Health England, London, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Reiner Helmuth
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Beatriz Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | | | - Martin J. Woodward
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | | | - Nick Coldham
- Animal Health and Veterinary Laboratories Agency (AHVLA, Weybridge), Addlestone, United Kingdom
| | - Dik Mevius
- Department of Bacteriology and TSEs, Central Veterinary Institute (CVI) of Wageningen, Lelystad, the Netherlands
| |
Collapse
|
18
|
Dahmen S, Métayer V, Gay E, Madec JY, Haenni M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet Microbiol 2013; 162:793-799. [DOI: 10.1016/j.vetmic.2012.10.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 11/29/2022]
|