1
|
Xu T, Deng LS, Jian ZJ, Xu L, Li FQ, Lai SY, Ai YR, Zhu L, Xu ZW. First report on identification and genomic analysis of a novel porcine circovirus (porcine circovirus 4) in cats. Front Microbiol 2023; 14:1258484. [PMID: 37808320 PMCID: PMC10556453 DOI: 10.3389/fmicb.2023.1258484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Porcine circovirus type 4 (PCV4) is an emerging circovirus, which has been detected in domestic pigs across various provinces in China and Korea. In this study, we aimed to investigate whether cats are susceptible to PCV4. For this purpose, we collected 116 cat samples from animal hospitals in Sichuan Province, China, between 2021 and 2022. Using a SYBR Green-based real-time PCR assay, we detected PCV4 in 5 out of the 116 clinical samples, indicating a positive rate of 4.31% (5/116) and confirming the presence of PCV4 in cats from Sichuan Province, China. Moreover, we successfully sequenced and analyzed the complete genome of one PCV4 strain (SCGA-Cat) along with 60 reference sequences deposited in the GenBank database. SCGA-Cat exhibited high nucleotide homology (98.2-99.0%) with PCV4 strains from other species, including dogs, pigs, dairy cows, and fur animals. Notably, the SCGA-Cat strain from cats clustered closely with a PCV4 strain derived from a pig collected in Fujian Province, China. To the best of our knowledge, this study represents the first report on the molecular detection of PCV4 in cats worldwide, which prompted us to understand the genetic diversity and cross-species transmission of the ongoing PCV4 cases. However, further investigations are needed to explore the association between PCV4 infection and clinical syndromes in cats.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Shuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Jie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Feng-Qin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Zhu J, Xiao Q, Wen L, Yin L, Zhang F, Li T, Banma Z, He K, Suolang S. First detection and complete genome analysis of porcine circovirus-like virus P1 and porcine circovirus-2 in yak in China. Vet Med Sci 2022; 8:2553-2561. [PMID: 36049138 PMCID: PMC9677406 DOI: 10.1002/vms3.911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Porcine circovirus-like virus P1, like porcine circovirus type 2 (PCV2), is a potential pathogen of post-weaning multisystemic wasting syndrome in swine. Yaks are a valuable species and an iconic symbol of the Tibet Plateau which is the highest and largest plateau in the world. In this study, a total of 105 yak diarrheal samples, collected from 13 farms in Linzhi in the Tibet Plateau from January 2019 to December 2021, that were screened for P1 and PCV2 by polymerase chain reaction, 10.48% (n = 11) were positive for P1, 4.76% (n = 5) for PCV2, and 5.71% (n = 6) were positive for coinfection of P1 and PCV2. In addition, the whole genomes of eight P1 strains and eight PCV2 strains were sequenced. Alignment of deduced amino acid sequences of P1 ORF1 and PCV2 ORF2 gene revealed that ON012566 had one unique amino acid mutation at residues 137 (T to P). This mutation has important implication for the study of virus virulence, tissue tropism, and immune response. Phylogenetic analysis shows that the yak-origin P1 strains in this study with cattle-origin P1 reference strains were grouped into one cluster. The yak-origin PCV2 (ON012566) and a buffalo-origin PCV2 (KM116514) reference strain clustered in the same branch in the PCV2b regions. Meanwhile, the remaining PCV2 strains and buffalo-origin PCV2 reference strain (ON012565) clustered in the PCV2d regions. To summarize, to our knowledge, this is the first report on the molecular prevalence and genome characteristics of P1 and PCV2 in yaks in the world and will contribute to further study of the molecular epidemiology, source, and evolution of P1 and PCV2 strains.
Collapse
Affiliation(s)
- Jiaping Zhu
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Qi Xiao
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Libin Wen
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Lihong Yin
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Fengxi Zhang
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Tianjiao Li
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Zelang Banma
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| | - Kongwang He
- Institute of Veterinary MedicineJiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and TechnologyMinistry of Agriculture and Rural AffairsNanjingChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Sizhu Suolang
- College of Animal ScienceTibet Agricultural and Animal Husbandry University, Provincial Key Laboratory of Tibet Plateau Animal Epidemic Disease ResearchLinZhiChina
| |
Collapse
|
3
|
Molecular Detection and Genetic Characterization of Porcine Circovirus 2 (PCV-2) in Black-Backed Jackal (Lupulella mesomelas) in Namibia. Animals (Basel) 2022; 12:ani12050620. [PMID: 35268189 PMCID: PMC8909721 DOI: 10.3390/ani12050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the genus Circovirus have been identified in several host species. While initially considered host-specific, there is growing evidence of their presence in unexpected hosts. Porcine circovirus 2 (PCV-2) is no exception, having been reported in animals belonging to different orders, including carnivores. Recently, PCV-2 was detected in domestic pigs, warthogs and antelopes in Namibia. Considering the potential contact between these populations and wild carnivores, the presence of PCV-2 was investigated in 32 black-backed jackals (Lupulella mesomelas) shot between February and July 2021 as part of predator control operations in Namibia. Two lung lymph nodes tested positive for PCV-2 by PCR, confirming the broader-than-expected PCV-2 host tropism and the susceptibility of canids. Sequence analysis demonstrated a close association between the PCV-2s identified in the jackals and PCV-2b strains collected from South African domestic pigs. Although several hypotheses regarding the source of the jackal’s infection are proposed, further studies should be performed to properly assess how PCV-2 is acquired and maintained in the wild and its potential impact on wild and domestic species.
Collapse
|
4
|
Tarasova E, Okimoto N, Feng S, Nerukh D, Khayat R, Taiji M. Constant pH molecular dynamics of porcine circovirus 2 capsid protein reveals a mechanism for capsid assembly. Phys Chem Chem Phys 2021; 23:24617-24626. [PMID: 34726674 PMCID: PMC8705882 DOI: 10.1039/d1cp02874j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spatiotemporal regulation of viral capsid assembly ensures the selection of the viral genome for encapsidation. The porcine circovirus 2 is the smallest autonomously replicating pathogenic virus, yet how PCV2 capsid assembly is regulated to occur within the nucleus remains unknown. We report that pure PCV2 capsid proteins, in the absence of nucleic acids, require acidic conditions to assemble into empty capsids in vitro. By employing constant pH replica exchange molecular dynamics, we unveil the atomistic mechanism of pH-dependency for capsid assembly. The results show that an appropriate protonation configuration for a cluster of acidic amino acids is necessary to appropriately position the GH-loop for driving the capsid assembly. We demonstrate that assembly is prohibited at neutral pH because deprotonation of these residues results in their electrostatic repulsion, shifting the GH-loop to a position incompatible with capsid assembly. We propose that encapsulation of nucleic acids overcomes this repulsion to suitably position the GH-loop. Our findings provide the first atomic resolution mechanism of capsid assembly regulation. These findings are useful for the development of therapeutics that inhibit PCV2 self-assembly.
Collapse
Affiliation(s)
- Elvira Tarasova
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Noriaki Okimoto
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Drug Discovery Molecular Simulation Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Shanshan Feng
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Dmitry Nerukh
- Department of Mathematics, Aston University, Birmingham, UK
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Makoto Taiji
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Drug Discovery Molecular Simulation Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
5
|
Hui A, Altan E, Slovis N, Fletcher C, Deng X, Delwart E. Circovirus in Blood of a Febrile Horse with Hepatitis. Viruses 2021; 13:v13050944. [PMID: 34065502 PMCID: PMC8161410 DOI: 10.3390/v13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circoviruses infect vertebrates where they can result in a wide range of disease signs or in asymptomatic infections. Using viral metagenomics we analyzed a pool of five sera from four healthy and one sick horse. Sequences from parvovirus-H, equus anellovirus, and distantly related to mammalian circoviruses were recognized. PCR identified the circovirus reads as originating from a pregnant mare with fever and hepatitis. That horse's serum was also positive by real time PCR for equine parvovirus H and negative for the flavivirus equine hepacivirus. The complete circular genome of equine circovirus 1 strain Charaf (EqCV1-Charaf) was completed using PCR and Sanger sequencing. EqCV1 replicase showed 73-74% identity to those of their closest relatives, pig circoviruses 1/2, and elk circovirus. The closest capsid proteins were from the same ungulate circoviruses with 62-63% identity. The overall nucleotide identity of 72% to its closest relative indicates that EqCV1 is a new species in the Circovirus genus, the first reported in genus Equus. Whether EqCV1 alone or in co-infections can result in disease and its prevalence in different equine populations will require further studies now facilitated using EqCV1's genome sequence.
Collapse
Affiliation(s)
- Alvin Hui
- Vitalant Research Institute, San Francisco, CA 94118, USA; (A.H.); (E.A.); (X.D.)
| | - Eda Altan
- Vitalant Research Institute, San Francisco, CA 94118, USA; (A.H.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Nathan Slovis
- Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40361, USA; (N.S.); (C.F.)
| | - Caitlin Fletcher
- Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40361, USA; (N.S.); (C.F.)
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA 94118, USA; (A.H.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA 94118, USA; (A.H.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
- Correspondence:
| |
Collapse
|
6
|
Li Y, Ma Z, Liu M, Cao L, Zhang J, Jiao Q, Meng F, Tong Z, Hu S, Jiang Z, Yang Y, Li B, Liu S. Porcine circovirus 3 in cattle in Shandong province of China: A retrospective study from 2011 to 2018. Vet Microbiol 2020; 248:108824. [PMID: 32891952 DOI: 10.1016/j.vetmic.2020.108824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Porcine circovirus type 3 (PCV3) is a new member of Circovirus, which could cause various symptoms in infected pigs. It has been reported in many countries and detected from various animals. This study retrospectively analyzed serum samples that were randomly collected from 1,499 clinically healthy cattle in Shandong province from 2011 to 2018. The PCV3 DNA was detected in 28.95% (434/1,499) of samples. Twenty-seven cap genes of PCV3 were sequenced and compared with seventy reference sequences. They were in several different branches, but all belonged to PCV3b. The results indicated that PCV3 was prevalent in health cattle in Shandong province of China. Though infected cattle did not show any clinical symptoms, they could be a reservoir for the virus and probably transferred them back to pigs.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zicheng Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Mengda Liu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Longlong Cao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiandong Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qiulin Jiao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Fanliang Meng
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ze Tong
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shilin Hu
- College of Animal Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, 261061, China
| | - Zixin Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yudong Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Baoquan Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Sidang Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
7
|
Opriessnig T, Karuppannan AK, Castro AMMG, Xiao CT. Porcine circoviruses: current status, knowledge gaps and challenges. Virus Res 2020; 286:198044. [PMID: 32502553 DOI: 10.1016/j.virusres.2020.198044] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Circoviruses (CV) include some of the smallest viruses known. They were named after their circularly arranged single-stranded DNA genome with a gene encoding a conserved replicase protein on the sense strand. Circoviruses are widely distributed in mammals, fish, avian species and even insects. In pigs, four different CVs have been identified and named with consecutive numbers based on the order of their discovery: Porcine circovirus 1 (PCV1), Porcine circovirus 2 (PCV2), Porcine circovirus 3 (PCV3) and most recently Porcine circovirus 4 (PCV4). PCVs are ubiquitous in global pig populations and uninfected herds are rarely found. It is generally accepted that PCV1 is non-pathogenic. In contrast, PCV2 is considered an important, economically challenging pathogen on a global scale with comprehensive vaccination schemes in place. The role of PCV3 is still controversial several years after its discovery. Propagation of PCV3 appears to be challenging and only one successful experimental infection model has been published to date. Similarly to PCV2, PCV3 is widespread and found in many pigs regardless of their health history, including high health herds. PCV4 has only recently been discovered and further information on this virus is required to understand its potential impact. This review summarizes current knowledge on CVs in pigs and aims to contrast and compare known facts on PCVs.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
| | - Anbu K Karuppannan
- Vaccine Research Centre-Viral Vaccines, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
8
|
Zhai SL, Lu SS, Wei WK, Lv DH, Wen XH, Zhai Q, Chen QL, Sun YW, Xi Y. Reservoirs of Porcine Circoviruses: A Mini Review. Front Vet Sci 2019; 6:319. [PMID: 31616677 PMCID: PMC6763682 DOI: 10.3389/fvets.2019.00319] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
Porcine circovirus (PCV) is one of the smallest known DNA viruses in mammals. At present, PCVs are divided into three species, PCV1, PCV2, and PCV3. PCV1 and PCV2 were found in the 1970s and the 1990s, respectively, whereas PCV3 was discovered recently in 2016. PCV1 does not cause diseases in pigs. However, PCV3, similar to PCV2, is reported to be associated with several swine diseases, including porcine dermatitis and nephropathy syndrome (PDNS) and reproductive failure. PCVs are very common in domestic pigs as well as wild boars. However, PCVs have been occasionally isolated from non-porcine animals, including ruminants (such as cattle, goats, wild chamois, and roe deers), rodents (such as NMRI mice, BALB/c mice, Black C57 mice, ICR mice, Mus musculus, and Rattus rattus), canines (such as dogs, minks, foxes, and raccoon dogs), insects (such as flies, mosquitoes, and ticks), and shellfish. Moreover, PCVs are frequently reported in biological products, including human vaccines, animal vaccines, porcine-derived commercial pepsin products, and many cell lines. PCVs are also abundant in the environment, including water samples and air samples. Interestingly, PCV1 and/or PCV2 antibody or antigen has also been detected in sera, stool samples and respiratory swab samples of human, revealing zoonotic potential of PCVs. Thus, PCVs inhabit many types of reservoirs. In this review, we summarize the reservoirs of PCVs, and this information would be helpful in understanding the natural circulating status and possible cross-species transmission of PCVs.
Collapse
Affiliation(s)
- Shao-Lun Zhai
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Shou-Sheng Lu
- Guangdong Center for Animal Disease Prevention and Control, Guangzhou, China
| | - Wen-Kang Wei
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dian-Hong Lv
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xiao-Hui Wen
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qi Zhai
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qin-Ling Chen
- Key Laboratory of Animal Disease Prevention of Guangdong Province, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yan-Wei Sun
- Guangdong Center for Animal Disease Prevention and Control, Guangzhou, China
| | - Yun Xi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Franzo G, Grassi L, Tucciarone CM, Drigo M, Martini M, Pasotto D, Mondin A, Menandro ML. A wild circulation: High presence of Porcine circovirus 3 in different mammalian wild hosts and ticks. Transbound Emerg Dis 2019; 66:1548-1557. [PMID: 30901142 DOI: 10.1111/tbed.13180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/14/2019] [Indexed: 12/01/2022]
Abstract
Porcine circovirus 3 (PCV-3) has emerged as a potential threat for swine industry, being consistently reported in the presence of several clinical signs all around the world. Recently, its presence in wild boar has been demonstrated at high prevalence. This evidence is surprising since the lower density of wild populations might not be expected to sustain such efficient viral transmission. Porcine circoviruses were proven to exhibit a certain plasticity in the host tropism and were detected in unrelated species, like mice, dogs and ruminants. However, if this scenario applies also to wild animals remains to be established. Therefore, this study aimed to investigate the presence of PCV-3 in wild ungulates other than wild boar and in related hematophagous ectoparasites. One hundred and nine animals were sampled from different hilly and mountain areas of Friuli Venezia Giulia, including 9 chamois (Rupicapra rupicapra), 17 red deer (Cervus elaphus), 4 mouflons (Ovis musimon), 50 roe deer (Capreolus capreolus) and 29 wild boars (Sus scrofa). Additionally, host-matched ectoparasites were collected when present. Porcine circovirus 3 was diagnosed using molecular techniques and sequencing. This study results confirmed the high PCV-3 occurrence in wild boar and reported for the first time its presence, at low prevalence, in chamois and roe deer. Moreover, two ticks (Ixodes ricinus), one of which non-engorged, collected from PCV-3 negative roe deer, tested PCV-3 positive. The genetic characterization of some of the strains collected from non-swine hosts allowed to prove that, albeit clearly part of PCV-3 species, they were genetically unique, demonstrating the absence of among-samples contamination and thus confirming the actual presence of PCV-3 genome in these new hosts. Therefore, this study highlights an unexpected broad PCV-3 distribution and circulation in the wild, rising further questions on porcine circoviruses infectious cycle, epidemiology and origin, which will deserve additional investigations.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Italy
| | - Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Italy
| | - Marco Martini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Italy
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Italy
| | - Alessandra Mondin
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Italy
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Italy
| |
Collapse
|
10
|
Porcine Circovirus 2 Uses a Multitude of Weak Binding Sites To Interact with Heparan Sulfate, and the Interactions Do Not Follow the Symmetry of the Capsid. J Virol 2019; 93:JVI.02222-18. [PMID: 30602608 DOI: 10.1128/jvi.02222-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022] Open
Abstract
Porcine circovirus 2 (PCV2) is the smallest pathogenic virus capable of autonomous replication within its host. Infections result in immunosuppression and subsequent death of the host and are initiated via the attachment of the PCV2 icosahedral capsid to heparan sulfate (HS) and chondroitin sulfate B (CSB) glycosaminoglycans on the cell surface. However, the underlying mechanism of structural recognition remains to be explored. Using heparin, a routinely used analog of heparan sulfate, we demonstrate that increasing lengths of heparin exhibit a greater affinity toward PCV2. Our competition assays indicate that dextran sulfate (8 kDa) has a higher affinity for PCV2 than heparin (12 kDa), chondroitin sulfate B (41 kDa), hyaluronic acid (1.6 MDa), and dextran (6 kDa). This suggests that polymers high in sulfate content are capable of competing with the PCV2-heparan sulfate interaction and, thus, have the potential to inhibit PCV2 infection. Finally, we visualized the interaction between heparin and the PCV2 capsid using cryo-electron microscopy single-particle analysis, symmetry expansion, and focused classification. The image reconstructions provide the first example of an asymmetric distribution of heparin on the surface of an icosahedral virus capsid. We demonstrate that each of the 60 capsid subunits that generate the T=1 capsid can bind heparin via one of five binding sites. However, not all of the binding sites were occupied by heparin, and only one-third to two-thirds of the binding sites were occupied. The binding sites are defined by arginine, lysine, and polar amino acids. Mutating the arginine, lysine, and polar amino acids to alanine diminished the binding capacity of PCV2 to heparin.IMPORTANCE It has been demonstrated that porcine circovirus 2 (PCV2) attaches to cells via heparan sulfate (HS) and chondroitin sulfate B (CSB) glycosaminoglycans; however, the underlying structural mechanism describing the HS/CSB recognition by PCV2 remains to be explored. We used cryo-electron microscopy with single-particle analysis, symmetry expansion, and focused classification to visualize the interaction between the PCV2 capsid and heparin, an analog of heparan sulfate, to better than 3.6-Å resolution. We observed that the interaction between PCV2 and heparin does not adhere to the icosahedral symmetry of the capsid. To the best of our knowledge, this is the first example where the interaction between heparin and an icosahedral capsid does not follow the symmetry elements of the capsid. Our findings also suggest that anionic polymers, such as dextran sulfate, may act to inhibit PCV2 infection.
Collapse
|
11
|
Evolutionary analysis of Porcine circovirus 3 (PCV3) indicates an ancient origin for its current strains and a worldwide dispersion. Virus Genes 2018; 54:376-384. [DOI: 10.1007/s11262-018-1545-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/01/2018] [Indexed: 11/27/2022]
|
12
|
Shehata AA, Gerry DM, Heenemann K, Halami MY, Tokarzewski S, Wencel P, Vahlenkamp TW. Goose Parvovirus and Circovirus Coinfections in Ornamental Ducks. Avian Dis 2017; 60:516-22. [PMID: 27309298 DOI: 10.1637/11335-112615-case] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Clinical observations and diagnostic procedures carried out to elucidate the cause of high mortality in 2-8-wk-old ornamental ducks (mandarin, wood, falcated, and silver teal ducks) are described. At necropsy, ducklings showed general pallor of skeletal and heart muscles, subcutaneous gelatinous transudates, pericarditis, ascites, and severe edema and hyperemia of lungs. Histopathologic examination revealed that the most important changes were located in the crop, bursa of Fabricius, and lungs with presence of amorphic basic intracytoplasmic inclusions. No bacteria or fungi could be detected from affected organs and ascitic fluid. Viral diagnosis included molecular detection for the presence of goose parvovirus (GPV), circovirus, avian influenza, herpesviruses, paramyxovirus, reovirus, and polyomavirus. Both GPV and circovirus could be detected by real-time PCR and nested broad-spectrum PCR, respectively. Phylogenetically, full-length nucleotide sequence of GPV showed a close similarity ranging from 95.6% to 97.9% with European and Asian pathogenic GPV. On the other hand, the detected circovirus showed nucleotide identity of 90% to 98% with goose circoviruses (GoCVs). This is the first report of GoCVs and GPV in ornamental ducks. The concurrence of GPV and GoCV infections is thought to contribute to the high mortality.
Collapse
Affiliation(s)
- Awad A Shehata
- A Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany.,B Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Sadat City University, 22857 Minoufiya, Egypt
| | - Dorrestein M Gerry
- C Pathology Laboratory NOIVBD, Wintelresedijk 51, 5507 PP Veldhoven, the Netherlands
| | - Kristin Heenemann
- A Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Mohammed Y Halami
- A Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | | | - Peter Wencel
- D AviExpert S.P.W.C.P, ul. Gajowa 1, 20-827 Lublin, Poland
| | - Thomas W Vahlenkamp
- A Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
13
|
The Hsp90 inhibitor 17-DMAG decreases infection of porcine circovirus type 2 in mice. Microb Pathog 2017; 109:248-252. [DOI: 10.1016/j.micpath.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 02/02/2023]
|
14
|
Zhai SL, Zhou X, Lin T, Zhang H, Wen XH, Zhou XR, Jia CL, Tu D, Zhu XL, Chen QL, Wei WK, Lv DH. Reappearance of buffalo-origin-like porcine circovirus type 2 strains in swine herds in southern China. New Microbes New Infect 2017; 17:98-100. [PMID: 28417007 PMCID: PMC5388935 DOI: 10.1016/j.nmni.2017.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Previously, we identified three porcine circovirus type 2 (PCV2) strains in buffalo meat samples from southern China. In this study, we confirmed the reappearance of those buffalo-origin-like PCV2 strains in swine herds in this region, which supported the possible cross-species infection of PCV2 between buffalos and pigs under field conditions.
Collapse
Affiliation(s)
- S-L Zhai
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - X Zhou
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - T Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - H Zhang
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - X-H Wen
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - X-R Zhou
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - C-L Jia
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - D Tu
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - X-L Zhu
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Q-L Chen
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - W-K Wei
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - D-H Lv
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
15
|
Liu C, Wen L, Xiao Q, He K. Nitric oxide-generating compound GSNO suppresses porcine circovirus type 2 infection in vitro and in vivo. BMC Vet Res 2017; 13:59. [PMID: 28222773 PMCID: PMC5320642 DOI: 10.1186/s12917-017-0976-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/15/2017] [Indexed: 01/25/2023] Open
Abstract
Background Nitric oxide (NO), an important signaling molecule with biological functions, has antimicrobial activity against a variety of pathogens including viruses. To our knowledge, little information is available about the regulatory effect of NO on porcine circovirus type 2 (PCV2) infection. This study was conducted to investigate the antiviral activity of NO generated from S-nitrosoglutathione (GSNO), during PCV2 infection of PK-15 cells and BALB/c mice. Results GSNO released considerable NO in the culture medium of PK-15 cells, and NO was scavenged by its scavenger hemoglobin (Hb) in a dose-dependent manner. NO strongly inhibited PCV2 replication in PK-15 cells, and the antiviral effect was reversed by Hb. An in vivo assay indicated that GSNO treatment reduced the progression of PCV2 infection in mice, evident as reductions in the percentages of PCV2-positive sera and tissue samples and in the viral DNA copies in serum samples. GSNO also improved the growth performance and immune organs (spleens and thymuses) of the PCV2-infected mice to some degree. Conclusions Our data demonstrate that the NO-generating compound GSNO suppresses PCV2 infection in PK-15 cells and BALB/c mice, indicating that NO and its donor, GSNO, have potential value as antiviral drugs against PCV2 infection.
Collapse
Affiliation(s)
- Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,Key laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,National Center for Engineering Research of Veterinary Bio-products, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 Wen-Hui East Road, Hanjiang District, Yangzhou, 225009, China
| | - Libin Wen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,Key laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,National Center for Engineering Research of Veterinary Bio-products, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 Wen-Hui East Road, Hanjiang District, Yangzhou, 225009, China
| | - Qi Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,Key laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,National Center for Engineering Research of Veterinary Bio-products, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 Wen-Hui East Road, Hanjiang District, Yangzhou, 225009, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China. .,Key laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China. .,National Center for Engineering Research of Veterinary Bio-products, 50 Zhong-ling Street, Xuanwu District, Nanjing, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 Wen-Hui East Road, Hanjiang District, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Du Q, Huang Y, Wang T, Zhang X, Chen Y, Cui B, Li D, Zhao X, Zhang W, Chang L, Tong D. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR. Oncotarget 2017; 7:17492-507. [PMID: 26883107 PMCID: PMC4951228 DOI: 10.18632/oncotarget.7362] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/29/2016] [Indexed: 01/02/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) infection caused PCV2-associated diseases (PCVAD) is one of the major emerging immunosuppression diseases in pig industry. In this study, we investigated how PCV2 inoculation increases interleukin (IL)-10 expression in porcine alveolar macrophages (PAMs). PCV2 inoculation significantly upregulated IL-10 expression compared with PCV1. Upon initial PCV2 inoculation, PI3K/Akt cooperated with NF-κB pathways to promote IL-10 transcription via p50, CREB and Ap1 transcription factors, whereas inhibition of PI3K/Akt activation blocked Ap1 and CREB binding to the il10 promoter, and decreased the binding level of NF-κB1 p50 with il10 promoter, leading to great reduction in early IL-10 transcription. In the later phase of inoculation, PCV2 further activated p38 MAPK and ERK pathways to enhance IL-10 production by promoting Sp1 binding to the il10 promoter. For PCV2-induced IL-10 production in macrophages, PCV2 capsid protein Cap, but not the replicase Rep or ORF3, was the critical component. Cap activated PI3K/Akt, p38 MAPK, and ERK signaling pathways to enhance IL-10 expression. In the whole process, gC1qR mediated PCV2-induced PI3K/Akt and p38 MAPK activation to enhance IL-10 induction by interaction with Cap. Depletion of gC1qR blocked PI3K/Akt and p38 MAPK activation, resulting in significant decrease in IL-10 production in PCV2-inoculated cells. Thus, gC1qR might be a critical functional receptor for PCV2-induced IL-10 production. Taken together, these data demonstrated that Cap protein binding with host gC1qR induction of PI3K/Akt and p38 MAPK signalings activation is a critical process in enhancing PCV2-induced IL-10 production in porcine alveolar macrophages.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Tongtong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Yu Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Beibei Cui
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Delong Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| |
Collapse
|
17
|
Zhai SL, Chen SN, Liu W, Li XP, Deng SF, Wen XH, Luo ML, Lv DH, Wei WK, Chen RA. Molecular detection and genome characterization of porcine circovirus type 2 in rats captured on commercial swine farms. Arch Virol 2016; 161:3237-44. [PMID: 27530112 DOI: 10.1007/s00705-016-3004-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/26/2016] [Indexed: 11/27/2022]
Abstract
Porcine circovirus type 2 (PCV2) is considered the major etiological pathogen of porcine circovirus-associated diseases (PCVADs) in pigs. Recently, PCV2 was also found in non-porcine animals such as cattle, rats, and mice. However, there was no record of PCV2 in rats in China. The goal of this study was to investigate whether PCV2 was present in rats (Rattus norvegicus, RN) on three swine farms, using molecular tools. PCR results showed that 30 of 95 (31.6 %) rat samples were positive for PCV2. Moreover, further genotype analysis suggested that 10 of 30 (33.3 %) were positive for PCV2a, 19 of 30 (63.3 %) were positive for PCV2b, and only one sample (1/30, 3.33 %) was co-infected by PCV2a and PCV2b. To determine the possible origin of PCV2, 60 serum samples were also collected from weaned pigs on those swine farms, and 23 out of 60 samples were positive for PCV2. In addition, two distinct RN-origin and two distinct porcine-origin PCV2 full-length nucleotide sequences were obtained from the farms. Sequence and phylogenetic analysis indicated that they had the highest nucleotide similarity and closest genetic relationships to each other. In this study, we report the infection and genome characterization of PCV2 in rats and compare RN-origin and porcine-origin PCV2 sequences obtained from the same pig farm, revealing possible cross-species transmission of PCV2.
Collapse
Affiliation(s)
- Shao-Lun Zhai
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of Animal Disease Prevention and Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Sheng-Nan Chen
- Guangdong Wens Dahuanong Biotechnology Co., Ltd., Xinxing, 527400, China
| | - Wei Liu
- Guangdong Wens Dahuanong Biotechnology Co., Ltd., Xinxing, 527400, China
| | - Xiao-Peng Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Su-Fang Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Hui Wen
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Key Laboratory of Animal Disease Prevention and Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Man-Lin Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dian-Hong Lv
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Guangdong Key Laboratory of Animal Disease Prevention and Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China.
| | - Wen-Kang Wei
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Guangdong Key Laboratory of Animal Disease Prevention and Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China.
| | - Rui-Ai Chen
- Guangdong Wens Dahuanong Biotechnology Co., Ltd., Xinxing, 527400, China. .,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|