1
|
Lai DC, Nguyen TN, Poonsuk K, McVey DS, Vu HLX. Lipid nanoparticle-encapsulated DNA vaccine encoding African swine fever virus p54 antigen elicits robust immune responses in pigs. Vet Microbiol 2025; 305:110508. [PMID: 40250107 DOI: 10.1016/j.vetmic.2025.110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
African swine fever virus (ASFV) is one of the most significant viral pathogens affecting swine production worldwide. While several live attenuated ASF vaccines have been approved for clinical application in certain countries, there is a concern that the vaccine viruses might revert to virulence. Subunit vaccines containing one or a few viral immunogens provide a safer alternative. DNA plasmids are highly stable, easy to produce in large quantities at low cost, and safe for use in animals. However, unencapsulated DNA vaccines often exhibited low immunogenicity, largely due to the inefficient cellular entry of the plasmid DNA, leading to low protein expression. In this study, we used ASFV p54 as a model antigen to investigate the feasibility of using lipid nanoparticles (LNP) as nanocarriers to enhance the immunogenicity of DNA vaccines. Pigs immunized with the p54 LNP-DNA vaccine elicited high titers of p54-specific antibodies and T-cell responses after the second immunization. Using ELISAs based on an overlapping peptide library, we identified three antigenic areas within p54. Additionally, we noted that pigs vaccinated with the p54 LNP-DNA vaccine exhibited a similar antibody profile as those vaccinated with an experimental live attenuated vaccine or infected with a wild-type ASFV strain. The results highlight the promising potential of LNP-DNA as an effective platform for developing gene-based vaccines against ASFV.
Collapse
Affiliation(s)
- Danh C Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln NE 68583, USA; School of Veterinary Medicine and Biomedical Sciences University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | - The N Nguyen
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln NE 68583, USA; School of Veterinary Medicine and Biomedical Sciences University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | - Korakrit Poonsuk
- Washington Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Washington State University, Pullman, WA 99164. USA
| | - D Scott McVey
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | - Hiep L X Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln NE 68583, USA; Department of Animal Science, University of Nebraska-Lincoln, Lincoln NE 68583, USA.
| |
Collapse
|
2
|
Nguyen TN, Lai DC, Sillman S, Petro-Turnquist E, Weaver EA, Vu HLX. Lipid nanoparticle-encapsulated DNA vaccine confers protection against swine and human-origin H1N1 influenza viruses. mSphere 2024; 9:e0028324. [PMID: 39087764 DOI: 10.1128/msphere.00283-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
In 2009, a novel swine-origin H1N1 virus emerged, causing a pandemic. The virus, known as H1N1pdm09, quickly displaced the circulating H1 lineage and became the dominant seasonal influenza A virus subtype infecting humans. Human-to-swine spillovers of the H1N1pdm09 have occurred frequently, and each occurrence has led to sustained transmission of the human-origin H1N1pdm09 within swine populations. In the present study, we developed a lipid nanoparticle-based DNA vaccine (LNP-DNA) containing the hemagglutinin gene of a swine-origin H1N1pdm09. In pigs, this LNP-DNA vaccine induced a robust antibody response after a single intramuscular immunization and protected the pigs against challenge infection with the homologous swine-origin H1N1pdm09 virus. In a mouse model, the LNP-DNA vaccine induced antibody and T-cell responses and protected mice against lethal challenge with a mouse-adapted human-origin H1N1pdm09 virus. These findings demonstrate the potential of the LNP-DNA vaccine to protect against both swine- and human-origin H1N1pdm09 viruses. IMPORTANCE Swine influenza A virus (IAV) is widespread and causes significant economic losses to the swine industry. Moreover, bidirectional transmission of IAV between swine and humans commonly occurs. Once introduced into the swine population, human-origin IAV often reassorts with endemic swine IAV, resulting in reassortant viruses. Thus, it is imperative to develop a vaccine that is not only effective against IAV strains endemic in swine but also capable of preventing the spillover of human-origin IAV. In this study, we developed a lipid nanoparticle-encapsulated DNA plasmid vaccine (LNP-DNA) that demonstrates efficacy against both swine- and human-origin H1N1 viruses. The LNP-DNA vaccines are non-infectious and non-viable, meeting the criteria to serve as a vaccine platform for rapidly updating vaccines. Collectively, this LNP-DNA vaccine approach holds great potential for alleviating the impact of IAV on the swine industry and preventing the emergence of reassortant IAV strains.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Swine
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/veterinary
- Nanoparticles/administration & dosage
- Humans
- Mice
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/blood
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Female
- Mice, Inbred BALB C
- Liposomes/administration & dosage
Collapse
Affiliation(s)
- The N Nguyen
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Danh C Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Eric A Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hiep L X Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Petro-Turnquist E, Pekarek MJ, Weaver EA. Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol 2024; 14:1336013. [PMID: 38633745 PMCID: PMC11021629 DOI: 10.3389/fcimb.2024.1336013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew J. Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
4
|
Nguyen TN, Kumari S, Sillman S, Chaudhari J, Lai DC, Vu HLX. A Single-Dose Intramuscular Immunization of Pigs with Lipid Nanoparticle DNA Vaccines Based on the Hemagglutinin Antigen Confers Complete Protection against Challenge Infection with the Homologous Influenza Virus Strain. Vaccines (Basel) 2023; 11:1596. [PMID: 37896997 PMCID: PMC10611089 DOI: 10.3390/vaccines11101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The Influenza A virus of swine (IAV-S) is highly prevalent and causes significant economic losses to swine producers. Due to the highly variable and rapidly evolving nature of the virus, it is critical to develop a safe and versatile vaccine platform that allows for frequent updates of the vaccine immunogens to cope with the emergence of new viral strains. The main objective of this study was to assess the feasibility of using lipid nanoparticles (LNPs) as nanocarriers for delivering DNA plasmid encoding the viral hemagglutinin (HA) gene in pigs. The intramuscular administration of a single dose of the LNP-DNA vaccines resulted in robust systemic and mucosal responses in pigs. Importantly, the vaccinated pigs were fully protected against challenge infection with the homologous IAV-S strain, with only 1 out of 12 vaccinated pigs shedding a low amount of viral genomic RNA in its nasal cavity. No gross or microscopic lesions were observed in the lungs of the vaccinated pigs at necropsy. Thus, the LNP-DNA vaccines are highly effective in protecting pigs against the homologous IAV-S strain and can serve as a promising platform for the rapid development of IAV-S vaccines.
Collapse
Affiliation(s)
- The N. Nguyen
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sushmita Kumari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sarah Sillman
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Danh C. Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (T.N.N.); (S.K.); (S.S.); (J.C.)
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
5
|
Yu J, Sreenivasan C, Sheng Z, Zhai SL, Wollman JW, Luo S, Huang C, Gao R, Wang Z, Kaushik RS, Christopher-Hennings J, Nelson E, Hause BM, Li F, Wang D. A recombinant chimeric influenza virus vaccine expressing the consensus H3 hemagglutinin elicits broad hemagglutination inhibition antibodies against divergent swine H3N2 influenza viruses. Vaccine 2023; 41:6318-6326. [PMID: 37689544 DOI: 10.1016/j.vaccine.2023.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The global distribution and ongoing evolution of type A swine influenza virus (IAV-S) continue to pose significant challenges against developing broadly protective vaccines to control swine influenza. This study focuses on the hemagglutinin (HA) consensus-based approach towards developing a more broadly protective swine influenza vaccine against various H3 strains circulating in domestic pig populations. By computationally analyzing >1000 swine H3 full-length HA sequences, we generated a consensus H3 and expressed it in the context of influenza A WSN/33 reverse genetics system. The derived recombinant chimeric swine influenza virus with the consensus H3 was inactivated and further evaluated as a potential universal vaccine in pigs. The consensus H3 vaccine elicited broadly active hemagglutination inhibition (HI) antibodies against divergent swine H3N2 influenza viruses including human H3N2 variant of concern, and strains belong to genetic clusters IV, IV-A, IV-B, IV-C, IV-D and IV-F. Importantly, vaccinated pigs were completely protected against challenge with a clinical swine H3N2 isolate in that neither viral shedding nor replication in lungs of vaccinated pigs were observed. These findings warrant further study of the consensus H3 vaccine platform for broad protection against diverse swine influenza viruses.
Collapse
Affiliation(s)
- Jieshi Yu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Chithra Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Zhizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Shao-Lun Zhai
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jared W Wollman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Sisi Luo
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Chen Huang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Zhao Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Ben M Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
6
|
do Nascimento GM, Bugybayeva D, Patil V, Schrock J, Yadagiri G, Renukaradhya GJ, Diel DG. An Orf-Virus (ORFV)-Based Vector Expressing a Consensus H1 Hemagglutinin Provides Protection against Diverse Swine Influenza Viruses. Viruses 2023; 15:994. [PMID: 37112974 PMCID: PMC10147081 DOI: 10.3390/v15040994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza A viruses (IAV-S) belonging to the H1 subtype are endemic in swine worldwide. Antigenic drift and antigenic shift lead to a substantial antigenic diversity in circulating IAV-S strains. As a result, the most commonly used vaccines based on whole inactivated viruses (WIVs) provide low protection against divergent H1 strains due to the mismatch between the vaccine virus strain and the circulating one. Here, a consensus coding sequence of the full-length of HA from H1 subtype was generated in silico after alignment of the sequences from IAV-S isolates obtained from public databases and was delivered to pigs using the Orf virus (ORFV) vector platform. The immunogenicity and protective efficacy of the resulting ORFVΔ121conH1 recombinant virus were evaluated against divergent IAV-S strains in piglets. Virus shedding after intranasal/intratracheal challenge with two IAV-S strains was assessed by real-time RT-PCR and virus titration. Viral genome copies and infectious virus load were reduced in nasal secretions of immunized animals. Flow cytometry analysis showed that the frequency of T helper/memory cells, as well as cytotoxic T lymphocytes (CTLs), were significantly higher in the peripheral blood mononuclear cells (PBMCs) of the vaccinated groups compared to unvaccinated animals when they were challenged with a pandemic strain of IAV H1N1 (CA/09). Interestingly, the percentage of T cells was higher in the bronchoalveolar lavage of vaccinated animals in relation to unvaccinated animals in the groups challenged with a H1N1 from the gamma clade (OH/07). In summary, delivery of the consensus HA from the H1 IAV-S subtype by the parapoxvirus ORFV vector decreased shedding of infectious virus and viral load of IAV-S in nasal secretions and induced cellular protective immunity against divergent influenza viruses in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Dina Bugybayeva
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Veerupaxagouda Patil
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Jennifer Schrock
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Ganesh Yadagiri
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Gourapura J. Renukaradhya
- Department of Animal Sciences, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
7
|
Kumari S, Chaudhari J, Huang Q, Gauger P, De Almeida MN, Liang Y, Ly H, Vu HLX. Immunogenicity and Protective Efficacy of a Recombinant Pichinde Viral-Vectored Vaccine Expressing Influenza Virus Hemagglutinin Antigen in Pigs. Vaccines (Basel) 2022; 10:vaccines10091400. [PMID: 36146478 PMCID: PMC9505097 DOI: 10.3390/vaccines10091400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Influenza A virus of swine (IAV-S) is an economically important swine pathogen. The IAV-S hemagglutinin (HA) surface protein is the main target for vaccine development. In this study, we evaluated the feasibility of using the recombinant tri-segmented Pichinde virus (rPICV) as a viral vector to deliver HA antigen to protect pigs against IAV-S challenge. Four groups of weaned pigs (T01–T04) were included in the study. T01 was injected with PBS to serve as a non-vaccinated control. T02 was inoculated with rPICV expressing green fluorescence protein (rPICV-GFP). T03 was vaccinated with rPICV expressing the HA antigen of the IAV-S H3N2 strain (rPICV-H3). T04 was vaccinated with the recombinant HA protein antigen of the same H3N2 strain. Pigs were vaccinated twice at day 0 and day 21 and challenged at day 43 by intra-tracheal inoculation with the homologous H3N2 IAV-S strain. After vaccination, all pigs in T03 and T04 groups were seroconverted and exhibited high titers of plasma neutralizing antibodies. After challenge, high levels of IAV-S RNA were detected in the nasal swabs and bronchioalveolar lavage fluid of pigs in T01 and T02 but not in the T03 and T04 groups. Similarly, lung lesions were observed in T01 and T02, but not in the T03 and T04 groups. No significant difference in terms of protection was observed between the T03 and T04 group. Collectively, our results demonstrate that the rPICV-H3 vectored vaccine elicited protective immunity against IAV-S challenge. This study shows that rPICV is a promising viral vector for the development of vaccines against IAV-S.
Collapse
Affiliation(s)
- Sushmita Kumari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Qinfeng Huang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
| | - Phillip Gauger
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Marcelo Nunes De Almeida
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yuying Liang
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
| | - Hinh Ly
- Veterinary & Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
- Correspondence: (H.L.); (H.L.X.V.); Tel.: +1-612-625-3358 (H.L.); +1-402-472-4528 (H.L.X.V.)
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animals Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (H.L.); (H.L.X.V.); Tel.: +1-612-625-3358 (H.L.); +1-402-472-4528 (H.L.X.V.)
| |
Collapse
|