1
|
Zhao W, Niu Z, Liu K, Zhang X, Kang S, Dou K, Zhao J, Bai R, Zheng M, Lv X. Development and evaluation of protective immunity of a ROP27 DNA vaccine against Eimeria tenella in chickens. Poult Sci 2025; 104:104955. [PMID: 40058005 PMCID: PMC11930590 DOI: 10.1016/j.psj.2025.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to develop and evaluate the protective immunity of a ROP27 DNA vaccine against Eimeria tenella (E. tenella) in chickens. E. tenella is a parasitic protozoan that poses a significant threat to the poultry industry. The rhoptry protein 27 (ROP27) of E. tenella has been shown to have immunoprotective properties. However, traditional protein expression methods are time-consuming and labor-intensive, limiting large-scale production. In this study, we developed a pVAX-ROP27 DNA vaccine and confirmed its expression in chickens using RT-PCR and Western blot analysis. The protective immunity of the DNA vaccine was evaluated through an animal experiment with different immunization doses. The results confirmed the successful construction of the pVAX-ROP27 DNA vaccine and its in vivo expression. Chickens immunized with the vaccine at different doses showed significant improvements in average weight gain, relative weight gain rate (RWG), cecal lesion score reduction (RLS), and oocyst reduction rate, as well as a decrease in oocysts per gram (OPG). The group immunized with 100 μg/feather of pVAX-ROP27 exhibited the most significant effect, achieving an anticoccidial index (ACI) of 179.80. Additionally, levels of IL-2, IFN-γ, IL-6, IgG, and IgY significantly increased with the number of immunizations, whereas IL-4 and IL-10 showed no significant differences. Histopathological analysis of the ceca revealed that lesions were least severe in the 100 μg/feather pVAX-ROP27 immunized group. These findings suggest that the pVAX-ROP27 DNA vaccine offers immune protection against E. tenella infection and could serve as a promising candidate for preventing and controlling chicken coccidiosis.
Collapse
Affiliation(s)
- Wenrui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Zhibin Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Kuihao Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Xueqi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Shuning Kang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Kewei Dou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Jiaqi Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Rui Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Mingxue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Xiaoling Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| |
Collapse
|
2
|
Abstract
The complexity of parasites and their life cycles makes vaccination against parasitic diseases challenging. This review highlights this by discussing vaccination against four relevant parasites of poultry. Coccidia, i.e., Eimeria spp., are the most important parasites in poultry production, causing multiple billions of dollars of damage worldwide. Due to the trend of antibiotic-free broiler production, use of anticoccidia vaccines in broilers is becoming much more important. As of now, only live vaccines are on the market, almost all of which must be produced in birds. In addition, these live vaccines require extra care in the management of flocks to provide adequate protection and prevent the vaccines from causing damage. Considerable efforts to develop recombinant vaccines and related work to understand the immune response against coccidia have not yet resulted in an alternative. Leucozytozoon caulleryi is a blood parasite that is prevalent in East and South Asia. It is the only poultry parasite for which a recombinant vaccine has been developed and brought to market. Histomonas meleagridis causes typhlohepatitis in chickens and turkeys. The systemic immune response after intramuscular vaccination with inactivated parasites is not protective. The parasite can be grown and attenuated in vitro, but only together with bacteria. This and the necessary intracloacal application make the use of live vaccines difficult. So far, there have been no attempts to develop a recombinant vaccine against H. meleagridis. Inactivated vaccines inducing antibodies against the poultry red mite Dermanyssus gallinae have the potential to control infestations with this parasite. Potential antigens for recombinant vaccines have been identified, but the use of whole-mite extracts yields superior results. In conclusion, while every parasite is unique, development of vaccines against them shares common problems, namely the difficulties of propagating them in vitro and the identification of protective antigens that might be used in recombinant vaccines.
Collapse
Affiliation(s)
- Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL 36849,
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
3
|
Chen H, Pu J, Xiao J, Bai X, Zheng R, Gu X, Xie Y, He R, Xu J, Jing B, Peng X, Ren Y, Yang G. Evaluation of the immune protective effects of rEmMIC2 and rEmMIC3 from Eimeria magna in rabbits. Parasitol Res 2023; 122:661-669. [PMID: 36572833 PMCID: PMC9792316 DOI: 10.1007/s00436-022-07774-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Eimeria magna is a common pathogen in rabbits, which results in lethargy, weight loss, diarrhea, and even death in severe cases after infection. The current method for preventing rabbit coccidiosis is to add anticoccidial drugs to the diet. However, there are many concerns about drug resistance and drug residues. In our study, the rEmMIC2 and rEmMIC3 proteins were cloned and expressed to evaluate potential as recombinant subunit vaccine candidate antigens. The protective effects of rEmMIC2 and rEmMIC3 were evaluated by the relative weight gain ratio, oocyst decrease rate, anticoccidial index, feed conversion ratio, pathological alterations, clinical symptoms, specific IgG antibody, and cytokine levels in rabbits. The molecular weights of rEmMIC2 and rEmMIC3 were 18.69 kDa and 17.47 kDa, respectively. After the coccidia challenge, the control groups showed anorexia and soft poop, whereas the experimental group showed few anorexia symptoms. Significantly different from the control group, the relative weight gain ratios of the immunized rEmMIC2 and rEmMIC3 groups were 78.37% and 75.29%, respectively, and the oocyst reduction was 77.95% and 76.09%, respectively, and the anticoccidial index was 171.12 and 169.29, respectively. IgG antibody, IFN-γ, IL-4, IL-10, and IL-17 levels were significantly increased in the experimental group. The results showed that rEmMIC2 and rEmMIC3 have potential as vaccine candidate antigens.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xin Bai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Ruoyu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Yongjun Ren
- Sichuan Animal Science Academy, Chengdu, 610066 China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| |
Collapse
|
4
|
Xiao J, Chen H, Zheng R, Pu J, Gu X, Xie Y, He R, Xu J, Jing B, Peng X, Yang G. Recombinant GMA56 and ROP17 of Eimeria magna conferred protection against infection by homologous species. Front Immunol 2023; 13:1037949. [PMID: 36713437 PMCID: PMC9879601 DOI: 10.3389/fimmu.2022.1037949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
One of the most common rabbits coccidia species, Eimeria magna is mainly parasitic in the ileal and jejunal epithelial cells. E. magna infection can affect the growth performance of rabbits or cause other secondary diseases. Traditional methods of anticoccidial treatment typically result in drug resistance and drug residue. Therefore, vaccination is a promising alternative. Gametocyte antigen 56 (GAM56) and rhoptry kinase family proteins (ROPs) are involved in oocyst wall formation and parasite invasion, respectively. A virulence factor, ROP17 contains a serine/threonine kinase catalytic domain. In this study, recombinant E. magna GAM56 (rEmGAM56) and ROP17 (rEmROP17) proteins were obtained from a prokaryotic expression system and their reactogenicity was investigated with immunoblotting. To assess the potential of rEmGAM56 and rEmROP17 as coccidiosis vaccines, New Zealand White rabbits were subcutaneously immunized with 100 μg rEmGAM56 (rGC group) or rEmROP17 (rRC group) twice at 2-week intervals followed by homologous oocyst challenge. The rabbit serum was collected weekly to detect the specific antibody levels. The cytokine levels of pre-challenge serum were measured by enzyme-linked immunosorbent assay and the rabbits were observed and recorded post-challenge for the onset of clinical symptoms. The weight gain, oocyst output, and feed conversion ratio were calculated at the end of the experiment. The results showed that both rEmGAM56 and rEmROP17 had good reactogenicity. The rEmGAM56- or rEmROP17-immunized rabbits had milder clinical symptoms and feed conversion ratios of 3.27:1 and 3.37:1, respectively. The rEmGAM56-immunized rabbits had 81.35% body weight gain and 63.85% oocyst output reduction; the rEmROP17-immunized rabbits had 79.03% body weight gain and 80.10% oocyst output reduction. The ACI of rGC and rRC groups were 162.35 and 171.03, respectively. The specific antibody levels increased rapidly after immunization. Significantly increased interleukin (IL)-2, interferon (IFN)-γ, and IL-17 levels were evident in the rGC and rRC groups (p < 0.05). The rEmGAM56 and rEmROP17 elicited humoral and cellular responses, which protected against E. magna infection in rabbits. Thus, rEmGAM56 and rEmROP17 are potential vaccine candidates against E. magna, and rEmROP17 performed better than rEmGAM56.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruoyu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Guangyou Yang,
| |
Collapse
|
5
|
Nasri T, Sangmaneedet S, Nam NH, Worawong K, Taweenan W, Sukon P. Protective efficacy of new-generation anticoccidial vaccine candidates against Eimeria infection in chickens: A meta-analysis of challenge trials. Vet Parasitol 2022; 306:109724. [DOI: 10.1016/j.vetpar.2022.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/09/2022]
|
6
|
Zhao H, Li C, Zhu S, Zhao Q, Dong H, Huang B, Han H. Molecular characterization and immune protection by cystathionine β-synthase from Eimeria tenella. J Eukaryot Microbiol 2021; 69:e12876. [PMID: 34850487 DOI: 10.1111/jeu.12876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Eimeria tenella is an obligate intracellular apicomplexan parasite that causes avian coccidiosis and leads to severe economic losses in the global poultry industry. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL) act together to generate H2S in the reverse transsulfuration pathway. In this study, E. tenella Cystathionine β-synthase (EtCBS) was cloned using rapid amplification of cDNA 5'-ends (5'RACE) and characterized, and its immunoprotective effects were evaluated. The recombinant EtCBS protein (rEtCBS) was expressed and successfully recognized by anti-sporozoites (Spz) protein rabbit serum. EtCBS mRNA levels were highest in Spz by qPCR, and the protein expression levels were higher in unsporulated oocysts (UO) than in other stages by Western blot. Indirect immunofluorescence showed that EtCBS protein was found on the surface of Spz and second-generation merozoites (Mrz). The invasion inhibition assays showed that rabbit anti-rEtCBS polyclonal antibodies effectively inhibited parasite invasion host cells. Chickens immunized with rEtCBS protein showed prominently increased weight gains and decreased oocyst output compared to nonimmunized and infected control group. The results suggest that EtCBS could be a potential vaccine candidate against E. tenella.
Collapse
Affiliation(s)
- Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Cong Li
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| |
Collapse
|
7
|
Mtshali SA, Adeleke MA. A review of adaptive immune responses to Eimeria tenella and Eimeria maxima challenge in chickens. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1833693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. A. Mtshali
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - M. A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| |
Collapse
|
8
|
Zhang Z, Huang HB, Jiang YL, Liu J, Gao X, Liu Y, Yang WT, Shi CW, Wang D, Wang JZ, Kang YH, Wang CF, Yang GL. Immunological evaluation of invasive Lactobacillus plantarum co-expressing EtMIC2 and chicken interleukin-18 against Eimeria tenella. Parasitol Res 2020; 119:2885-2895. [PMID: 32715344 PMCID: PMC7382971 DOI: 10.1007/s00436-020-06745-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
Chicken coccidiosis is a protozoan parasitic disease that leads to considerable economic losses in the poultry industry. In this study, we used invasive Lactobacillus plantarum (L.P) expressing the FnBPA protein as a novel bacterial carrier for DNA delivery into epithelial cells to develop a live oral DNA vaccine. A fusion DNA vaccine co-expressing EtMIC2 and chicken IL-18 (chIL-18) was constructed and then delivered to the host by invasive L.P. Its efficacy against Eimeria tenella challenge was evaluated in chickens by examining the relative weight gain rate; caecal lesion score; OPG; anti-coccidial index (ACI); levels of EtMIC2 antibody, FnBPA, IL-4, IL-18, IFN-γ and SIgA; and proliferation ability and percentages of CD4+ and CD8+ splenocytes. The experimental results showed that chickens immunized with invasive L.P carrying the eukaryotic expression vector pValac-EtMIC2 (pValac-EtMIC2/pSIP409-FnBPA) had markedly improved immune protection against challenge compared with that of chickens immunized with non-invasive L.P (pValac-EtMIC2/pSIP409). However, invasive L.P co-expressing EtMIC2 with the chIL-18 vector exhibited the highest protection efficiency against E. tenella. These results indicate that invasive Lactobacillus-expressing FnBPA improved humoural and cellular immunity and enhanced resistance to E. tenella. The DNA vaccine delivered by invasive Lactobacillus provides a new concept and method for the prevention of E. tenella.
Collapse
Affiliation(s)
- Zan Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jing Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xing Gao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yang Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Dan Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
9
|
Zhao N, Lv J, Lu Y, Jiang Y, Li H, Liu Y, Zhang X, Zhao X. Prolonging and enhancing the protective efficacy of the EtMIC3-C-MAR against eimeria tenella through delivered by attenuated salmonella typhimurium. Vet Parasitol 2020; 279:109061. [PMID: 32143014 DOI: 10.1016/j.vetpar.2020.109061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/09/2023]
Abstract
The microneme adhesive repeats (MAR) of Eimeria tenella microneme protein 3 (EtMIC3) are associated with binding to and invasion of host cells. Adhesion and invasion-related proteins or domains are often strongly immunogenic, immune responses mounted against these factors that play a key role in blocking invasion. In the present study, an oral live vaccine consisting of attenuated Salmonella typhimurium X4550 carrying two MAR domains fragment (St-X4550-MAR) was constructed and its protective efficacies were evaluated. The results showed that St-X4550-MAR was more immunogenic and conferred a higher degree of protection than recombinant MAR polypeptide as reflected by increased body weight, decreased oocyst shedding and lesion scores, increased serum IgG and cecal sIgA antibody production, and increasing levels of interferon-γ and interleukin-10. Thus, MAR domains are highly immunogenic and St-X4550-MAR had moderate activity against E. tenella infection by stimulating humoral, mucosal and cellular immunity. Chickens immunized with our constructed live vaccine provided considerable protections as early as at 10 d post-immunization (ACI: 155.17), and maintained higher protection levels at 20 d post-immunization (ACI: 173.66), and at 30 d post-immunization (ACI: 162.4). While the protective efficacy of chickens immunized with the recombinant MAR peptides showed a decreased trend as the post immunization time prolonging. Thus, using live-attenuated S. typhimurium X4550 as a vaccine expression and delivery system can significantly improve the protective efficacy and duration of protective immunity of MAR of EtMIC3.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Junfeng Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yaru Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yingying Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yumin Liu
- Shandong Huamutianyuan Agriculture and Animal Husbandry Co., Ltd., 1 Gangxing 3 Road, Jinan, Shandong Province, 250101, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
10
|
In vivo immunoprotective comparison between recombinant protein and DNA vaccine of Eimeria tenella surface antigen 4. Vet Parasitol 2020; 278:109032. [PMID: 31981858 DOI: 10.1016/j.vetpar.2020.109032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/26/2023]
Abstract
Eimeria tenella, belonging to protozoon, is the causative agent of cecal coccidiosis in chicken and causes enormous impacts for poultry industry. The surface antigens of apicomplexan parasites function as attachment and invasion in host-parasite interaction. Meanwhile, host immune response is triggered as a result of parasitic invasion. Immunogenicity and potency as a vaccinal candidate antigen of E. tenella surface antigen 4 (EtSAG4) have been unknown. Therefore, a gene segment of E. tenella EtSAG4 was amplified and transplanted to pET28a prokaryotic vector for recombinant protein expression. Similarly, pEGFP-N1 eukaryotic vectors with EtSAG4 gene segment (pEGFP-N1-EtSAG4) amplified in 293 T cells as DNA vaccines. Reverse transcription-polymerase chain reaction (RT-PCR) assay and western blot analysis were used to demonstrate successful expressions of EtSAG4 in Escherichia coli or 293 T cells. Subsequently, animal experiments (72 cobb broilers) were performed to evaluate immunoprotective between recombinant protein and DNA vaccine of E. tenella EtSAG4 using different immunizing doses (50 or 100 μg), respectively. Serum from chickens infected with E. tenella identified recombinant EtSAG4 (rEtSAG4) protein. Chickens vaccinated with either rEtSAG4 protein or pEGFP-N1-EtSAG4 plasmids both shown a significant increase in concentration of IFN-γ (p < 0.05) compared with control groups indicating production of cell-mediated immunity. Besides, pEGFP-N1-EtSAG4 plasmids motivated more intense immune responses for immunoglobulin Y (IgY) and interleukin 17 (IL-17) (p < 0.05) contrast to control groups. However, there was no increase in concentration of interleukin 10 (IL-10) and interleukin 4 (IL-4) for both rEtSAG4 protein and pEGFP-N1-EtSAG4 plasmids. Chickens vaccinated with rEtSAG4 protein or pEGFP-N1-EtSAG4 plasmids both show higher weight, lower oocyst output and mean lesion scores compared with infection control groups. The highest anticoccidial index (ACI) value of immunized groups was 168.24 from EGFP-N1-EtSAG4 plasmids (100 μg) group. Generally, EGFP-N1-EtSAG4 plasmids as DNA vaccines provided a more effective immunoprotective for chickens against E. tenalla than that of rEtSAG4 protein as subunit vaccines. EtSAG4 is a promising candidate antigen gene for development of coccidiosis vaccine.
Collapse
|
11
|
Liu T, Huang J, Li Y, Ehsan M, Wang S, Zhou Z, Song X, Yan R, Xu L, Li X. Molecular characterisation and the protective immunity evaluation of Eimeria maxima surface antigen gene. Parasit Vectors 2018; 11:325. [PMID: 29848353 PMCID: PMC5977735 DOI: 10.1186/s13071-018-2906-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coccidiosis is recognised as a major parasitic disease in chickens. Eimeria maxima is considered as a highly immunoprotective species within the Eimeria spp. family that infects chickens. In the present research, the surface antigen gene of E. maxima (EmSAG) was cloned, and the ability of EmSAG to stimulate protection against E. maxima was evaluated. METHODS Prokaryotic and eukaryotic plasmids expressing EmSAG were constructed. The EmSAG transcription and expression in vivo was performed based on the RT-PCR and immunoblot analysis. The expression of EmSAG in sporozoites and merozoites was detected through immunofluorescence analyses. The immune protection was assessed based on challenge experiments. Flow cytometry assays were used to determine the T cell subpopulations. The serum antibody and cytokine levels were evaluated by ELISA. RESULTS The open reading frame (ORF) of EmSAG gene contained 645 bp encoding 214 amino acid residues. The immunoblot and RT-PCR analyses indicated that the EmSAG gene were transcribed and expressed in vivo. The EmSAG proteins were expressed in sporozoite and merozoite stages of E. maxima by the immunofluorescence assay. Challenge experiments showed that both pVAX1-SAG and the recombinant EmSAG (rEmSAG) proteins were successful in alleviating jejunal lesions, decreasing loss of body weight and the oocyst ratio. Additionally, these experiments possessed anticoccidial indices (ACI) of more than 170. Higher percentages of CD4+ and CD8+ T cells were detected in both EmSAG-inoculated birds than those of the negative control groups (P < 0.05). The EmSAG-specific antibody concentrations of both the rEmSAG and pVAX1-EmSAG groups were much higher than those of the negative controls (P < 0.05). Higher concentrations of IL-4, IFN-γ, TGF-β1 and IL-17 were observed more in both the rEmSAG protein and pVAX1-SAG inoculated groups than those of negative controls (P < 0.05). CONCLUSIONS Our findings suggest that EmSAG is capable of eliciting a moderate immune protection and could be used as an effective vaccine candidate against E. maxima.
Collapse
Affiliation(s)
- Tingqi Liu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jingwei Huang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yanlin Li
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Zhouyang Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
12
|
Liu T, Huang J, Ehsan M, Wang S, Fei H, Zhou Z, Song X, Yan R, Xu L, Li X. Protective immunity against Eimeria maxima induced by vaccines of Em14-3-3 antigen. Vet Parasitol 2018; 253:79-86. [PMID: 29605008 DOI: 10.1016/j.vetpar.2018.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
Abstract
Eimeria maxima 14-3-3 (Em14-3-3) open reading frame (ORF) which consisted of 861 bp encoding a protein of 286 amino acids was successfully amplified and sequenced. Subsequently, the Em14-3-3 ORF was subcloned into pET-32a (+) and pVAX1, respectively. RT-PCR and immunoblot analyses confirmed that the target gene was successfully transcribed and expressed in vivo. Immunofluorescence analysis showed that Em14-3-3 was expressed in both the sporozoites and merozoites. The animal experiments demonstrated that both rEm14-3-3 and pVAX1-14-3-3 could clearly alleviate jejunum lesions and body weight loss. The Em14-3-3 vaccines could increase oocyst decrease ratio, as well as produce an anticoccidial index of more than 165. The percentages of CD4+ in both the Em14-3-3 immunized groups were much higher, when compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). Similarly, the anti-Em14-3-3 antibody titers of both rEm14-3-3 and pVAX1-14-3-3 immunized groups showed higher levels compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). The IFN-γ and tumor growth factor-β (TGF-β) levels showed significant increments in the rEm14-3-3 and pVAX1-14-3-3 immunized groups, when compared with those in the negative controls (P < 0.05). These results demonstrated that Em14-3-3 could be used as a promising antigen candidate for developing vaccines against E. maxima.
Collapse
Affiliation(s)
- Tingqi Liu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Jingwei Huang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Hong Fei
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhouyang Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
13
|
Identification and immunogenicity of microneme protein 2 (EbMIC2) of Eimeria brunetti. Exp Parasitol 2015; 162:7-17. [PMID: 26743188 DOI: 10.1016/j.exppara.2015.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 12/08/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
There have been only a few antigen genes of Eimeria brunetti reported up to now. In this study, the gene encoding the microneme protein 2 (EbMIC2) was isolated from oocysts of E. brunetti by RT-PCR and the immunogenicity of recombinant EbMIC2 was observed. The EbMIC2 was cloned into vector pMD19-T for sequencing. The sequence was compared with the published EbMIC2 gene from GenBank revealed homology of the nucleotide sequence and amino acids sequence were 99.43 and 98.63%, respectively. The correct recombinant pMD-EbMIC2 plasmid was inserted into the pET-28a (+) expressing vector and transformed into competent Escherichia coli BL21 cells for expression. The expressed product was analyzed using SDS-PAGE and Western-blot. The results indicated that the recombinant EbMIC2 protein was recognized strongly by serum from naturally infected chicken with E. brunetti. Rat rcEbMIC2 antisera bound to bands of about 36 kDa in the somatic extract of E. brunetti sporozoites. The recombinant plasmid pVAX1-EbMIC2 was constructed and then the efficacies of recombinant plasmid and recombinant protein were evaluated. The results of IgG antibody level and cytokines concentration suggested that recombinant EbMIC2 could increase the IgG antibody level and induce the expressions of cytokines. Animal challenge experiments demonstrated that the recombinant EbMIC2 protein and recombinant plasmid pVAX1-EbMIC2 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented high anti-coccidial index. All results suggested that EbMIC2 could become an effective candidate for the development of new vaccine against E. brunetti infection.
Collapse
|
14
|
Meunier M, Chemaly M, Dory D. DNA vaccination of poultry: The current status in 2015. Vaccine 2015; 34:202-211. [PMID: 26620840 PMCID: PMC7115526 DOI: 10.1016/j.vaccine.2015.11.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023]
Abstract
Poultry DNA vaccination studies are regularly being published since 1993. These studies are mainly, but not only, concerned with vaccination against viruses. The different strategies of improving DNA vaccine efficacies are presented. The fate of the vaccine plasmid, immune properties and other applications are described. Despite the compiling preclinical reports, a poultry DNA vaccine is yet unavailable in the market.
DNA vaccination is a promising alternative strategy for developing new human and animal vaccines. The massive efforts made these past 25 years to increase the immunizing potential of this kind of vaccine are still ongoing. A relatively small number of studies concerning poultry have been published. Even though there is a need for new poultry vaccines, five parameters must nevertheless be taken into account for their development: the vaccine has to be very effective, safe, inexpensive, suitable for mass vaccination and able to induce immune responses in the presence of maternal antibodies (when appropriate). DNA vaccination should meet these requirements. This review describes studies in this field performed exclusively on birds (chickens, ducks and turkeys). No evaluations of avian DNA vaccine efficacy performed on mice as preliminary tests have been taken into consideration. The review first describes the state of the art for DNA vaccination in poultry: pathogens targeted, plasmids used and different routes of vaccine administration. Second, it presents strategies designed to improve DNA vaccine efficacy: influence of the route of administration, plasmid dose and age of birds on their first inoculation; increasing plasmid uptake by host cells; addition of immunomodulators; optimization of plasmid backbones and codon usage; association of vaccine antigens and finally, heterologous prime-boost regimens. The final part will indicate additional properties of DNA vaccines in poultry: fate of the plasmids upon inoculation, immunological considerations and the use of DNA vaccines for purposes other than preventing infectious diseases.
Collapse
Affiliation(s)
- Marine Meunier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Viral Genetics and Biosafety Unit, Ploufragan, France; French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Daniel Dory
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Viral Genetics and Biosafety Unit, Ploufragan, France.
| |
Collapse
|
15
|
Song X, Xu L, Yan R, Huang X, Li X. Construction of Eimeria tenella multi-epitope DNA vaccines and their protective efficacies against experimental infection. Vet Immunol Immunopathol 2015; 166:79-87. [DOI: 10.1016/j.vetimm.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
|
16
|
Wedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitol 2015; 60:179-89. [PMID: 26203983 PMCID: PMC7088677 DOI: 10.1515/ap-2015-0026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022]
Abstract
Demands for effective vaccines to control parasitic diseases of humans and livestock have been recently exacerbated by the development of resistance of most pathogenic parasites to anti-parasitic drugs. Novel genomic and proteomic technologies have provided opportunities for the discovery and improvement of DNA vaccines which are relatively easy as well as cheap to fabricate and stable at room temperatures. However, their main limitation is rather poor immunogenicity, which makes it necessary to couple the antigens with adjuvant molecules. This paper review recent advances in the development of DNA vaccines to some pathogenic protozoa and helminths. Numerous studies were conducted over the past 14 years of 21st century, employing various administration techniques, adjuvants and new immunogenic antigens to increase efficacy of DNA vaccines. Unfortunately, the results have not been rewarding. Further research is necessary using more extensive combinations of antigens; alternate delivery systems and more efficient adjuvants based on knowledge of the immunomodulatory capacities of parasitic protozoa and helminths.
Collapse
MESH Headings
- Animals
- Disease Transmission, Infectious/prevention & control
- Drug Discovery/trends
- Helminthiasis/immunology
- Helminthiasis/prevention & control
- Helminthiasis/transmission
- Helminthiasis, Animal/immunology
- Helminthiasis, Animal/prevention & control
- Helminthiasis, Animal/transmission
- Humans
- Protozoan Infections/immunology
- Protozoan Infections/prevention & control
- Protozoan Infections/transmission
- Protozoan Infections, Animal/immunology
- Protozoan Infections, Animal/prevention & control
- Protozoan Infections, Animal/transmission
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, DNA/isolation & purification
Collapse
Affiliation(s)
- Halina Wedrychowicz
- Department of Molecular Biology, Laboratory of Molecular Parasitology, W. Stefański Institute Parasitology, Polish Academy of Sciences, 51/55 Twarda St., 00-818 Warsaw, Poland
| |
Collapse
|
17
|
Song X, Ren Z, Yan R, Xu L, Li X. Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines. Vaccine 2015; 33:2764-70. [PMID: 25921712 DOI: 10.1016/j.vaccine.2015.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 11/30/2022]
Abstract
Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria.
Collapse
Affiliation(s)
- Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Zhe Ren
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China.
| |
Collapse
|
18
|
Identification of a telomeric DNA-binding protein in Eimeria tenella. Biochem Biophys Res Commun 2014; 451:599-602. [DOI: 10.1016/j.bbrc.2014.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 11/18/2022]
|
19
|
Saravanan S, Palanivel KM, Harikrishnan TJ, Srinivasan P, Selvaraju G. Assessment of humoral immunity to Eimeria tenella sporozoites in chickens by ELISA. Vet World 2014. [DOI: 10.14202/vetworld.2014.452-456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Del Cacho E, Gallego M, Lillehoj HS, Quílez J, Lillehoj EP, Ramo A, Sánchez-Acedo C. IL-17A regulates Eimeria tenella schizont maturation and migration in avian coccidiosis. Vet Res 2014; 45:25. [PMID: 24571471 PMCID: PMC3975951 DOI: 10.1186/1297-9716-45-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/12/2014] [Indexed: 11/29/2022] Open
Abstract
Although IL17A is associated with the immunological control of various infectious diseases, its role in host response to Eimeria infections is not well understood. In an effort to better dissect the role of IL17A in host-pathogen interactions in avian coccidiosis, a neutralizing antibody (Ab) to chicken IL17A was used to counteract IL17A bioactivity in vivo. Chickens infected with Eimeria tenella and treated intravenously with IL17A Ab, exhibited reduced intracellular schizont and merozoite development, diminished lesion score, compared with untreated controls. Immunohistological evaluation of cecal lesions in the parasitized tissues indicated reduced migration and maturation of second-generation schizonts and reduced lesions in lamina propria and submucosa. In contrast, untreated and infected chickens had epithelial cells harboring second-generation schizonts, which extend into the submucosa through muscularis mucosa disruptions, maturing into second generation merozoites. Furthermore, IL17A Ab treatment was associated with increased parameters of Th1 immunity (IL2- and IFNγ- producing cells), reduced levels of reactive oxygen species (ROS), and diminished levels of serum matrix metalloproteinase-9 (MMP-9). Finally, schizonts from untreated and infected chickens expressed S100, Wiskott-Aldrich syndrome protein family member 3 (WASF3), and heat shock protein-70 (HSP70) proteins as merozoites matured, whereas the expression of these proteins was absent in IL17A Ab-treated chickens. These results provide the first evidence that the administration of an IL17A neutralizing Ab to E. tenella-infected chickens inhibits the migration of parasitized epithelial cells, markedly reduces the production of ROS and MMP-9, and decreases cecal lesions, suggesting that IL17A might be a potential therapeutic target for coccidiosis control.
Collapse
Affiliation(s)
- Emilio Del Cacho
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
Min W, Kim WH, Lillehoj EP, Lillehoj HS. Recent progress in host immunity to avian coccidiosis: IL-17 family cytokines as sentinels of the intestinal mucosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:418-428. [PMID: 23583525 DOI: 10.1016/j.dci.2013.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
The molecular and cellular mechanisms leading to immune protection against coccidiosis are complex and include multiple aspects of innate and adaptive immunities. Innate immunity is mediated by various subpopulations of immune cells that recognize pathogen associated molecular patterns (PAMPs) through their pattern recognition receptors (PRRs) leading to the secretion of soluble factors with diverse functions. Adaptive immunity, which is important in conferring protection against subsequent reinfections, involves subtypes of T and B lymphocytes that mediate antigen-specific immune responses. Recently, global gene expression microarray analysis has been used in an attempt to dissect this complex network of immune cells and molecules during avian coccidiosis. These new studies emphasized the uniqueness of the innate immune response to Eimeria infection, and directly led to the discovery of previously uncharacterized host genes and proteins whose expression levels were modulated following parasite infection. Among these is the IL-17 family of cytokines. This review highlights recent progress in IL-17 research in the context of host immunity to avian coccidiosis.
Collapse
Affiliation(s)
- Wongi Min
- College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | | | | | | |
Collapse
|
22
|
Song H, Qiu B, Yan R, Xu L, Song X, Li X. The protective efficacy of chimeric SO7/IL-2 DNA vaccine against coccidiosis in chickens. Res Vet Sci 2013; 94:562-7. [DOI: 10.1016/j.rvsc.2012.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 10/25/2012] [Accepted: 11/17/2012] [Indexed: 11/30/2022]
|
23
|
Xu J, Zhang Y, Tao J. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:147-54. [PMID: 23710081 PMCID: PMC3662057 DOI: 10.3347/kjp.2013.51.2.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 09/18/2012] [Accepted: 10/03/2012] [Indexed: 11/23/2022]
Abstract
To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×10(4) sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control.
Collapse
Affiliation(s)
- Jinjun Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | | | | |
Collapse
|
24
|
Liu Y, Zheng J, Li J, Gong P, Zhang X. Protective immunity induced by a DNA vaccine encoding Eimeria tenella rhomboid against homologous challenge. Parasitol Res 2012; 112:251-7. [PMID: 23052765 DOI: 10.1007/s00436-012-3132-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
Rhomboid protein in Apicomplexa was associated with the process of host cell invasion. To evaluate the potential of the protein in eliciting protective immunity against challenge, a DNA vaccine pVAX1-Rho encoding Eimeria tenella rhomboid was constructed. Recombinant protein was expressed in Hela cells and verified by indirect immunofluorescence and western blotting analysis. In vivo experiments, 1-week-old chickens were randomly divided into three groups. Experimental group of chickens were immunized with DNA vaccines while control group of chickens were injected with pVAX1 plasmid alone or sterile water. Two weeks following the booster dose, all chickens were inoculated orally with 5 × 10(4) sporulated oocysts of E. tenella. The host immunity and protective efficacy of this vaccine against E. tenella challenge in broilers were evaluated. Results showed that specific antibody, the levels of interleukin-2 (IL-2), interferon-γ (IFN-γ), and the percentages of CD4(+) and CD8(+) T lymphocyte cells were significantly increased in the pVAX1-Rho group. Challenge experiments demonstrated that pVAX1-Rho vaccination could reduce oocyst excretion, decrease cecal lesion, increase bodyweight gains and provide chickens with oocysts decrease ratio around 75.8 %. These results suggest that the pVAX1-Rho was able to induce humoral and cellular responses and generate protective immunity against E. tenella infection.
Collapse
Affiliation(s)
- Yingli Liu
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, People's Republic of China.
| | | | | | | | | |
Collapse
|
25
|
Identification and characterization of a cDNA clone-encoding antigen of Eimeria acervulina. Parasitology 2012; 139:1711-9. [PMID: 23036233 DOI: 10.1017/s0031182012001163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eimeria spp. are the causative agents of coccidiosis, a major disease affecting the poultry industry. So far, only a few antigen genes of E. acervulina have been reported. In this study, a clone, named as cSZ-JN2, was identified from a cDNA expression library prepared from E. acervulina sporozoite stage with the ability to stimulate the chicken immune response. The sequence analysis showed that the open reading fragment (ORF) of cSZ-JN2 was 153 bp in size and encoded a predicted protein of 50 amino acids of Mr 5·3 kDa. BLASTN search revealed that cSZ-JN2 had no significant homology with the known genes of E. acervulina or any other organism (GenBank). The recombinant cSZ-JN2 antigen expressed in E. coli was recognized strongly by serum from chickens experimentally infected with E. acervulina. Immunofluorescence analysis using antibody against recombinant cSZ-JN2 indicated that this protein was expressed in sporozoite and merozoite developmental stages. Animal challenge experiments demonstrated that the recombinant protein of cSZ-JN2 and DNA vaccine carrying cSZ-JN2 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented anti-coccidial indices of more than 165. All the above results suggested that the cSZ-JN2 was a novel E. acervulina antigen and could be an effective candidate for the development of a new vaccine against E. acervulina infection.
Collapse
|