1
|
Im JSH, Newburn LR, Kent G, White KA. Trans-Activator Binding Site Context in RCNMV Modulates Subgenomic mRNA Transcription. Viruses 2021; 13:v13112252. [PMID: 34835058 PMCID: PMC8622197 DOI: 10.3390/v13112252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Many positive-sense RNA viruses transcribe subgenomic (sg) mRNAs during infections that template the translation of a subset of viral proteins. Red clover necrotic mosaic virus (RCNMV) expresses its capsid protein through the transcription of a sg mRNA from RNA1 genome segment. This transcription event is activated by an RNA structure formed by base pairing between a trans-activator (TA) in RNA2 and a trans-activator binding site (TABS) in RNA1. In this study, the impact of the structural context of the TABS in RNA1 on the TA–TABS interaction and sg mRNA transcription was investigated using in vitro and in vivo approaches. The results (i) generated RNA secondary structure models for the TA and TABS, (ii) revealed that the TABS is partially base paired with proximal upstream sequences, which limits TA access, (iii) demonstrated that the aforementioned intra-RNA1 base pairing involving the TABS modulates the TA–TABS interaction in vitro and sg mRNA levels during infections, and (iv) revealed that the TABS in RNA1 can be modified to mediate sg mRNA transcription in a TA-independent manner. These findings advance our understanding of transcriptional regulation in RCNMV and provide novel insights into the origin of the TA–TABS interaction.
Collapse
|
2
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
3
|
Abstract
Multipartite virus genomes are composed of several segments, each packaged in a distinct viral particle. Although this puzzling genome architecture is found in ∼17% of known viral species, its distribution among hosts or among distinct types of genome-composing nucleic acid remains poorly understood. No convincing advantage of multipartitism has been identified, yet the maintenance of genomic integrity appears problematic. Here we review recent studies shedding light on these issues. Multipartite viruses rapidly modify the copy number of each segment/gene from one host species to another, a putative benefit if host switches are common. One multipartite virus functions in a multicellular way: The segments do not all need to be present in the same cell and can functionally complement across cells, maintaining genome integrity within hosts. The genomic integrity maintenance during host-to-host transmission needs further elucidation. These features challenge several virology foundations and could apply to other multicomponent viral systems.
Collapse
Affiliation(s)
- Yannis Michalakis
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Montpellier, 34394 Montpellier, France;
| | - Stéphane Blanc
- Unité Mixte de Recherche-Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, Université Montpellier, 34398 Montpellier, France;
| |
Collapse
|
4
|
Aljabali AA, Obeid MA. Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681209666190807145229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Surface modification of nanoparticles with targeting moieties can be
achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric
nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring
protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have
been proven to be biocompatible, side effects free and degradable with no toxicity.
Objectives::
This paper reviews available literature on the nanoparticles pharmaceutical and medical
applications. The review highlights and updates the customized solutions for selective drug
delivery systems that allow high-affinity binding between nanoparticles and the target receptors.
Methods::
Bibliographic databases and web-search engines were used to retrieve studies that assessed
the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted
on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to
be chemically and genetically modified to impart new functionalities. Finally, a comparison
between naturally occurring and their synthetic counterparts was carried out.
Results::
The results showed that nanoparticles-based systems could have promising applications in
diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography),
antimicrobial agents, and as drug delivery systems. However, precautions should be taken
to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological
systems in case of pharmaceutical or medical applications.
Conclusion::
This review presented a summary of recent developments in the field of pharmaceutical
nanotechnology and highlighted the challenges and the merits that some of the nanoparticles-
based systems both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Alaa A.A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| |
Collapse
|
5
|
Sherman MB, Guenther R, Reade R, Rochon D, Sit T, Smith TJ. Near-Atomic-Resolution Cryo-Electron Microscopy Structures of Cucumber Leaf Spot Virus and Red Clover Necrotic Mosaic Virus: Evolutionary Divergence at the Icosahedral Three-Fold Axes. J Virol 2020; 94:e01439-19. [PMID: 31694952 PMCID: PMC6955255 DOI: 10.1128/jvi.01439-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the Tombusviridae family have highly similar structures, and yet there are important differences among them in host, transmission, and capsid stabilities. Viruses in the Tombusviridae family have single-stranded RNA (ssRNA) genomes with T=3 icosahedral protein shells with a maximum diameter of ∼340 Å. Each capsid protein is comprised of three domains: R (RNA binding), S (shell), and P (protruding). Between the R domain and S domain is the "arm" region that studies have shown to play a critical role in assembly. To better understand how the details of structural differences and similarities influence the Tombusviridae viral life cycles, the structures of cucumber leaf spot virus (CLSV; genus Aureusvirus) and red clover necrotic mosaic virus (RCNMV; genus Dianthovirus) were determined to resolutions of 3.2 Å and 2.9 Å, respectively, with cryo-electron microscopy and image reconstruction methods. While the shell domains had homologous structures, the stabilizing interactions at the icosahedral 3-fold axes and the R domains differed greatly. The heterogeneity in the R domains among the members of the Tombusviridae family is likely correlated with differences in the sizes and characteristics of the corresponding genomes. We propose that the changes in the R domain/RNA interactions evolved different arm domain interactions at the β-annuli. For example, RCNMV has the largest genome and it appears to have created the necessary space in the capsid by evolving the shortest R domain. The resulting loss in RNA/R domain interactions may have been compensated for by increased intersubunit β-strand interactions at the icosahedral 3-fold axes. Therefore, the R and arm domains may have coevolved to package different genomes within the conserved and rigid shell.IMPORTANCE Members of the Tombusviridae family have nearly identical shells, and yet they package genomes that range from 4.6 kb (monopartite) to 5.3 kb (bipartite) in size. To understand how this genome flexibility occurs within a rigidly conserved shell, we determined the high-resolution cryo-electron microscopy (cryo-EM) structures of cucumber leaf spot virus and red clover necrotic mosaic virus. In response to genomic size differences, it appears that the ssRNA binding (R) domain of the capsid diverged evolutionarily in order to recognize the different genomes. The next region, the "arm," seems to have also coevolved with the R domain to allow particle assembly via interactions at the icosahedral 3-fold axes. In addition, there are differences at the icosahedral 3-fold axes with regard to metal binding that are likely important for transmission and the viral life cycle.
Collapse
Affiliation(s)
- Michael B Sherman
- University of Texas Medical Branch at Galveston, Department of Biochemistry and Molecular Biology, Galveston, Texas, USA
| | - Richard Guenther
- North Carolina State University, Department of Entomology and Plant Pathology, Raleigh, North Carolina, USA
| | - Ron Reade
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - D'Ann Rochon
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Tim Sit
- North Carolina State University, Department of Entomology and Plant Pathology, Raleigh, North Carolina, USA
| | - Thomas J Smith
- University of Texas Medical Branch at Galveston, Department of Biochemistry and Molecular Biology, Galveston, Texas, USA
| |
Collapse
|
6
|
Newburn LR, White KA. A trans-activator-like structure in RCNMV RNA1 evokes the origin of the trans-activator in RNA2. PLoS Pathog 2020; 16:e1008271. [PMID: 31905231 PMCID: PMC6964918 DOI: 10.1371/journal.ppat.1008271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/16/2020] [Accepted: 12/10/2019] [Indexed: 11/19/2022] Open
Abstract
The Red clover necrotic mosaic virus (RCNMV) genome consists of two plus-strand RNA genome segments, RNA1 and RNA2. RNA2 contains a multifunctional RNA structure known as the trans-activator (TA) that (i) promotes subgenomic mRNA transcription from RNA1, (ii) facilitates replication of RNA2, and (iii) mediates particle assembly and copackaging of genome segments. The TA has long been considered a unique RNA element in RCNMV. However, by examining results from RCNMV genome analyses in the ViRAD virus (re-)annotation database, a putative functional RNA element in the polymerase-coding region of RNA1 was identified. Structural and functional analyses revealed that the novel RNA element adopts a TA-like structure (TALS) and, similar to the requirement of the TA for RNA2 replication, the TALS is necessary for the replication of RNA1. Both the TA and TALS possess near-identical asymmetrical internal loops that are critical for efficient replication of their corresponding genome segments, and these structural motifs were found to be functionally interchangeable. Moreover, replacement of the TA in RNA2 with a stabilized form of the TALS directed both RNA2 replication and packaging of both genome segments. Based on their comparable properties and considering evolutionary factors, we propose that the TALS appeared de novo in RNA1 first and, subsequently, the TA arose de novo in RNA2 as a functional mimic of the TALS. This and other related information were used to formulate a plausible evolutionary pathway to describe the genesis of the bi-segmented RCNMV genome. The resulting scenario provides an evolutionary framework to further explore and test possible origins of this segmented RNA plant virus.
Collapse
Affiliation(s)
- Laura R. Newburn
- Department of Biology, York University, Toronto, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Newburn LR, White KA. Trans-Acting RNA-RNA Interactions in Segmented RNA Viruses. Viruses 2019; 11:v11080751. [PMID: 31416187 PMCID: PMC6723669 DOI: 10.3390/v11080751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022] Open
Abstract
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
8
|
Narayanan KB, Han SS. Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures. Adv Colloid Interface Sci 2017; 248:1-19. [PMID: 28916111 DOI: 10.1016/j.cis.2017.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
Viral nanotechnology utilizes virus nanoparticles (VNPs) and virus-like nanoparticles (VLPs) of plant viruses as highly versatile platforms for materials synthesis and molecular entrapment that can be used in the nanotechnological fields, such as in next-generation nanoelectronics, nanocatalysis, biosensing and optics, and biomedical applications, such as for targeting, therapeutic delivery, and non-invasive in vivo imaging with high specificity and selectivity. In particular, plant virus capsids provide biotemplates for the production of novel nanostructured materials with organic/inorganic moieties incorporated in a very precise and controlled manner. Interestingly, capsid proteins of spherical plant viruses can self-assemble into well-organized icosahedral three-dimensional (3D) nanoscale multivalent architectures with high monodispersity and structural symmetry. Using viral genetic and protein engineering of icosahedral viruses with a variety of sizes, the interior, exterior and the interfaces between coat protein (CP) subunits can be manipulated to fabricate materials with a wide range of desirable properties allowing for biomineralization, encapsulation, infusion, controlled self-assembly, and multivalent ligand display of nanoparticles or molecules for varied applications. In this review, we discuss the various functional nanomaterials/nanostructures developed using the VNPs and VLPs of different icosahedral plant viruses and their nano(bio)technological and nanomedical applications.
Collapse
|
9
|
Madden AJ, Oberhardt B, Lockney D, Santos C, Vennam P, Arney D, Franzen S, Lommel SA, Miller CR, Gehrig P, Zamboni WC. Pharmacokinetics and efficacy of doxorubicin-loaded plant virus nanoparticles in preclinical models of cancer. Nanomedicine (Lond) 2017; 12:2519-2532. [PMID: 28952882 DOI: 10.2217/nnm-2016-0421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To compare the pharmacokinetics and efficacy of doxorubicin containing plant virus nanoparticles (PVNs) with PEGylated liposomal doxorubicin (PLD) and small molecule doxorubicin in two mouse models of cancer. MATERIALS & METHODS Studies were performed in A375 melanoma and intraperitoneal SKOV3ip1 ovarian cancer xenografts. The PVNs were administered in lower and more frequent doses in the ovarian model. RESULTS The PVNs were more efficacious than PLD and small molecule doxorubicin in the ovarian cancer model, but not in the melanoma cancer model. The pharmacokinetics profiles of the PVNs showed fast plasma clearance, but more efficient tumor delivery as compared with other carrier-mediated agents. CONCLUSION PVNs administered at lower repeated doses provide both pharmacologic and efficacy advantages compared with PLD.
Collapse
Affiliation(s)
- Andrew J Madden
- Division of Pharmacotherapy & Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | | | | | - Charlene Santos
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Stefan Franzen
- Nanovector Inc., Raleigh, NC, USA.,Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Steven A Lommel
- Nanovector Inc., Raleigh, NC, USA.,Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology & Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - Paola Gehrig
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Department of Obstetrics & Gynecology, Division of Gynecology Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Division of Pharmacotherapy & Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Dall'Ara M, Ratti C, Bouzoubaa SE, Gilmer D. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread. Viruses 2016; 8:E228. [PMID: 27548199 PMCID: PMC4997590 DOI: 10.3390/v8080228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.
Collapse
Affiliation(s)
- Mattia Dall'Ara
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah E Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
11
|
Miller WA, Shen R, Staplin W, Kanodia P. Noncoding RNAs of Plant Viruses and Viroids: Sponges of Host Translation and RNA Interference Machinery. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:156-64. [PMID: 26900786 PMCID: PMC5410770 DOI: 10.1094/mpmi-10-15-0226-fi] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noncoding sequences in plant viral genomes are well-known to control viral replication and gene expression in cis. However, plant viral and viroid noncoding (nc)RNA sequences can also regulate gene expression acting in trans, often acting like 'sponges' that bind and sequester host cellular machinery to favor viral infection. Noncoding sequences of small subgenomic (sg)RNAs of Barley yellow dwarf virus (BYDV) and Red clover necrotic mosaic virus (RCNMV) contain a cap-independent translation element that binds translation initiation factor eIF4G. We provide new evidence that a sgRNA of BYDV can globally attenuate host translation, probably by sponging eIF4G. Subgenomic ncRNA of RCNMV is generated via 5' to 3' degradation by a host exonuclease. The similar noncoding subgenomic flavivirus (sf)RNA, inhibits the innate immune response, enhancing viral pathogenesis. Cauliflower mosaic virus transcribes massive amounts of a 600-nt ncRNA, which is processed into small RNAs that overwhelm the host's RNA interference (RNAi) system. Viroids use the host RNAi machinery to generate viroid-derived ncRNAs that inhibit expression of host defense genes by mimicking a microRNA. More examples of plant viral and viroid ncRNAs are likely to be discovered, revealing fascinating new weaponry in the host-virus arms race.
Collapse
Affiliation(s)
- W. Allen Miller
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
- Corresponding author:
| | - Ruizhong Shen
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
| | | | - Pulkit Kanodia
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
12
|
Viral nanoparticles, noble metal decorated viruses and their nanoconjugates. Adv Colloid Interface Sci 2015; 222:119-34. [PMID: 24836299 DOI: 10.1016/j.cis.2014.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/28/2013] [Accepted: 04/11/2014] [Indexed: 01/09/2023]
Abstract
Virus-based nanotechnology has generated interest in a number of applications due to the specificity of virus interaction with inorganic and organic nanoparticles. A well-defined structure of virus due to its multifunctional proteinaceous shell (capsid) surrounding genomic material is a promising approach to obtain nanostructured materials. Viruses hold great promise in assembling and interconnecting novel nanosized components, allowing to develop organized nanoparticle assemblies. Due to their size, monodispersity, and variety of chemical groups available for modification, they make a good scaffold for molecular assembly into nanoscale devices. Virus based nanocomposites are useful as an engineering material for the construction of smart nanoobjects because of their ability to associate into desired structures including a number of morphologies. Viruses exhibit the characteristics of an ideal template for the formation of nanoconjugates with noble metal nanoparticles. These bioinspired systems form monodispersed units that are highly amenable through genetic and chemical modifications. As nanoscale assemblies, viruses have sophisticated yet highly ordered structural features, which, in many cases, have been carefully characterized by modern structural biological methods. Plant viruses are increasingly being used for nanobiotechnology purposes because of their relative structural and chemical stability, ease of production, multifunctionality and lack of toxicity and pathogenicity in animals or humans. The multifunctional viruses interact with nanoparticles and other functional additives to the generation of bioconjugates with different properties – possible antiviral and antibacterial activities.
Collapse
|
13
|
Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9546-53. [PMID: 25906360 DOI: 10.1021/acsami.5b00940] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant parasitic nematodes are one of the world's major agricultural pests, causing in excess of $157 billion in worldwide crop damage annually. Abamectin (Abm) is a biological pesticide with a strong activity against a wide variety of plant parasitic nematodes. However, Abm's poor mobility in the soil compromises its nematicide performance because of the limited zone of protection surrounding the growing root system of the plant. In this study, we manipulated Abm's soil physical chemistry by encapsulating Abm within the Red clover necrotic mosaic virus (RCNMV) to produce a plant virus nanoparticle (PVN) delivery system for Abm. The transmission electron microscopic and dynamic light scattering characterization of Abm-loaded PVN (PVN(Abm)) indicated the resultant viral capsid integrity and morphology comparable to native RCNMV. In addition, the PVN(Abm) significantly increased Abm's soil mobility while enabling a controlled release strategy for Abm's bioavailability to nematodes. As a result, PVN(Abm) enlarged the zone of protection from Meloidogyne hapla root knot nematodes in the soil as compared to treating with free Abm molecules. Tomato seedlings treated with PVN(Abm) had healthier root growth and a reduction in root galling demonstrating the success of this delivery system for the increased efficacy of Abm to control nematode damage in crops.
Collapse
Affiliation(s)
- Jing Cao
- †Department of Textile Engineering, Chemistry and Science, North Carolina State University, 2401 Research Drive, Raleigh, North Carolina 27695, United States
| | - Richard H Guenther
- ‡Department of Plant Pathology, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27695, United States
| | - Tim L Sit
- ‡Department of Plant Pathology, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27695, United States
| | - Steven A Lommel
- ‡Department of Plant Pathology, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27695, United States
| | - Charles H Opperman
- ‡Department of Plant Pathology, North Carolina State University, 850 Main Campus Drive, Raleigh, North Carolina 27695, United States
| | - Julie A Willoughby
- †Department of Textile Engineering, Chemistry and Science, North Carolina State University, 2401 Research Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
14
|
The red clover necrotic mosaic virus capsid protein N-terminal amino acids possess specific RNA binding activity and are required for stable virion assembly. Virus Res 2013; 176:107-18. [PMID: 23747688 DOI: 10.1016/j.virusres.2013.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 11/21/2022]
Abstract
The red clover necrotic mosaic virus (RCNMV) bipartite RNA genome is packaged into two virion populations containing either RNA-1 and RNA-2 or multiple copies of RNA-2 only. To understand this distinctive packaging scheme, we investigated the RNA-binding properties of the RCNMV capsid protein (CP). Maltose binding protein-CP fusions exhibited the highest binding affinities for RNA probes containing the RNA-2 trans-activator or the 3' non-coding region from RNA-1. Other viral and non-viral RNA probes displayed CP binding but to a much lower degree. Deletion of the highly basic N-terminal 50 residues abolished CP binding to viral RNA transcripts. In planta studies of select CP deletion mutants within this N-terminal region revealed that it was indispensable for stable virion formation and the region spanning CP residues 5-15 is required for systemic movement. Thus, the N-terminal region of the CP is involved in both producing two virion populations due to its RNA binding properties and virion stability.
Collapse
|
15
|
Martin SL, He L, Meilleur F, Guenther RH, Sit TL, Lommel SA, Heller WT. New insight into the structure of RNA in red clover necrotic mosaic virus and the role of divalent cations revealed by small-angle neutron scattering. Arch Virol 2013; 158:1661-9. [PMID: 23483344 DOI: 10.1007/s00705-013-1650-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/24/2013] [Indexed: 11/25/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a 36-nm-diameter, T = 3 icosahedral plant virus with a genome that is split between two single-stranded RNA molecules of approximately 3.9 kb and 1.5 kb, as well as a 400-nucleotide degradation product. The structure of the virus capsid and its response to removing Ca(2+) and Mg(2+) was previously studied by cryo-electron microscopy (cryo-EM) (Sherman et al. J Virol 80:10395-10406, 2006) but the structure of the RNA was only partially resolved in that study. To better understand the organization of the RNA and conformational changes resulting from the removal of divalent cations, small-angle neutron scattering with contrast variation experiments were performed. The results expand upon the cryo-EM results by clearly showing that virtually all of the RNA is contained in a thin shell that is in contact with the interior domains of the viral capsid protein, and they provide new insight into changes in the RNA packing that result from removal of divalent cations.
Collapse
Affiliation(s)
- Stanton L Martin
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The genus Dianthovirus is one of eight genera in the family Tombusviridae. All the genera have monopartite positive-stranded RNA genomes, except the dianthoviruses which have bipartite genomes. The dianthoviruses are distributed worldwide. Although they share common structural features with the other Tombusviridae viruses in their virions and the terminal structure of the genomic RNAs, the bipartite nature of the dianthovirus genome offers an ideal experimental system with which to study basic issues of virology. The two genomic RNAs seem to use distinct strategies to regulate their translation, transcription, genome replication, genome packaging, and cell-to-cell movement during infection. This review summarizes the current state of our knowledge of the dianthoviruses, with its main emphasis on the molecular biology of the virus, including the viral and host factors required for its infection of host plants. The epidemiology of the virus and the possible viral impacts on agriculture and the environment are also discussed.
Collapse
Affiliation(s)
- Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
17
|
Hussain M, Lockney D, Wang R, Gera N, Rao BM. Avidity-mediated virus separation using a hyperthermophilic affinity ligand. Biotechnol Prog 2013; 29:237-46. [PMID: 23125177 DOI: 10.1002/btpr.1655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/22/2012] [Indexed: 12/14/2022]
Abstract
Immunoaffinity separation of large multivalent species such as viruses is limited by the stringent elution conditions necessary to overcome their strong and highly avid interaction with immobilized affinity ligands on the capture surface. Here we present an alternate strategy that harnesses the avidity effect to overcome this limitation. Red clover necrotic mosaic virus (RCNMV), a plant virus relevant to drug delivery applications, was chosen as a model target for this study. An RCNMV binding protein (RBP) with modest binding affinity (K(D) ~100 nM) was generated through mutagenesis of the Sso7d protein from Sulfolobus solfataricus and used as the affinity ligand. In our separation scheme, RCNMV is captured by a highly avid interaction with RBP immobilized on a nickel surface through a hexahistidine (6xHis) tag. Subsequently, disruption of the multivalent interaction and release of RCNMV is achieved by elution of RBP from the nickel surface. Finally, RCNMV is separated from RBP by exploiting the large difference in their molecular weights (~8 MDa vs. ~10 kDa). Our strategy not only eliminates the need for harsh elution conditions, but also bypasses chemical conjugation of the affinity ligand to the capture surface. Stable non-antibody affinity ligands to a wide spectrum of targets can be generated through mutagenesis of Sso7d and other hyperthermophilic proteins. Therefore, our approach may be broadly relevant to cases where capture of large multivalent species from complex mixtures and subsequent release without the use of harsh elution conditions is necessary.
Collapse
Affiliation(s)
- Mahmud Hussain
- Dept. of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
18
|
Park SH, Sit TL, Kim KH, Lommel SA. The Red clover necrotic mosaic virus capsid protein N-terminal lysine-rich motif is a determinant of symptomatology and virion accumulation. MOLECULAR PLANT PATHOLOGY 2012; 13:744-54. [PMID: 22292426 PMCID: PMC6638805 DOI: 10.1111/j.1364-3703.2011.00784.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The interaction between viral capsid protein (CP) and its cognate viral RNA modulates many steps in the virus infection cycle, such as replication, translation and assembly. The N-terminal 50 amino acids of the Red clover necrotic mosaic virus (RCNMV) CP are rich in basic residues (especially lysine) and are essential for the core functions of the CP, namely RNA binding and virion assembly. To further elucidate additional biological roles for these basic residues, a series of alanine substitution mutations was introduced into infectious clones of RCNMV RNA-1 and assayed for symptomatology, virion formation and systemic infection. Infectivity assays conducted in Nicotiana benthamiana revealed that all nine alanine substitution mutants (ASMs) were competent for systemic infection. Two ASMs (K4A and K7A/K8A) induced severe symptoms and delayed the systemic spread of viral genomes when compared with wild-type RCNMV. However, these ASMs were still competent for virion formation. Three other ASMs (K25A, K33A and K38A) displayed milder symptoms and significant reductions in virion accumulation when compared with wild-type RCNMV, but retained the ability to spread systemically. Evidence from these last three ASMs, as well as a CP null mutant, showed that RCNMV is able to move systemically in N. benthamiana as a nonvirion form. These observations reaffirm the necessity of the N-terminal lysine-rich residues of the RCNMV CP for efficient virion accumulation. They also reveal additional roles for the CP in the modulation of host symptomatology, independent of its role in virion assembly and the rate of systemic viral movement in N. benthamiana.
Collapse
Affiliation(s)
- Sang-Ho Park
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, South Korea
| | | | | | | |
Collapse
|
19
|
Lockney DM, Guenther RN, Loo L, Overton W, Antonelli R, Clark J, Hu M, Luft C, Lommel SA, Franzen S. The Red clover necrotic mosaic virus Capsid as a Multifunctional Cell Targeting Plant Viral Nanoparticle. Bioconjug Chem 2010; 22:67-73. [DOI: 10.1021/bc100361z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dustin M. Lockney
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Richard N. Guenther
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Lina Loo
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Wesley Overton
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Ray Antonelli
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Jennifer Clark
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Mei Hu
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Chris Luft
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Steven A. Lommel
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| | - Stefan Franzen
- Department of Chemistry and Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States, and NanoVector, Inc., P. O. Box 98385, Raleigh, North Carolina 27624-8385, United States
| |
Collapse
|
20
|
Martin SL, Guenther RH, Sit TL, Swartz PD, Meilleur F, Lommel SA, Rose RB. Crystallization and preliminary X-ray diffraction analysis of red clover necrotic mosaic virus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1458-62. [PMID: 21045294 PMCID: PMC3001647 DOI: 10.1107/s1744309110032483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/12/2010] [Indexed: 11/10/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a species that belongs to the Tombusviridae family of plant viruses with a T = 3 icosahedral capsid. RCNMV virions were purified and were crystallized for X-ray analysis using the hanging-drop vapor-diffusion method. Self-rotation functions and systematic absences identified the space group as I23, with two virions in the unit cell. The crystals diffracted to better than 4 Å resolution but were very radiation-sensitive, causing rapid decay of the high-resolution reflections. The data were processed to 6 Å in the analysis presented here.
Collapse
Affiliation(s)
- Stanton L. Martin
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Richard H. Guenther
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Tim L. Sit
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul D. Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Steven A. Lommel
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert B. Rose
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
21
|
Franzen S, Lommel SA. Targeting cancer with 'smart bombs': equipping plant virus nanoparticles for a 'seek and destroy' mission. Nanomedicine (Lond) 2009; 4:575-88. [PMID: 19572822 DOI: 10.2217/nnm.09.23] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article discusses plant virus nanoparticles as a weapon in the war on cancer. The successes and failures of numerous nanoparticle strategies are discussed as a background to consideration of the plant virus nanoparticle approach. To have therapeutic benefit, the advantages of the targeted nanoparticle must outweigh the problems of colloidal stability, uptake by the reticuloendothelial system as well as the requirement for clearance from the body. Biodegradable nanoparticles are considered to have the most promise to address these complex phenomena. After justifying the choice of biodegradable particles, the article focuses on comparison of micelles, liposomes, polymers and modified plant viruses. The structural uniformity, cargo capacity, responsive behavior and ease of manufacturing of plant virus nanoparticles are unique properties that suggest they have a wider role to play in targeted therapy. The loading of chemotherapeutic cargo is discussed, with specific reference to the advantage of reversible transitions of the capsid of Red clover necrotic mosaic virus. These features will be contrasted and compared with other biodegradable 'smart bombs' that target cancer cells.
Collapse
Affiliation(s)
- Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
22
|
Dual roles for an arginine-rich motif in specific genome recognition and localization of viral coat protein to RNA replication sites in flock house virus-infected cells. J Virol 2009; 83:2872-82. [PMID: 19158251 DOI: 10.1128/jvi.01780-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Assembly of many RNA viruses entails the encapsidation of multiple genome segments into a single virion, and underlying mechanisms for this process are still poorly understood. In the case of the nodavirus Flock House virus (FHV), a bipartite positive-strand RNA genome consisting of RNA1 and RNA2 is copackaged into progeny virions. In this study, we investigated whether the specific packaging of FHV RNA is dependent on an arginine-rich motif (ARM) located in the N terminus of the coat protein. Our results demonstrate that the replacement of all arginine residues within this motif with alanines rendered the resultant coat protein unable to package RNA1, suggesting that the ARM represents an important determinant for the encapsidation of this genome segment. In contrast, replacement of all arginines with lysines had no effect on RNA1 packaging. Interestingly, confocal microscopic analysis demonstrated that the RNA1 packaging-deficient mutant did not localize to mitochondrial sites of FHV RNA replication as efficiently as wild-type coat protein. In addition, gain-of-function analyses showed that the ARM by itself was sufficient to target green fluorescent protein to RNA replication sites. These data suggest that the packaging of RNA1 is dependent on trafficking of coat protein to mitochondria, the presumed site of FHV assembly, and that this trafficking requires a high density of positive charge in the N terminus. Our results are compatible with a model in which recognition of RNA1 and RNA2 for encapsidation occurs sequentially and in distinct cellular microenvironments.
Collapse
|
23
|
Basnayake VR, Sit TL, Lommel SA. The Red clover necrotic mosaic virus origin of assembly is delimited to the RNA-2 trans-activator. Virology 2008; 384:169-78. [PMID: 19062064 DOI: 10.1016/j.virol.2008.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/01/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022]
Abstract
The bipartite RNA genome of Red clover necrotic mosaic virus (RCNMV) is encapsidated into icosahedral virions that exist as two populations: i) virions that co-package both genomic RNAs and ii) virions packaging multiple copies of RNA-2. To elucidate the packaging mechanism, we sought to identify the RCNMV origin of assembly sequence (OAS). RCNMV RNA-1 cannot package in the absence of RNA-2 suggesting that it does not contain an independent packaging signal. A 209 nt RNA-2 element expressed from the Tomato bushy stunt virus CP subgenomic promoter is co-assembled with genomic RNA-1 into virions. Deletion mutagenesis delimited the previously characterized 34 nt trans-activator (TA) as the minimal RCNMV OAS. From this study we hypothesize that RNA-1 must be base-paired with RNA-2 at the TA to initiate co-packaging. The addition of viral assembly illustrates the critical importance of the multifunctional TA element as a key regulatory switch in the RCNMV life cycle.
Collapse
Affiliation(s)
- Veronica R Basnayake
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7342, USA
| | | | | |
Collapse
|
24
|
Powers JG, Sit TL, Heinsohn C, George CG, Kim KH, Lommel SA. The Red clover necrotic mosaic virus RNA-2 encoded movement protein is a second suppressor of RNA silencing. Virology 2008; 381:277-86. [PMID: 18838152 DOI: 10.1016/j.virol.2008.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 08/22/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
Abstract
The replication complex of Red clover necrotic mosaic virus (RCNMV) has been shown to possess silencing suppression activity. Here a newly developed viral-based assay for the identification of silencing suppression activity was used to provide evidence for a second, mechanistically distinct method of silencing suppression provided for by the RCNMV movement protein (MP). This new assay relies on Turnip crinkle virus with its capsid protein replaced with green fluorescent protein to act as a reporter (TCV-sGFP). In the presence of a protein with silencing suppression activity TCV-sGFP readily moves from cell-to-cell, but in the absence of such a protein TCV-sGFP is confined to small foci of infection. This TCV-sGFP assay was used to identify MP as a suppressor of RNA silencing, to delimit essential amino acids for this activity and uncouple silencing and movement functions.
Collapse
Affiliation(s)
- Jason G Powers
- Department of Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Loo L, Guenther RH, Lommel SA, Franzen S. Infusion of dye molecules into Red clover necrotic mosaic virus. Chem Commun (Camb) 2008:88-90. [DOI: 10.1039/b714748a] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Induction of particle polymorphism by cucumber necrosis virus coat protein mutants in vivo. J Virol 2007; 82:1547-57. [PMID: 18032493 DOI: 10.1128/jvi.01976-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cucumber necrosis virus (CNV) particle is a T=3 icosahedron consisting of 180 identical coat protein (CP) subunits. Plants infected with wild-type CNV accumulate a high number of T=3 particles, but other particle forms have not been observed. Particle polymorphism in several T=3 icosahedral viruses has been observed in vitro following the removal of an extended N-terminal region of the CP subunit. In the case of CNV, we have recently described the structure of T=1 particles that accumulate in planta during infection by a CNV mutant (R1+2) in which a large portion of the N-terminal RNA binding domain (R-domain) has been deleted. In this report we further describe properties of this mutant and other CP mutants that produce polymorphic particles. The T=1 particles produced by R1+2 mutants were found to encapsidate a 1.9-kb RNA species as well as smaller RNA species that are similar to previously described CNV defective interfering RNAs. Other R-domain mutants were found to encapsidate a range of specifically sized less-than-full-length CNV RNAs. Mutation of a conserved proline residue in the arm domain near its junction with the shell domain also influenced T=1 particle formation. The proportion of polymorphic particles increased when the mutation was incorporated into R-domain deletion mutants. Our results suggest that both the R-domain and the arm play important roles in the formation of T=3 particles. In addition, the encapsidation of specific CNV RNA species by individual mutants indicates that the R-domain plays a role in the nature of CNV RNA encapsidated in particles.
Collapse
|
27
|
Loo L, Guenther RH, Lommel SA, Franzen S. Encapsidation of nanoparticles by red clover necrotic mosaic virus. J Am Chem Soc 2007; 129:11111-7. [PMID: 17705477 DOI: 10.1021/ja071896b] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Icosahedral virus capsids demonstrate a high degree of selectivity in packaging cognate nucleic acid genome components during virion assembly. The 36 nm icosahedral plant virus Red clover necrotic mosaic virus (RCNMV) packages its two genomic ssRNAs via a specific capsid protein (CP) genomic RNA interaction. A 20-nucleotide hairpin structure within the genomic RNA-2 hybridizes with RNA-1 to form a bimolecular complex, which is the origin of assembly (OAS) in RCNMV that selectively recruits and orients CP subunits initiating virion assembly. In this Article, an oligonucleotide mimic of the OAS sequence was attached to Au, CoFe2O4, and CdSe nanoparticles ranging from 3 to 15 nm, followed by addition of RNA-1 to form a synthetic OAS to direct the virion-like assembly by RCNMV CP. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements were consistent with the formation of virus-like particles (VLPs) comparable in size to native RCNMV. Attempts to encapsidate nanoparticles with diameters larger than 17 nm did not result in well-formed viral capsids. These results are consistent with the presence of a 17 nm cavity in native RCNMV. Covalent linkage of the OAS to nanoparticles directs RNA-dependent encapsidation and demonstrates that foreign cargo can be packaged into RCNMV virions. The flexibility of the RCNMV CP to encapsidate different materials, as long as it is within encapsidation constraint, is a critical factor to be considered as a drug delivery and diagnostic vehicle in biomedical applications.
Collapse
Affiliation(s)
- LiNa Loo
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
28
|
Verchot-Lubicz J, Ye CM, Bamunusinghe D. Molecular biology of potexviruses: recent advances. J Gen Virol 2007; 88:1643-1655. [PMID: 17485523 DOI: 10.1099/vir.0.82667-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent advances in potexvirus research have produced new models describing virus replication, cell-to-cell movement, encapsidation, R gene-mediated resistance and gene silencing. Interactions between distant RNA elements are a central theme in potexvirus replication. The 5′ non-translated region (NTR) regulates genomic and subgenomic RNA synthesis and encapsidation, as well as virus plasmodesmal transport. The 3′ NTR regulates both plus- and minus-strand RNA synthesis. How the triple gene-block proteins interact for virus movement is still elusive. As the potato virus X (PVX) TGBp1 protein gates plasmodesmata, regulates virus translation and is a suppressor of RNA silencing, further research is needed to determine how these properties contribute to propelling virus through the plasmodesmata. Specifically, TGBp1 suppressor activity is required for virus movement, but how the silencing machinery relates to plasmodesmata is not known. The TGBp2 and TGBp3 proteins are endoplasmic reticulum (ER)-associated proteins required for virus movement. TGBp2 associates with ER-derived vesicles that traffic along the actin network. Future research will determine whether the virus-induced vesicles are cytopathic structures regulating events along the ER or are vehicles carrying virus to the plasmodesmata for transfer into neighbouring cells. Efforts to assemble virions in vitro identified a single-tailed particle (STP) comprising RNA, coat protein (CP) and TGBp1. It has been proposed that TGBp1 aids in transport of virions or STP between cells and ensures translation of RNA in the receiving cells. PVX is also a tool for studying Avr–R gene interactions and gene silencing in plants. The PVX CP is the elicitor for the Rx gene. Recent reports of the PVX CP reveal how CP interacts with the Rx gene product.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, USA
| | - Chang-Ming Ye
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, USA
| | - Devinka Bamunusinghe
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
29
|
Shen R, Rakotondrafara AM, Miller WA. trans regulation of cap-independent translation by a viral subgenomic RNA. J Virol 2006; 80:10045-54. [PMID: 17005682 PMCID: PMC1617300 DOI: 10.1128/jvi.00991-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many positive-strand RNA viruses generate 3'-coterminal subgenomic mRNAs to allow translation of 5'-distal open reading frames. It is unclear how viral genomic and subgenomic mRNAs compete with each other for the cellular translation machinery. Translation of the uncapped Barley yellow dwarf virus genomic RNA (gRNA) and subgenomic RNA1 (sgRNA1) is driven by the powerful cap-independent translation element (BTE) in their 3' untranslated regions (UTRs). The BTE forms a kissing stem-loop interaction with the 5' UTR to mediate translation initiation at the 5' end. Here, using reporter mRNAs that mimic gRNA and sgRNA1, we show that the abundant sgRNA2 inhibits translation of gRNA, but not sgRNA1, in vitro and in vivo. This trans inhibition requires the functional BTE in the 5' UTR of sgRNA2, but no translation of sgRNA2 itself is detectable. The efficiency of translation of the viral mRNAs in the presence of sgRNA2 is determined by proximity to the mRNA 5' end of the stem-loop that kisses the 3' BTE. Thus, the gRNA and sgRNA1 have "tuned" their expression efficiencies via the site in the 5' UTR to which the 3' BTE base pairs. We conclude that sgRNA2 is a riboregulator that switches off translation of replication genes from gRNA while permitting translation of structural genes from sgRNA1. These results reveal (i) a new level of control of subgenomic-RNA gene expression, (ii) a new role for a viral subgenomic RNA, and (iii) a new mechanism for RNA-mediated regulation of translation.
Collapse
Affiliation(s)
- Ruizhong Shen
- Plant Pathology Department, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
30
|
Abstract
Despite tremendous advances in high-resolution structure determination of virus particles, the organization of encapsidated genomes and their role during assembly are poorly understood. This article summarizes recent insights from structural, biochemical, and genetic analyses of icosahedral viruses that contain single-stranded, positive-sense RNA genomes. X-ray crystallography of several viruses in this category has provided tantalizing glimpses of portions of the packaged nucleic acid, contributing crucial information on how the genome might be folded within the virion. This information combined with theoretical considerations and data from molecular approaches suggests mechanisms by which coat proteins interact with genomic RNA to shape it into a conformation that is compatible with the geometry of the virion. It appears that RNA, in addition to its function as a repository for genetic information, plays an important structural role during assembly and can on occasion override the ability of the coat protein to form a particle with defined icosahedral symmetry.
Collapse
Affiliation(s)
- Anette Schneemann
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
31
|
Annamalai P, Rao ALN. Packaging of brome mosaic virus subgenomic RNA is functionally coupled to replication-dependent transcription and translation of coat protein. J Virol 2006; 80:10096-108. [PMID: 17005687 PMCID: PMC1617292 DOI: 10.1128/jvi.01186-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022] Open
Abstract
In Brome mosaic virus (BMV), genomic RNA1 (gB1) and RNA2 (gB2), encoding the replication factors, are packaged into two separate virions, whereas genomic RNA3 (gB3) and its subgenomic coat protein (CP) mRNA (sgB4) are copackaged into a third virion. In vitro assembly assays performed between a series of deletion variants of sgB4 and wild-type (wt) CP subunits demonstrated that packaging of sgB4 is independent of sequences encoding the CP open reading frame. To confirm these observations in vivo and to unravel the mechanism of sgB4 copackaging, an Agrobacterium-mediated transient in vivo expression system (P. Annamalai and A. L. N. Rao, Virology 338:96-111, 2005) that effectively uncouples replication from packaging was used. Cultures of agrotransformants, engineered to express sgB4 and CP subunits either transiently (sgB4(Trans) and CP(Trans)) or in replication-dependent transcription and translation when complemented with gB1 and gB2 (sgB4(Rep) and CP(Rep)), were mixed in all four pair-wise combinations and infiltrated to Nicotiana benthamiana leaves to systematically evaluate requirements regulating sgB4 packaging. The data revealed that (i) in the absence of replication, packaging was nonspecific, since transiently expressed CP subunits efficiently packaged ubiquitous cellular RNA as well as transiently expressed sgB4 and its deletion variants; (ii) induction of viral replication increased specificity of RNA packaging; and most importantly, (iii) efficient packaging of sgB4, reminiscent of the wt scenario, is functionally coupled not only to its transcription via replication but also to translation of CP from replication-derived mRNA, a mechanism that appears to be conserved among positive-strand RNA viruses of plants (this study), animals (flock house virus), and humans (poliovirus).
Collapse
Affiliation(s)
- Padmanaban Annamalai
- Department of Plant Pathology, University of California, Riverside, CA 92521-0122, USA
| | | |
Collapse
|
32
|
Sherman MB, Guenther RH, Tama F, Sit TL, Brooks CL, Mikhailov AM, Orlova EV, Baker TS, Lommel SA. Removal of divalent cations induces structural transitions in red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J Virol 2006; 80:10395-406. [PMID: 16920821 PMCID: PMC1641784 DOI: 10.1128/jvi.01137-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 +/- 30 Ca2+ ions bound to the capsid and 420 +/- 25 Mg2+ ions thought to be in the interior of the capsid. Depletion of both Ca2+ and Mg2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-A-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca2+ and Mg2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.
Collapse
Affiliation(s)
- Michael B Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|