1
|
de Araújo dos Santos SF, de Souza UJB, Oliveira MT, Jaime J, Spilki FR, Franco AC, Roehe PM, Campos FS. Recovery of complete genomes of canine parvovirus from clinical samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548703. [PMID: 37502963 PMCID: PMC10369981 DOI: 10.1101/2023.07.12.548703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Canine parvovirus (CPV) is a highly pathogenic virus that affects dogs, especially puppies. CPV is believed to have evolved from feline panleukopenia virus (FPV), eventually giving rise to three antigenic types, CPV-2a, 2b, and 2c. CPV-2 is recognized for its resilience in contaminated environments, ease of transmission among dogs, and pathogenicity for puppies. Despite the relevance of the virus, complete genome sequences of CPV available at GenBank, to date, are scarce. In the current study, we have developed a methodology to allow the recovery of complete CPV-2 genomes directly from clinical samples. For this, seven fecal samples from Gurupi, Tocantins, North Brazil, were collected from puppies with clinical signals of viral enteritis, and submitted to viral DNA isolation and amplification. Two multiplex PCR strategies were designed including primers targeting fragments of 400 base pairs (bp) and 1,000 bp along the complete genome. Sequencing was performed with the Nanopore® technology and results obtained with the two approaches were compared. Genome assembly revealed that the 400 bp amplicons generated larger numbers of reads, allowing a more reliable coverage of the whole genome than those attained with primers targeting the larger (1000 bp) amplicons. Nevertheless, both enrichment methodologies were efficient in amplification and sequencing. Viral genome sequences were of high quality and allowed more precise typing and subtyping of viral genomes compared to the commonly employed strategy relying solely on the analysis of the VP2 region, which is limited in scope. The CPV-2 genomes recovered in this study belong to the CPV2a and CPV-2c subtypes, closely related to isolates from the neighboring Amazonian region. In conclusion, the technique reported here may contribute to increase the number of full CPV genomes available, which is essential for understanding the genetic mechanisms underlying the evolution and spread of CPV-2.
Collapse
Affiliation(s)
| | - Ueric José Borges de Souza
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil
| | - Martha Trindade Oliveira
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal. Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V). Carrera 30 # 45-03, Bogotá D.C. CP 11132. Colombia
| | | | - Ana Cláudia Franco
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Paulo Michel Roehe
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Fabrício Souza Campos
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
2
|
Xue H, Liang Y, Gao X, Song Y, Zhu K, Yang M, Hao J, Ma H, Yu K. Development and Application of nanoPCR Method for Detection of Feline Panleukopenia Virus. Vet Sci 2023; 10:440. [PMID: 37505845 PMCID: PMC10386105 DOI: 10.3390/vetsci10070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Feline panleukopenia (FP) is a severe viral illness caused by the feline panleukopenia virus (FPV), putting sectors like companion cat breeding and endangered feline conservation at risk. The virus has a high morbidity and fatality rate and is found all over the world. We created a novel FPV assay using nanoPCR technology and assessed the method's specificity and sensitivity. The approach amplified a 345 bp nucleic acid fragment with a minimum detection limit of 7.97 × 102 copies/μL, which is about 100 times greater than traditional PCR. We collected anal swabs from 83 cats suspected of FPV infection for practical application, and the FPV-positive rate determined by the nanoPCR approach was 77.1%. In conclusion, the approach is more sensitive than conventional PCR and more convenient and cost-effective than qPCR methodology and may be utilized for the clinical detection of FPV.
Collapse
Affiliation(s)
- Haowen Xue
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Yang Liang
- Beijing Shengzetang Animal Hospital, Beijing 102218, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Meng Yang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Jingrui Hao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Kai Yu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji 133002, China
| |
Collapse
|
3
|
Capozza P, Buonavoglia A, Pratelli A, Martella V, Decaro N. Old and Novel Enteric Parvoviruses of Dogs. Pathogens 2023; 12:pathogens12050722. [PMID: 37242392 DOI: 10.3390/pathogens12050722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Parvovirus infections have been well known for around 100 years in domestic carnivores. However, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus species and/or variants in dogs. Although some evidence suggests that these emerging canine parvoviruses may act as primary causative agents or as synergistic pathogens in the diseases of domestic carnivores, several aspects regarding epidemiology and virus-host interaction remain to be elucidated.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, Dental School, Via Zamboni 33, 40126 Bologna, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| |
Collapse
|
4
|
Xue H, Hu C, Ma H, Song Y, Zhu K, Fu J, Mu B, Gao X. Isolation of feline panleukopenia virus from Yanji of China and molecular epidemiology from 2021 to 2022. J Vet Sci 2023; 24:e29. [PMID: 37012037 PMCID: PMC10071280 DOI: 10.4142/jvs.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Feline panleukopenia virus (FPV) is a widespread and highly infectious pathogen in cats with a high mortality rate. Although Yanji has a developed cat breeding industry, the variation of FPV locally is still unclear. OBJECTIVES This study aimed to isolate and investigate the epidemiology of FPV in Yanji between 2021 and 2022. METHODS A strain of FPV was isolated from F81 cells. Cats suspected of FPV infection (n = 80) between 2021 and 2022 from Yanji were enrolled in this study. The capsid protein 2 (VP2) of FPV was amplified. It was cloned into the pMD-19T vector and transformed into a competent Escherichia coli strain. The positive colonies were analyzed via VP2 Sanger sequencing. A phylogenetic analysis based on a VP2 coding sequence was performed to identify the genetic relationships between the strains. RESULTS An FPV strain named YBYJ-1 was successfully isolated. The virus diameter was approximately 20-24 nm, 50% tissue culture infectious dose = 1 × 10-4.94/mL, which caused cytopathic effect in F81 cells. The epidemiological survey from 2021 to 2022 showed that 27 of the 80 samples were FPV-positive. Additionally, three strains positive for CPV-2c were unexpectedly found. Phylogenetic analysis showed that most of the 27 FPV strains belonged to the same group, and no mutations were found in the critical amino acids. CONCLUSIONS A local FPV strain named YBYJ-1 was successfully isolated. There was no critical mutation in FPV in Yanji, but some cases with CPV-2c infected cats were identified.
Collapse
Affiliation(s)
- Haowen Xue
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Chunyi Hu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Jingfeng Fu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Biying Mu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| |
Collapse
|
5
|
Hasırcıoglu S, Aslım HP, Kale M, Bulut O, Koçlu O, Orta YS. Molecular characterization of carnivore protoparvovirus strains circulating in cats in Turkey. PESQUISA VETERINÁRIA BRASILEIRA 2023. [DOI: 10.1590/1678-5150-pvb-7178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
ABSTRACT: Cats are susceptible to feline panleukopenia virus (FPV) and canine parvovirus type 2 (CPV-2). Therefore, coinfection and superinfection with multiple parvovirus strains may occur, resulting in high heterogeneity and recombination. Considering the importance of cats as a potential source of genetic diversity for parvoviruses, we investigated the frequency of parvovirus infection in cats using their blood and fecal samples and performed molecular characterization of parvovirus strains circulating in cat populations. Accordingly, the fecal and blood samples of 60 cats with gastroenteritis symptoms were collected from Turkey’s Burdur, Isparta, and Izmit provinces. Of these 15 fecal samples tested as parvovirus-positive by PCR, 14 were confirmed to have been infected with true FPV strains by sequencing analysis. Through the phylogeny analysis, those were located in the FPV cluster, closely related to CPV-2, and one was discriminated in the CPV-2b cluster. Additionally, sequence analysis of the VP2 gene of CPV and FPV revealed that the FPV strains detected in Turkey and the vaccine strains were highly related to each other, with a nucleotide identity of 97.7- 100%. Furthermore, 13 variable positions were detected in VP2 of the field and reference FPV strains. Three synonymous mutations were determined in the VP2 gene. Some amino acid mutations in the VP2 protein-affected sites were considered responsible for the virus’s biological and antigenic properties. The partial sequence analysis of the VP2 gene revealed that four FPV strains detected in Turkey have a single nucleotide change from T to G at the amino acid position 384 between the nucleotides 3939-3941, which was reported for the first time. Therefore, these four isolates formed a different branch in the phylogenetic tree. The results suggest that both FPV and CPV-2b strains are circulating in domestic cats in Turkey and cats should be considered as potential sources of new parvovirus variants for cats, dogs and other animals.
Collapse
|
6
|
Tang Y, Tang N, Zhu J, Wang M, Liu Y, Lyu Y. Molecular characteristics and genetic evolutionary analyses of circulating parvoviruses derived from cats in Beijing. BMC Vet Res 2022; 18:195. [PMID: 35606875 PMCID: PMC9125828 DOI: 10.1186/s12917-022-03281-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Feline parvovirus (FPV) is a member of the family Parvoviridae, which is a major enteric pathogen of cats worldwide. This study aimed to investigate the prevalence of feline parvovirus in Beijing of China and analyze the genetic features of detected viruses. Results In this study, a total of 60 (8.5%) parvovirus-positive samples were detected from 702 cat fecal samples using parvovirus-specific PCR. The complete VP2 genes were amplified from all these samples. Among them, 55 (91.7%) sequences were characterized as FPV, and the other five (8.3%) were typed as canine parvovirus type 2 (CPV-2) variants, comprised of four CPV-2c and a new CPV-2b strain. In order to investigate the origin of CPV-2 variants in cats, we amplified full-length VP2 genes from seven fecal samples of dogs infected with CPV-2, which were further classified as CPV-2c. The sequences of new CPV-2b/MT270586 and CPV-2c/MT270587 detected from feline samples shared 100% identity with previous canine isolates KT156833 and MF467242 respectively, suggesting the CPV-2 variants circulating in cats might be derived from dogs. Sequence analysis indicated new mutations, Ala91Ser and Ser192Phe, in the FPV sequences, while obtained CPV-2c carried mutations reported in Asian CPV variants, showing they share a common evolutionary pattern with the Asian 2c strains. Interestingly, the FPV sequence (MT270571), displaying four CPV-specific residues, was found to be a putative recombinant sequence between CPV-2c and FPV. Phylogenetic analysis of the VP2 gene showed that amino acid and nucleotide mutations promoted the evolution of FPV and CPV lineages. Conclusions Our findings will be helpful to further understand the circulation and evolution of feline and canine parvovirus in Beijing.
Collapse
Affiliation(s)
- Yashu Tang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Na Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingru Zhu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Min Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Liu
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, 100193, China
| | - Yanli Lyu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
de Oliveira Santana W, Silveira VP, Wolf JM, Kipper D, Echeverrigaray S, Canal CW, Truyen U, Lunge VR, Streck AF. Molecular phylogenetic assessment of the canine parvovirus 2 worldwide and analysis of the genetic diversity and temporal spreading in Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105225. [PMID: 35101636 DOI: 10.1016/j.meegid.2022.105225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Canine parvovirus type 2 (CPV-2) is a relevant pathogen for dogs and causes a severe disease in carnivore species. CPV-2 reached pandemic proportions after the 1970s with the worldwide dissemination, generating antigenic and genetic variants (CPV-2a, CPV-2b, and CPV-2c) with different pathobiology in comparison with the original type CPV-2. The present study aimed to assess the current global CPV-2 molecular phylogeny and to analyze genetic diversity and temporal spreading of variants from Brazil. A total of 284 CPV-2 whole-genome sequences (WGS) and 684 VP2 complete genes (including 23 obtained in the present study) were compared to analyze phylogenetic relationships. Bayesian coalescent analysis estimated the time to the most recent common ancestor (tMRCA) and the population dynamics of the different CPV-2 lineages in the last decades. The WGS phylogenetic tree demonstrated two main clades disseminated worldwide today. The VP2 gene tree showed a total of four well-defined clades distributed in different geographic regions, including one with CPV-2 sequences exclusive from Brazil. These clades do not have a relationship with the previous classification into CPV-2a, CPV-2b, and CPV-2c, despite some having a predominance of one or more antigenic types. Temporal analysis demonstrated that the main CPV-2 clades evolved within a few years (from the 1980s to 1990s) in North America and they spread worldwide afterwards. Population dynamics analysis demonstrated that CPV-2 presented a major dissemination increase at the end of the 1980s / beginning of the 1990s followed by a period of stability and a second minor increase from 2000 to 2004.
Collapse
Affiliation(s)
- Weslei de Oliveira Santana
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Vinicius Proença Silveira
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Jonas Michel Wolf
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Diéssy Kipper
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Sergio Echeverrigaray
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Uwe Truyen
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Leipzig, Germany
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil.
| | - André Felipe Streck
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Emerging Parvoviruses in Domestic Cats. Viruses 2021; 13:v13061077. [PMID: 34200079 PMCID: PMC8229815 DOI: 10.3390/v13061077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Parvovirus infections in cats have been well known for around 100 years. Recently, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus lineages and/or species infecting the feline host. However, the involvement of emerging parvoviruses in the onset of gastroenteritis or other feline diseases is still uncertain.
Collapse
|
9
|
Molecular analysis of goose parvovirus field strains from a Derzsy's disease outbreak reveals local European-associated variants. Arch Virol 2021; 166:1931-1942. [PMID: 33934195 DOI: 10.1007/s00705-021-05086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Since its first recognition in the early 1960s, Derzsy's disease has caused significant economic losses in the goose meat industry through the world. Today, Derzsy's disease still maintains its importance for small-scale waterfowl farming, despite not having a significant impact on public health. In the present study, we investigated the distribution of goose parvovirus (GPV) and its potential variants from a 2019 outbreak in Turkey. Tissue samples were obtained from infected eggs and goslings that were raised in distinct farming areas of the various provinces. For this purpose, a novel primer set for amplification of a 630-bp region of VP3 was designed to confirm GPV infection by conventional PCR method. A 4709-base nucleotide sequence including the structural, non-structural, and 5' inverted terminal repeat regions was obtained from three samples from the Central Anatolian region. Multiple sequence comparisons and phylogenetic analysis demonstrated that the field strains clustered with European group 2 and contained a series of unique amino acid substitutions that might affect the virulence of the virus. These results confirmed that European-related field strains caused the outbreak in Asia Minor, and this might assist in understanding the circulation of GPV in Asia and Europe.
Collapse
|
10
|
Molecular survey of parvovirus, astrovirus, coronavirus, and calicivirus in symptomatic dogs. Vet Res Commun 2021; 45:31-40. [PMID: 33392909 PMCID: PMC7779159 DOI: 10.1007/s11259-020-09785-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Gastrointestinal disorders caused by enteric viruses are frequently reported in dogs worldwide, with significant mortality rates in unvaccinated individuals. This study reports the identification and molecular characterization of Canine parvovirus (CPV-2), Canine coronavirus (CcoV), Canine astrovirus (AstV), and Canine calicivirus (CcaV) in a panel of dogs showing severe enteric clinical signs sampled in a typical Mediterranean environment (Sardinia, Italy). At least one of these viral species was detected in 92.3% samples. CPV-2 was the most frequently detected virus (87.2%), followed by AsTv (20.5%), CCoV-IIa (18%), and CCoV-I (10.3%). CCoV-IIb and CaCV were not detected in any sample. Single infection was detected in 24 samples (66.7%), mainly related to CPV-2 (91.7%). Coinfections were present in 33.3% samples with constant detection of CPV-2. Canine coronavirus was present only in coinfected animals. The VP2 sequence analysis of CPV-2 positive samples confirmed the presence of all variants, with CPV-2b most frequently detected. Phylogeny based on the CcoV-IIa spike protein (S) gene allowed to identify 2 different clades among Sardinian isolates but failed to distinguish enteric from pantropic viruses. Study on presence and prevalence of enteroviruses in dogs increase our knowledge about the circulation of these pathogens in the Mediterranean area and highlight the need for dedicated routine vaccine prophylaxis. Molecular analyses of enteric viruses are fundamental to avoid failure of vaccines caused by frequent mutations observed in these enteroviruses.
Collapse
|
11
|
Hoang M, Wu CN, Lin CF, Nguyen HTT, Le VP, Chiou MT, Lin CN. Genetic characterization of feline panleukopenia virus from dogs in Vietnam reveals a unique Thr101 mutation in VP2. PeerJ 2020; 8:e9752. [PMID: 33083102 PMCID: PMC7560322 DOI: 10.7717/peerj.9752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Canine parvovirus type 2 (CPV-2) and feline parvovirus (FPV) are known as the main causes of several serious diseases and have a severe impact on puppies and kittens, respectively. FPV and new CPV-2 variants are all able to infect cats, causing diseases indistinguishable from feline panleukopenia. However, FPV only replicates efficiently in feline cells in vitro and replicates in dogs in the thymus and bone marrow without being shed in feces. In our previous study, the genotypes of six parvoviral isolates were unable to be identified using a SimpleProbe® real-time PCR assay. Methods In the present study, we characterized previously unidentified FPV-like viruses isolated from dogs in Vietnam. The six isolates were utilized to complete VP2 gene sequencing and to conduct phylogenetic analyses. Results Sequence analysis of the six parvoviral strains identified the species as being similar to FPV. Phylogenetic analysis demonstrated that the complete VP2 genes of the strains are similar to those of FPV. The FPV-like strains contain a Thr101 mutation in the VP2 protein, which is different from prototype FPV strains. Discussion Our data provide evidence for the existence of changes in the charge, protein contact potential and molecular surface of the core of the receptor-binding size with an Ile101 to Thr101 mutation. This is also the first study to provide reliable evidence that FPV may be a threat to the Vietnamese dog population.
Collapse
Affiliation(s)
- Minh Hoang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Anatomy and Histology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Huong Thanh Thi Nguyen
- Department of Anatomy and Histology, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Van Phan Le
- Department of Microbiology and Infectious Disease, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
12
|
Leal É, Liang R, Liu Q, Villanova F, Shi L, Liang L, Li J, Witkin SS, Cui S. Regional adaptations and parallel mutations in Feline panleukopenia virus strains from China revealed by nearly-full length genome analysis. PLoS One 2020; 15:e0227705. [PMID: 31945103 PMCID: PMC6964837 DOI: 10.1371/journal.pone.0227705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/25/2019] [Indexed: 01/15/2023] Open
Abstract
Protoparvoviruses, widespread among cats and wild animals, are responsible for leukopenia. Feline panleukopenia virus (FPLV) in domestic cats is genetically diverse and some strains may differ from those used for vaccination. The presence of FPLV in two domestic cats from Hebei Province in China was identified by polymerase chain reaction. Samples from these animals were used to isolate FPLV strains in CRFK cells for genome sequencing. Phylogenetic analysis was performed to compare our isolates with available sequences of FPLV, mink parvovirus (MEV) and canine parvovirus (CPV). The isolated strains were closely related to strains of FPLV/MEV isolated in the 1960s. Our analysis also revealed that the evolutionary history of FPLV and MEV is characterized by local adaptations in the Vp2 gene. Thus, it is likely that new FPLV strains are emerging to evade the anti-FPLV immune response.
Collapse
Affiliation(s)
- Élcio Leal
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Federal University of Pará, Belém, Pará, Brazil
- * E-mail: (JL); (SC); (EL)
| | - Ruiying Liang
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Qi Liu
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
| | | | - Lijun Shi
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Jinxiang Li
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- * E-mail: (JL); (SC); (EL)
| | - Steven S. Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States of America
- Institute of Tropical Medicine, Sao Paulo, Brazil
| | - Shangjin Cui
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
- * E-mail: (JL); (SC); (EL)
| |
Collapse
|
13
|
Battilani M, Modugno F, Mira F, Purpari G, Di Bella S, Guercio A, Balboni A. Molecular epidemiology of canine parvovirus type 2 in Italy from 1994 to 2017: recurrence of the CPV-2b variant. BMC Vet Res 2019; 15:393. [PMID: 31684949 PMCID: PMC6829998 DOI: 10.1186/s12917-019-2096-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022] Open
Abstract
Background Canine parvovirus type 2 (CPV-2) is the most important enteric virus infecting canids. It is a rapidly evolving virus; after its emergence in the 1970s, new antigenic variants (called CPV-2a, 2b and 2c) emerged and replaced the original antigenic type. The three antigenic variants are globally distributed with different frequencies and levels of genetic variability. This study focused on VP2 gene sequence analysis and the phylodynamics of CPV-2 which were detected in 123 dogs showing clinical signs of gastroenteritis collected in Italy from 1994 to 2017. Results For the most part, the sick dogs were young, and a third of them (32.5%) had been vaccinated. No statistical association was found between the CPV-2 antigenic variants, and sex, age, breed and vaccination status. Sequence analysis showed that all three antigenic types circulated in Italy; the CPV-2a type was the prominent genotype, followed by CPV-2c and CPV-2b, with notable differences regarding regional bases and significant fluctuations over time. Nucleotide sequence data showed high genetic heterogeneity with 67 nucleotide sequence types (ntSTs) identified, corresponding to 21 amino acid sequence types (aaSTs). The aaSTs and ntSTs obtained were distributed differently among the three CPV-2 antigenic variants: CPV-2a grouped 12/21 (57.1%) aaSTs and 41/67 (61.2%) ntSTs; CPV-2b grouped 5/21 (23.8%) aaSTs and 6/67 (8.9%) ntSTs, and CPV-2c grouped 4/21 (19.1%) aaSTs and 20/67 (29.9%) ntSTs. Canine parvovirus 2a was characterised by the highest genetic variability while CPV-2c was characterised by notable stability with a predominant amino acid profile during the entire sampling time. Canine parvovirus 2b re-emerged in recent years, showing a new and distinctive amino acid profile of the VP2 protein. Conclusions The findings of the present study provided new insights regarding the phylodynamics and evolution of CPV-2 in Italy, pointing out notable differences at the local level in the distribution of the CPV-2 variants and the selection of genetic subtypes. The evolution of CPV-2 has raised questions regarding the efficacy of vaccination; therefore, continuous monitoring regarding the evolution and spread of new CPV-2 variants should be a key aim of ongoing research.
Collapse
Affiliation(s)
- Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Francesco Modugno
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Palermo, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
14
|
Calatayud O, Esperón F, Velarde R, Oleaga Á, Llaneza L, Ribas A, Negre N, de la Torre A, Rodríguez A, Millán J. Genetic characterization of Carnivore Parvoviruses in Spanish wildlife reveals domestic dog and cat-related sequences. Transbound Emerg Dis 2019; 67:626-634. [PMID: 31581349 DOI: 10.1111/tbed.13378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
Abstract
The impact of carnivore parvovirus infection on wild populations is not yet understood; disease signs are mainly developed in pups and assessing the health of litters in wild carnivores has big limitations. This study aims to shed light on the virus dynamics among wild carnivores thanks to the analysis of 213 samples collected between 1994 and 2013 in wild ecosystems from Spain. We determined the presence of carnivore parvovirus DNA by real-time PCR and sequenced the vp2 gen from 22 positive samples to characterize the strains and to perform phylogenetic analysis. The presence of carnivore parvovirus DNA was confirmed in 18% of the samples, with a higher prevalence detected in wolves (Canis lupus signatus, 70%). Fourteen sequences belonging to nine wolves, three Eurasian badgers (Meles meles), a common genet (Genetta genetta) and a European wildcat (Felis silvestris) were classified as canine parvovirus 2c (CPV-2c); five sequences from three wolves, a red fox (Vulpes vulpes) and a stone marten (Martes foina) as CPV-2b; and three sequences from a badger, a genet and a stone marten as feline parvovirus (FPV). This was the first report of a wildcat infected with a canine strain. Sequences described in this study were identical or very close related to others previously found in domestic carnivores from distant countries, suggesting that cross-species transmission takes place and that the parvovirus epidemiology in Spain, as elsewhere, could be influenced by global factors.
Collapse
Affiliation(s)
- Olga Calatayud
- Animal Health Research Centre INIA-CISA, Madrid, Spain.,Institute of Zoology, Zoological Society of London, London, UK.,The Royal Veterinary College, London, UK
| | | | - Roser Velarde
- Wildlife Ecology and Health Group and Servicio de Ecopatología de Fauna Salvaje (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Álvaro Oleaga
- SERPA, Sociedad de Servicios del Principado de Asturias S.A., Gijón, Spain
| | - Luis Llaneza
- A.RE.NA. Asesores en Recursos Naturales SL, Lugo, Spain
| | - Alexis Ribas
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural, ResourcesCzech University of Life Sciences Prague, Prague, Czech Republic
| | - Nieves Negre
- Consorci per a la Recuperació de la Fauna de les Illes Balears, Santa Eugènia, Spain
| | | | - Alejandro Rodríguez
- Department of Conservation Biology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Javier Millán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
15
|
Polat PF, Şahan A, Aksoy G, Timurkan MO, Dinçer E. Molecular and restriction fragment length polymorphism analysis of canine parvovirus 2 (CPV-2) in dogs in southeast Anatolia, Turkey. ACTA ACUST UNITED AC 2019; 86:e1-e8. [PMID: 31478735 PMCID: PMC6739549 DOI: 10.4102/ojvr.v86i1.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/04/2022]
Abstract
Canine parvovirus-2 (CPV-2) is the aetiological agent of an infectious viral disease of dogs, characterised by diarrhoea and vomiting. Mutations of the CPV-2 genome have generated new variants circulating worldwide. This article reports the molecular analysis of CPV-2 variants collected in the dog population in southeast Anatolia, Turkey. Twenty blood samples previously taken for the laboratory diagnosis of dogs with suspected parvovirus were screened for CPV-2 by polymerase chain reaction (PCR). Of the 20 samples, 18 tested positive for CPV-2. Partial VP2 gene sequencing and restriction fragment length polymorphism (RFLP) analysis revealed CPV-2a (n = 1), CPV-2b (n = 16) and CPV-2c (n = 1) variants. Phylogenetic analysis based on the partial length VP2 gene showed that CPV-2b (n = 15) variants showed sequences clustering separately in the phylogenetic tree. The CPV-2c sample was phylogenetically related to Chinese strains and Indonesia strain, whereas the CPV-2a sample was phylogenetically related to the Portuguese strain. These results, which are the first to demonstrate the presence of CPV-2c in the dog population of southeast Anatolia, Turkey, indicate that CPV-2a/2b/2c variants co-exist in Turkey’s dog population.
Collapse
Affiliation(s)
- Pelin F Polat
- Department of Internal Medicine, Faculty of Veterinary Medicine, Harran University, Sanliurfa.
| | | | | | | | | |
Collapse
|
16
|
Wang K, Du S, Wang Y, Wang S, Luo X, Zhang Y, Liu C, Wang H, Pei Z, Hu G. Isolation and identification of tiger parvovirus in captive siberian tigers and phylogenetic analysis of VP2 gene. INFECTION GENETICS AND EVOLUTION 2019; 75:103957. [PMID: 31299323 DOI: 10.1016/j.meegid.2019.103957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 01/03/2023]
Abstract
To better understand the prevalence and molecular epidemiology of parvovirus, this study reports the isolation and characterization of a tiger parvovirus (TPV) named CHJL-Siberian Tiger-01/2017 from a captive Siberian tiger in Jilin Province, China. A phylogenetic tree based on the full-length VP2 nucleotide sequence was constructed using the isolated strain in this study and 56 reference strains. The results showed that all the parvoviruses can be grouped into two large branches: the canine parvovirus (CPV) branch and the feline parvovirus (FPV) branch. FPV strains comprised TPVs, FPVs, blue fox parvoviruses (BFPVs), mink enteritis viruses (MEVs), and raccoon feline parvoviruses (RFPVs), and CPV strains comprised CPVs and raccoon dog parvoviruses (RDPVs). RFPVs are also often very closely related to those sampled from other carnivorous species, and raccoons may represent conduits for parvovirus transmission to other hosts. The results of amino acid changes in the VP2 protein of the isolated strain showed that amino acid Ile 101 was mutated to Thr (I 101T). Taken together, a field TPV strain CHJL-Siberian Tiger-01/2017 was isolated, which may be suitable for future studies on FPV infection, replication and vaccine development. This study provided new important findings about the evolution of parvovirus infection in tigers.
Collapse
Affiliation(s)
- Kai Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China.
| | - Shuaishuai Du
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Yiqi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Shaoying Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Xiaoqing Luo
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Cunfa Liu
- Wildlife Ambulance Breeding Center of Jilin Province, Jingyue Street No.10500, Changchun, PR China
| | - Haijun Wang
- Wildlife Ambulance Breeding Center of Jilin Province, Jingyue Street No.10500, Changchun, PR China
| | - Zhihua Pei
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, PR China
| |
Collapse
|
17
|
Carnivore Parvovirus Ecology in the Serengeti Ecosystem: Vaccine Strains Circulating and New Host Species Identified. J Virol 2019. [PMID: 30996096 DOI: 10.1128/jvi.02220–18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Carnivore parvoviruses infect wild and domestic carnivores, and cross-species transmission is believed to occur. However, viral dynamics are not well understood, nor are the consequences for wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multihost system such as the Serengeti ecosystem and identify potential threats for wildlife conservation, we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separate routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP) and, second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized; new host-virus associations involving wild dogs, jackals, and hyenas were discovered; and our results suggest that mutations in the fragment of the vp2 gene were not required for infection of different carnivore species. In domestic dogs, 6 sequences belonged to the CPV-2a strain, while 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally.IMPORTANCE Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. This study furthers the understanding of carnivore parvovirus epidemiology, suggesting that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP), with new host species identified, and that canine parvoviruses are present in the dog population living around the SNP. Little evidence of transmission of canine parvoviruses into wild carnivore species was found; however, the detection of vaccine-derived virus (described here for the first time to be circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region.
Collapse
|
18
|
Carnivore Parvovirus Ecology in the Serengeti Ecosystem: Vaccine Strains Circulating and New Host Species Identified. J Virol 2019; 93:JVI.02220-18. [PMID: 30996096 DOI: 10.1128/jvi.02220-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Carnivore parvoviruses infect wild and domestic carnivores, and cross-species transmission is believed to occur. However, viral dynamics are not well understood, nor are the consequences for wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multihost system such as the Serengeti ecosystem and identify potential threats for wildlife conservation, we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separate routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP) and, second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized; new host-virus associations involving wild dogs, jackals, and hyenas were discovered; and our results suggest that mutations in the fragment of the vp2 gene were not required for infection of different carnivore species. In domestic dogs, 6 sequences belonged to the CPV-2a strain, while 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally.IMPORTANCE Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. This study furthers the understanding of carnivore parvovirus epidemiology, suggesting that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP), with new host species identified, and that canine parvoviruses are present in the dog population living around the SNP. Little evidence of transmission of canine parvoviruses into wild carnivore species was found; however, the detection of vaccine-derived virus (described here for the first time to be circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region.
Collapse
|
19
|
Shelter-housed cats show no evidence of faecal shedding of canine parvovirus DNA. Vet J 2018; 239:54-58. [DOI: 10.1016/j.tvjl.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/31/2023]
|
20
|
Oliveira IVPDM, Freire DADC, Ferreira HIP, Moura GHF, da Rocha CS, Calabuig CIP, Kurissio JK, Junior JPA, Antunes JMADP. Research on viral agents associated with feline reproductive problems reveals a high association with feline panleukopenia virus. Vet Anim Sci 2018; 6:75-80. [PMID: 32734056 PMCID: PMC7386638 DOI: 10.1016/j.vas.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 11/26/2022] Open
Abstract
Although reproductive failures (RF) such as abortion, stillbirth and neonatal mortality in cats are still under researched, it is known that many RF are caused by viral agents. This research surveyed the viral agent prevalence in queens with RF. Queens were excluded from the study if their RF was caused by issues other than infection, such as genetic, traumatic, hormonal or nutritional problems, or if they had a history of RF. Blood samples from 26 pregnant females with RF were collected for complete blood counts (BCC), renal/hepatic biochemistry and glycaemic analysis. Ultrasonography was performed to evaluate gestational age and foetal viability. When possible, placentas, humours and foetal tissues were collected. Blood samples were tested by PCR and qPCR for feline leukaemia virus (FeLV), feline immunodeficiency virus (FIV), feline alphaherpesvirus 1 (FeHV-1) and carnivore protoparvovirus 1 (CPPV-1). All maternal samples were negative for FeLV, FIV and FeHV-1 and positive for CPPV-1. In addition, foetuses from one queen and three females were positive for CPPV-1 by qPCR and for feline panleukopenia virus (FPV) through DNA sequencing. The BCC and biochemistry results revealed significant neutrophilia, lymphopenia, monocytosis, and liver enzymes. These results provide the first description of an FPV agent causing only RF-related clinical signs in queens.
Collapse
Affiliation(s)
- Ilanna Vanessa Pristo de Medeiros Oliveira
- Hospital Veterinário Jerônimo Dix-Huit Rosado Maia, Universidade Federal Rural do Semi-Árido - UFERSA, Av. Francisco Mota, 572, Bairro Costa e Silva, Mossoró, RN 59625-900, Brazil
| | - Débora Alves de Carvalho Freire
- Hospital Veterinário Jerônimo Dix-Huit Rosado Maia, Universidade Federal Rural do Semi-Árido - UFERSA, Av. Francisco Mota, 572, Bairro Costa e Silva, Mossoró, RN 59625-900, Brazil
| | - Heider Irinaldo Pereira Ferreira
- Hospital Veterinário Jerônimo Dix-Huit Rosado Maia, Universidade Federal Rural do Semi-Árido - UFERSA, Av. Francisco Mota, 572, Bairro Costa e Silva, Mossoró, RN 59625-900, Brazil
| | - Gabriela Hemylin Ferreira Moura
- Hospital Veterinário Jerônimo Dix-Huit Rosado Maia, Universidade Federal Rural do Semi-Árido - UFERSA, Av. Francisco Mota, 572, Bairro Costa e Silva, Mossoró, RN 59625-900, Brazil
| | - Célio Souza da Rocha
- Hospital Veterinário Jerônimo Dix-Huit Rosado Maia, Universidade Federal Rural do Semi-Árido - UFERSA, Av. Francisco Mota, 572, Bairro Costa e Silva, Mossoró, RN 59625-900, Brazil
| | - Cecilia Irene Pérez Calabuig
- Hospital Veterinário Jerônimo Dix-Huit Rosado Maia, Universidade Federal Rural do Semi-Árido - UFERSA, Av. Francisco Mota, 572, Bairro Costa e Silva, Mossoró, RN 59625-900, Brazil
| | - Jacqueline Kazue Kurissio
- IBTEC, Instituto de Biotecnologia, UNESP - Universidade Estadual Paulista, Alameda das Tecomarias, s/n, Chácara Capão Bonito, Botucatu, SP 18607-440, Brazil
| | - João Pessoa Araújo Junior
- IBTEC, Instituto de Biotecnologia, UNESP - Universidade Estadual Paulista, Alameda das Tecomarias, s/n, Chácara Capão Bonito, Botucatu, SP 18607-440, Brazil
| | - João Marcelo Azevedo de Paula Antunes
- Hospital Veterinário Jerônimo Dix-Huit Rosado Maia, Universidade Federal Rural do Semi-Árido - UFERSA, Av. Francisco Mota, 572, Bairro Costa e Silva, Mossoró, RN 59625-900, Brazil
| |
Collapse
|
21
|
Ahmed N, Riaz A, Zubair Z, Saqib M, Ijaz S, Nawaz-Ul-Rehman MS, Al-Qahtani A, Mubin M. Molecular analysis of partial VP-2 gene amplified from rectal swab samples of diarrheic dogs in Pakistan confirms the circulation of canine parvovirus genetic variant CPV-2a and detects sequences of feline panleukopenia virus (FPV). Virol J 2018; 15:45. [PMID: 29544546 PMCID: PMC5856200 DOI: 10.1186/s12985-018-0958-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background The infection in dogs due to canine parvovirus (CPV), is a highly contagious one with high mortality rate. The present study was undertaken for a detailed genetic analysis of partial VP2 gene i.e., 630 bp isolated from rectal swab samples of infected domestic and stray dogs from all areas of district Faisalabad. Monitoring of viruses is important, as continuous prevalence of viral infection might be associated with emergence of new virulent strains. Methods In the present study, 40 rectal swab samples were collected from diarrheic dogs from different areas of district Faisalabad, Pakistan, in 2014–15 and screened for the presence of CPV by immunochromatography. Most of these dogs were stray dogs showing symptoms of diarrhea. Viral DNA was isolated and partial VP2 gene was amplified using gene specific primer pair Hfor/Hrev through PCR. Amplified fragments were cloned in pTZ57R/T (Fermentas) and completely sequenced. Sequences were analyzed and assembled by the Lasergene DNA analysis package (v8; DNAStar Inc., Madison, WI, USA). Results The results with immunochromatography showed that 33/40 (82%) of dogs were positive for CPV. We were able to amplify a fragment of 630 bp from 25 samples. In 25 samples the sequences of CPV-2a were detected showing the amino acid substitution Ser297Ala and presence of amino acid (426-Asn) in partial VP2 protein. Interestingly the BLAST analysis showed the of feline panleukopenia virus (FPV) sequences in 3 samples which were already positive for new CPV-2a, with 99% sequence homology to other FPV sequences present in GenBank. Conclusions Phylogenetic analysis showed clustering of partial CPV-VP-2 gene with viruses from China, India, Japan and Uruguay identifying a new variant, whereas the 3 FPV sequences showed immediate ancestral relationship with viruses from Portugal, South Africa and USA. Interesting observation was that CPV are clustering away from the commercial vaccine strains. In this work we provide a better understanding of CPV prevailing in Pakistan at molecular level. The detection of FPV could be a case of real co-infection or a case of dual presence, due to ingestion of contaminated food.
Collapse
Affiliation(s)
- Nisar Ahmed
- Virology Lab, Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, PO Box 38040, Jail road, Faisalabad, 38000, Pakistan
| | - Adeel Riaz
- Virology Lab, Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, PO Box 38040, Jail road, Faisalabad, 38000, Pakistan
| | - Zahra Zubair
- Virology Lab, Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, PO Box 38040, Jail road, Faisalabad, 38000, Pakistan
| | - Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Sehrish Ijaz
- Virology Lab, Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, PO Box 38040, Jail road, Faisalabad, 38000, Pakistan
| | - Muhammad Shah Nawaz-Ul-Rehman
- Virology Lab, Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, PO Box 38040, Jail road, Faisalabad, 38000, Pakistan
| | - Ahmed Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Muhammad Mubin
- Virology Lab, Center of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, PO Box 38040, Jail road, Faisalabad, 38000, Pakistan.
| |
Collapse
|
22
|
Balboni A, Bassi F, De Arcangeli S, Zobba R, Dedola C, Alberti A, Battilani M. Molecular analysis of carnivore Protoparvovirus detected in white blood cells of naturally infected cats. BMC Vet Res 2018; 14:41. [PMID: 29402272 PMCID: PMC5799907 DOI: 10.1186/s12917-018-1356-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 01/17/2018] [Indexed: 11/21/2022] Open
Abstract
Background Cats are susceptible to feline panleukopenia virus (FPV) and canine parvovirus (CPV) variants 2a, 2b and 2c. Detection of FPV and CPV variants in apparently healthy cats and their persistence in white blood cells (WBC) and other tissues when neutralising antibodies are simultaneously present, suggest that parvovirus may persist long-term in the tissues of cats post-infection without causing clinical signs. The aim of this study was to screen a population of 54 cats from Sardinia (Italy) for the presence of both FPV and CPV DNA within buffy coat samples using polymerase chain reaction (PCR). The DNA viral load, genetic diversity, phylogeny and antibody titres against parvoviruses were investigated in the positive cats. Results Carnivore protoparvovirus 1 DNA was detected in nine cats (16.7%). Viral DNA was reassembled to FPV in four cats and to CPV (CPV-2b and 2c) in four cats; one subject showed an unusually high genetic complexity with mixed infection involving FPV and CPV-2c. Antibodies against parvovirus were detected in all subjects which tested positive to DNA parvoviruses. Conclusions The identification of FPV and CPV DNA in the WBC of asymptomatic cats, despite the presence of specific antibodies against parvoviruses, and the high genetic heterogeneity detected in one sample, confirmed the relevant epidemiological role of cats in parvovirus infection.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Francesca Bassi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Stefano De Arcangeli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy
| | - Rosanna Zobba
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, Sassari, 07100, Italy
| | - Carla Dedola
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, Sassari, 07100, Italy
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, Sassari, 07100, Italy
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
23
|
Liu D, Liu F, Guo D, Hu X, Li Z, Li Z, Ma J, Liu C. One-step triplex PCR/RT-PCR to detect canine distemper virus, canine parvovirus and canine kobuvirus. J Vet Med Sci 2018; 81:1040-1042. [PMID: 29367517 PMCID: PMC6656820 DOI: 10.1292/jvms.17-0442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To rapidly distinguish Canine distemper virus (CDV), canine parvovirus (CPV), and canine kobuvirus (CaKoV) in practice, a one-step multiplex PCR/RT-PCR assay was developed, with detection
limits of 102.1 TCID50 for CDV, 101.9 TCID50 for CPV and 103 copies for CaKoV. This method did not amplify nonspecific DNA or RNA from
other canine viruses. Therefore, the assay provides a sensitive tool for the rapid clinical detection and epidemiological surveillance of CDV, CPV and CaKoV in dogs.
Collapse
Affiliation(s)
- Dafei Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang 150040, China.,State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Fei Liu
- Shanghai Hile Bio-Pharmaceutical Co., Ltd., Shanghai, 201403, China
| | - Dongchun Guo
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Xiaoliang Hu
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Zhijie Li
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| | - Zhigang Li
- Wendengying Veterinary Station, Weihai, Shandong 264413, China
| | - Jianzhang Ma
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Chunguo Liu
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang 150069, China
| |
Collapse
|
24
|
Miranda C, Thompson G. Canine parvovirus: the worldwide occurrence of antigenic variants. J Gen Virol 2016; 97:2043-2057. [PMID: 27389721 DOI: 10.1099/jgv.0.000540] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The most important enteric virus infecting canids is canine parvovirus type 2 (CPV-2). CPV is the aetiologic agent of a contagious disease, mainly characterized by clinical gastroenteritis signs in younger dogs. CPV-2 emerged as a new virus in the late 1970s, which could infect domestic dogs, and became distributed in the global dog population within 2 years. A few years later, the virus's original type was replaced by a new genetic and antigenic variant, called CPV-2a. Around 1984 and 2000, virus variants with the single change to Asp or Glu in the VP2 residue 426 were detected (sometimes termed CPV-2b and -2c). The genetic and antigenic changes in the variants have also been correlated with changes in their host range; in particular, in the ability to replicate in cats and also host range differences in canine and other tissue culture cells. CPV-2 variants have been circulating among wild carnivores and have been well-documented in several countries around the world. Here, we have reviewed and summarized the current information about the worldwide distribution and evolution of CPV-2 variants since they emerged, as well as the host ranges they are associated with.
Collapse
Affiliation(s)
- Carla Miranda
- Department of Veterinary Clinics, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.,Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio, Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Gertrude Thompson
- Department of Veterinary Clinics, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.,Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio, Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
25
|
Federica S, Laura G, Alice P, Mara B, Giuliano B, Alessandra S. E5 nucleotide polymorphisms suggest quasispecies occurrence in BPV-1 sub-clinically infected horses. Res Vet Sci 2015; 102:80-2. [DOI: 10.1016/j.rvsc.2015.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/14/2015] [Accepted: 07/26/2015] [Indexed: 02/08/2023]
|
26
|
Wu J, Gao XT, Hou SH, Guo XY, Yang XS, Yuan WF, Xin T, Zhu HF, Jia H. Molecular epidemiological and phylogenetic analyses of canine parvovirus in domestic dogs and cats in Beijing, 2010-2013. J Vet Med Sci 2015; 77:1305-10. [PMID: 26028021 PMCID: PMC4638301 DOI: 10.1292/jvms.14-0665] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Fifty-five samples (15.62%) collected from dogs and cats were identified as canine parvovirus (CPV) infection in Beijing during 2010-2013. The nucleotide identities and aa similarities were 98.2-100% and 97.7-100%, respectively, when compared with the reference isolates. Also, several synonymous and non-synonymous mutations were also recorded for the first time. New CPV-2a was dominant, accounting for 90.90% of the samples. Two of the 16 samples collected from cats were identified as new CPV-2a (12.5%), showing nucleotide identities of 100% with those from dogs. Twelve samples (15.78%) collected from completely immunized dogs were found to be new CPV-2a, which means CPV-2 vaccines may not provide sufficient protection for the epidemic strains.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pérez R, Calleros L, Marandino A, Sarute N, Iraola G, Grecco S, Blanc H, Vignuzzi M, Isakov O, Shomron N, Carrau L, Hernández M, Francia L, Sosa K, Tomás G, Panzera Y. Phylogenetic and genome-wide deep-sequencing analyses of canine parvovirus reveal co-infection with field variants and emergence of a recent recombinant strain. PLoS One 2014; 9:e111779. [PMID: 25365348 PMCID: PMC4218814 DOI: 10.1371/journal.pone.0111779] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022] Open
Abstract
Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity.
Collapse
Affiliation(s)
- Ruben Pérez
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| | - Lucía Calleros
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Sarute
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gregorio Iraola
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sofia Grecco
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Hervé Blanc
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique, Paris, France
| | - Ofer Isakov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lucía Carrau
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Martín Hernández
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lourdes Francia
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Katia Sosa
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
28
|
Miranda C, Parrish CR, Thompson G. Canine parvovirus 2c infection in a cat with severe clinical disease. J Vet Diagn Invest 2014; 26:462-464. [PMID: 24670953 DOI: 10.1177/1040638714528502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Canine parvovirus 2 (CPV-2) is considered the main pathogen responsible for acute gastroenteritis in dogs, causing vomiting and hemorrhagic enteritis mainly. However, infection in cats by CPV variants causes clinical signs similar to Feline panleukopenia virus. The current study reports a case of CPV-2c in a domestic cat, in Portugal. The findings suggest that more surveys are needed to know the true prevalence and significance of cats in CPV epidemiology worldwide.
Collapse
Affiliation(s)
- Carla Miranda
- Department of Veterinary Clinics, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (Miranda, Thompson)Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio, Laboratório Associado, Universidade do Porto, Vairão, Portugal (Miranda, Thompson)Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Parrish)
| | - Colin R Parrish
- Department of Veterinary Clinics, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (Miranda, Thompson)Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio, Laboratório Associado, Universidade do Porto, Vairão, Portugal (Miranda, Thompson)Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Parrish)
| | - Gertrude Thompson
- Department of Veterinary Clinics, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (Miranda, Thompson)Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio, Laboratório Associado, Universidade do Porto, Vairão, Portugal (Miranda, Thompson)Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Parrish)
| |
Collapse
|
29
|
Abstract
The beneficial role that animal shelters play is unquestionable. An estimated 3 to 4 million animals are cared for or placed in homes each year, and most shelters promote public health and support responsible pet ownership. It is, nonetheless, inevitable that shelters are prime examples of anthropogenic biological instability: even well-run shelters often house transient, displaced, and mixed populations of animals. Many of these animals have received minimal to no prior health care, and some have a history of scavenging or predation to survive. Overcrowding and poor shelter conditions further magnify these inherent risks to create individual, intraspecies, and interspecies stress and provide an environment conducive to exposure to numerous potentially collaborative pathogens. All of these factors can contribute to the evolution and emergence of new pathogens or to alterations in virulence of endemic pathogens. While it is not possible to effectively anticipate the timing or the pathogen type in emergence events, their sites of origin are less enigmatic, and pathologists and diagnosticians who work with sheltered animal populations have recognized several such events in the past decade. This article first considers the contribution of the shelter environment to canine and feline disease. This is followed by summaries of recent research on the pathogenesis of common shelter pathogens, as well as research that has led to the discovery of novel or emerging diseases and the methods that are used for their diagnosis and discovery. For the infectious agents that commonly affect sheltered dogs and cats, including canine distemper virus, canine influenza virus, Streptococcus spp, parvoviruses, feline herpesvirus, feline caliciviruses, and feline infectious peritonitis virus, we present familiar as well as newly recognized lesions associated with infection. Preliminary studies on recently discovered viruses like canine circovirus, canine bocavirus, and feline norovirus indicate that these pathogens can cause or contribute to canine and feline disease.
Collapse
Affiliation(s)
- P A Pesavento
- School of Veterinary Medicine, UC Davis, Vet Med: PMI, 4206 VM3A, 1 Shields Ave, Davis, CA 95616, USA.
| | | |
Collapse
|
30
|
Clegg S, Coyne K, Dawson S, Spibey N, Gaskell R, Radford A. Canine parvovirus in asymptomatic feline carriers. Vet Microbiol 2012; 157:78-85. [DOI: 10.1016/j.vetmic.2011.12.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
31
|
Lau SKP, Woo PCY, Yeung HC, Teng JLL, Wu Y, Bai R, Fan RYY, Chan KH, Yuen KY. Identification and characterization of bocaviruses in cats and dogs reveals a novel feline bocavirus and a novel genetic group of canine bocavirus. J Gen Virol 2012; 93:1573-1582. [PMID: 22495233 DOI: 10.1099/vir.0.042531-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report the identification and genome characterization of a novel bocavirus, feline bocavirus (FBoV), and novel bocaviruses closely related to canine bocavirus (CBoV) strain Con-161 in stray cats and dogs in Hong Kong, respectively. FBoV was detected by PCR in 7.2, 0.3, 1.6, 2.0 and 0.8% of faecal, nasal, urine, kidney and blood samples, respectively, from 364 cats, while CBoV was detected in 4.6, 5.1, 6.3 and 0.3% of faecal, nasal, urine and blood samples, respectively, from 351 dogs. Three FBoV genomes sequenced revealed the presence of three ORFs characteristic of bocaviruses. Phylogenetic analysis showed that FBoVs were related only distantly to other bocaviruses, forming a distinct cluster within the genus, with ≤ 5.7% nucleotide identities to the genome of minute virus of canines. The four CBoV genomes sequenced shared 87.4-89.2% nucleotide identities with that of CBoV strain Con-161. In addition to the three bocavirus ORFs, they encoded an additional ORF, ORF4, immediately downstream of the ORF for non-structural protein 1 (NS1), which was not found in other bocaviruses including CBoV strain Con-161. They also possessed a putative second exon encoding the C-terminal region of NS1 and conserved RNA-splicing signals, previously described in human bocaviruses. Partial VP1/VP2 sequence analysis of 23 FBoV and 25 CBoV strains demonstrated inter-host genetic diversity, with two potential genetic groups of FBoV and a novel CBoV group, CBoV-HK, distinct from the three groups, CBoV-A to -C, found in the USA. Although the pathogenicity of FBoV and CBoV remains to be determined, their presence in different host tissues suggested wide tissue tropism.
Collapse
Affiliation(s)
- Susanna K P Lau
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Hazel C Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Jade L L Teng
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ying Wu
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Ru Bai
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rachel Y Y Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kwok-Hung Chan
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong
| | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong
| |
Collapse
|
32
|
Muz D, Oğuzoğlu TC, Timurkan MO, Akın H. Characterization of the partial VP2 gene region of canine parvoviruses in domestic cats from Turkey. Virus Genes 2011; 44:301-8. [PMID: 22207487 DOI: 10.1007/s11262-011-0703-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
Abstract
Canine parvoviruses (CPVs) is a category comprising three closely related viruses, CPV, feline panleukopenia virus (FPLV), and mink enteritis virus, all of which cause serious diseases, especially in young cats. In this study, molecular detection and genetic analysis of a partial VP2 gene region of CPVs from domestic cats living in Turkey between 2006 and 2010 was performed by PCR amplification and sequence analysis. The results indicated that CPV-2a, CPV-2c, and FPLV were circulating in vaccinated and unvaccinated cats. This is the first description of molecular characterization of CPVs in domestic cats from Turkey.
Collapse
Affiliation(s)
- Dilek Muz
- Department of Virology, Faculty of Veterinary Medicine, Mustafa Kemal University, Antakya, Hatay, Turkey
| | | | | | | |
Collapse
|
33
|
Lau SKP, Woo PCY, Yip CCY, Li KSM, Fu CTY, Huang Y, Chan KH, Yuen KY. Co-existence of multiple strains of two novel porcine bocaviruses in the same pig, a previously undescribed phenomenon in members of the family Parvoviridae, and evidence for inter- and intra-host genetic diversity and recombination. J Gen Virol 2011; 92:2047-2059. [PMID: 21632566 DOI: 10.1099/vir.0.033688-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the recent discovery of novel bocaviruses from porcine samples, their genetic evolution and diversity are poorly understood. This study reports the identification and complete genome characterization of two novel parvoviruses, porcine bocavirus 3 (PBoV3) and porcine bocavirus 4 (PBoV4), from various porcine tissues/samples, displaying marked intra- and inter-host genetic diversity, with recombination events. Bocaviruses were detected by PCR among 16.5 % (55/333) of porcine samples (lymph nodes, serum, nasopharyngeal and faecal samples) from healthy, sick or deceased pigs from farms and a slaughterhouse in Hong Kong. As marked nucleotide polymorphisms were observed in the partial VP1 sequences, complete VP1 genes from one nasopharyngeal and three faecal specimens were cloned and sequenced, which suggested the presence of two different bocaviruses and demonstrated significant intra- and inter-host genetic diversity. Complete genome sequences revealed the presence of two bocaviruses, PBoV3 and PBoV4, in a faecal and nasopharyngeal specimen, respectively, with two genotypes, PBoV4-1 and PBoV4-2, in the latter. Their genomes encoded three ORFs, characteristic of bocaviruses. Phylogenetic analysis showed that they were distantly related to other bocaviruses, forming a distinct cluster within the genus. Recombination analysis showed possible recombination events among VP1 sequences of PBoV4 strains from a faecal specimen, with two breakpoints identified (with a 68 and 71 bp region), suggesting that different strains/variants within the same host could have arisen from recombination. This is the first report describing marked sequence diversity and the co-existence of two viruses of the family Parvoviridae within the same host, which may have originated from and, in turn, facilitated recombination.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR
| | - Patrick C Y Woo
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Kenneth S M Li
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Clara T Y Fu
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Yi Huang
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Kwok-Hung Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
34
|
An DJ, Jeong W, Jeoung HY, Yoon SH, Kim HJ, Park JY, Park BK. Phylogenetic analysis of feline panleukopenia virus (FPLV) strains in Korean cats. Res Vet Sci 2011; 90:163-7. [PMID: 20627272 DOI: 10.1016/j.rvsc.2010.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 04/29/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
Abstract
Sixteen Korean feline panleukopenia virus (FPLV) strains were compared with 48 non-Korean strains and two vaccine strains to conduct phylogenetic analysis of the FPLVs currently circulating among cats in Korea. Most of the residues that discriminate between FPLVs and canine parvoviruses (CPV-2, -2a, -2b, and -2c), including 80-Lys, 93-Lys, 103-Val, 323-Asp, 564-Asn, and 568-Ala, were conserved in the Korean FLPVs; however, exceptions were observed in two strains, namely K50/08 (80-Gln) and V142 (323-Asn). Phylogenetic analysis using the Bayesian inference and Neighbor-joining method showed that FPLVs were not segregated on a clear temporal or geographical basis. Three clusters (G1, G2, and G3) were formed by the VP2 nucleotide sequences analysed and Korean strains belonged to the G1 (n=13) and G2 (n=3) clusters. The ratio of non-synonymous to synonymous substitutions (dN/dS) revealed that purifying selection acts on the VP2 gene of Korean FPLVs.
Collapse
Affiliation(s)
- Dong-Jun An
- National Veterinary Research and Quarantine Service, Anyang, Gyeonggi-do 430-824, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Battilani M, Balboni A, Ustulin M, Giunti M, Scagliarini A, Prosperi S. Genetic complexity and multiple infections with more Parvovirus species in naturally infected cats. Vet Res 2011; 42:43. [PMID: 21366901 PMCID: PMC3059301 DOI: 10.1186/1297-9716-42-43] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/14/2010] [Indexed: 01/07/2023] Open
Abstract
Parvoviruses of carnivores include three closely related autonomous parvoviruses: canine parvovirus (CPV), feline panleukopenia virus (FPV) and mink enteritis virus (MEV). These viruses cause a variety of serious diseases, especially in young patients, since they have a remarkable predilection for replication in rapidly dividing cells. FPV is not the only parvovirus species which infects cats; in addition to MEV, the new variants of canine parvovirus, CPV-2a, 2b and 2c have also penetrated the feline host-range, and they are able to infect and replicate in cats, causing diseases indistinguishable from feline panleukopenia. Furthermore, as cats are susceptible to both CPV-2 and FPV viruses, superinfection and co-infection with multiple parvovirus strains may occur, potentially facilitating recombination and high genetic heterogeneity. In the light of the importance of cats as a potential source of genetic diversity for parvoviruses and, since feline panleukopenia virus has re-emerged as a major cause of mortality in felines, the present study has explored the molecular characteristics of parvovirus strains circulating in cat populations. The most significant findings reported in this study were (a) the detection of mixed infection FPV/CPV with the presence of one parvovirus variant which is a true intermediate between FPV/CPV and (b) the quasispecies cloud size of one CPV sample variant 2c. In conclusion, this study provides new important results about the evolutionary dynamics of CPV infections in cats, showing that CPV has presumably started a new process of readaptation in feline hosts.
Collapse
Affiliation(s)
- Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Hoelzer K, Parrish CR. The emergence of parvoviruses of carnivores. Vet Res 2010; 41:39. [PMID: 20152105 PMCID: PMC2844231 DOI: 10.1051/vetres/2010011] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/10/2010] [Indexed: 01/25/2023] Open
Abstract
The emergence of canine parvovirus (CPV) represents a well-documented example highlighting the emergence of a new virus through cross-species transmission. CPV emerged in the mid-1970s as a new pathogen of dogs and has since become endemic in the global dog population. Despite widespread vaccination, CPV has remained a widespread disease of dogs, and new genetic and antigenic variants have arisen and sometimes reached high frequency in certain geographic regions or throughout the world. Here we review our understanding of this emergence event and contrast it to what is known about the emergence of a disease in mink caused by mink enteritis virus (MEV). In addition, we summarize the evolution of CPV over the past 30 years in the global dog population, and describe the epidemiology of contemporary parvovirus infections of dogs and cats. CPV represents a valuable model for understanding disease emergence through cross-species transmission, while MEV provides an interesting comparison.
Collapse
Affiliation(s)
- Karin Hoelzer
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
37
|
Within-host genetic diversity of endemic and emerging parvoviruses of dogs and cats. J Virol 2008; 82:11096-105. [PMID: 18768982 DOI: 10.1128/jvi.01003-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viral emergence can result from the adaptation of endemic pathogens to new or altered host environments, a process that is strongly influenced by the underlying sequence diversity. To determine the extent and structure of intrahost genetic diversity in a recently emerged single-stranded DNA virus, we analyzed viral population structures during natural infections of animals with canine parvovirus (CPV) or its ancestor, feline panleukopenia virus (FPV). We compared infections that occurred shortly after CPV emerged with more recent infections and examined the population structure of CPV after experimental cross-species transmission to cats. Infections with CPV and FPV showed limited genetic diversity regardless of the analyzed host tissue or year of isolation. Coinfections with genetically distinct viral strains were detected in some cases, and rearranged genomes were seen in both FPV and CPV. The sporadic presence of some sequences with multiple mutations suggested the occurrence of either particularly error-prone viral replication or coinfection by more distantly related strains. Finally, some potentially organ-specific host effects were seen during experimental cross-species transmission, with many of the mutations located in the nonstructural protein NS2. These included residues with evidence of positive selection at the population level, which is compatible with a role of this protein in host adaptation.
Collapse
|
38
|
Lamm CG, Rezabek GB. Parvovirus infection in domestic companion animals. Vet Clin North Am Small Anim Pract 2008; 38:837-50, viii-ix. [PMID: 18501282 DOI: 10.1016/j.cvsm.2008.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parvovirus infects a wide variety of species. The rapid evolution, environmental resistance, high dose of viral shedding, and interspecies transmission have made some strains of parvovirus infection difficult to control within domestic animal populations. Some parvoviruses in companion animals, such as canine parvovirus (CPV) 1 and feline parvovirus, have demonstrated minimal evolution over time. In contrast, CPV 2 has shown wide adaptability with rapid evolution and frequent mutations. This article briefly discusses these three diseases, with emphasis on virus evolution and the challenges to protecting susceptible companion animal populations.
Collapse
Affiliation(s)
- Catherine G Lamm
- Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Center for Veterinary Health Sciences, PO Box 7001, Stillwater, OK 74076-7001, USA.
| | | |
Collapse
|
39
|
Decaro N, Desario C, Miccolupo A, Campolo M, Parisi A, Martella V, Amorisco F, Lucente MS, Lavazza A, Buonavoglia C. Genetic analysis of feline panleukopenia viruses from cats with gastroenteritis. J Gen Virol 2008; 89:2290-2298. [DOI: 10.1099/vir.0.2008/001503-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thirty-nine parvovirus strains contained in faecal samples collected in Italy (n=34) and UK (n=5) from cats with feline panleukopenia were characterized at the molecular level. All viruses were proven to be true feline panleukopenia virus (FPLV) strains by a minor groove binder probe assay, which is able to discriminate between FPLV and the closely related canine parvovirus type 2. By using sequence analysis of the VP2 gene, it was found that the FPLV strains detected in Italy and UK were highly related to each other, with a nucleotide identity of 99.1–100 and 99.4–99.8 % among Italian and British strains, respectively, whereas the similarities between all the sequences analysed were 98.6–100 %. Eighty-eight variable positions were detected in the VP2 gene of the field and reference FPLV strains, most of which were singletons. Synonymous substitutions (n=57) predominated over non-synonymous substitutions (n=31), and the ratio between synonymous and non-synonymous substitutions (dN/dS) was 0.10, thus confirming that evolution of FPLV is driven by random genetic drift rather than by positive selection pressure. Some amino acid mutations in the VP2 protein affected sites that are thought to be responsible for antigenic and biological properties of the virus, but no clear patterns of segregation and genetic markers, were identified, confirming that FPLV is in evolutionary stasis.
Collapse
Affiliation(s)
- N. Decaro
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine, Strada per Casamassima km 3, 70010 Valenzano (BA), Italy
| | - C. Desario
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine, Strada per Casamassima km 3, 70010 Valenzano (BA), Italy
| | - A. Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, via Manfredonia 20, 71100 Foggia, Italy
| | - M. Campolo
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine, Strada per Casamassima km 3, 70010 Valenzano (BA), Italy
| | - A. Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, via Manfredonia 20, 71100 Foggia, Italy
| | - V. Martella
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine, Strada per Casamassima km 3, 70010 Valenzano (BA), Italy
| | - F. Amorisco
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine, Strada per Casamassima km 3, 70010 Valenzano (BA), Italy
| | - M. S. Lucente
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine, Strada per Casamassima km 3, 70010 Valenzano (BA), Italy
| | - A. Lavazza
- Istituto Zooprofilattico Sperimentale di Lombardia ed Emilia Romagna, via A. Bianchi 9, 25124 Brescia, Italy
| | - C. Buonavoglia
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine, Strada per Casamassima km 3, 70010 Valenzano (BA), Italy
| |
Collapse
|
40
|
Pepin KM, Domsic J, McKenna R. Genomic evolution in a virus under specific selection for host recognition. INFECTION GENETICS AND EVOLUTION 2008; 8:825-34. [PMID: 18804189 DOI: 10.1016/j.meegid.2008.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Genetic variation in viral structural proteins is often explained by evolutionary escape of strong host defenses through processes such as immune evasion, host switching, and tissue tropism. An understanding of the mechanisms driving evolutionary change in virus surface proteins is key to designing effective intervention strategies to disease emergence. This study investigated the predictability of virus genomic evolution in response to highly specific differences in host receptor structure. The bacteriophage PhiX174 was evolved on three E. coli mutant hosts, each differing only by a single sugar group in the lipopolysaccharides, used for phage attachment. Large phage populations were used in order to maximize the amount of sequence space explored by mutation, and thus the potential for parallel evolution. Repeatability was assessed by genome sequencing of multiple isolates from endpoint populations and by fitness of the endpoint population relative to its ancestor. Evolutionary lines showed similar magnitudes of fitness increase between treatments. Only one mutation, occurring in the internal DNA pilot protein H, was completely repeatable, and it appeared to be a necessary stepping stone toward further adaptive change. Substitutions in the surface accessible major capsid protein F appeared to be involved in capsid stability rather than specific interactions with host receptors, suggesting that non-specific alterations to capsid structure could be an important component of adaptation to novel hosts. 33% of mutations were synonymous and showed evidence of selection on codon usage. Lastly, results supported previous findings that evolving populations of small ssDNA viruses may maintain relatively high levels of genetic variation.
Collapse
Affiliation(s)
- Kim M Pepin
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA.
| | | | | |
Collapse
|
41
|
Vieira MJ, Silva E, Desario C, Decaro N, Carvalheira J, Buonavoglia C, Thompson G. Natural co-infection with 2 parvovirus variants in dog. Emerg Infect Dis 2008; 14:678-9. [PMID: 18394298 PMCID: PMC2570921 DOI: 10.3201/eid1404.071461] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Maria João Vieira
- Universidade do Porto, Porto, Portugal
- Clinicão-Clínica Veterinária, Figueira da Foz, Portugal
| | | | | | | | | | | | - Gertrude Thompson
- Universidade do Porto, Porto, Portugal
- Clinicão-Clínica Veterinária, Figueira da Foz, Portugal
| |
Collapse
|