1
|
Zucko D, Hayir A, Grinde K, Boris-Lawrie K. Circular RNA Profiles in Viremia and ART Suppression Predict Competing circRNA–miRNA–mRNA Networks Exclusive to HIV-1 Viremic Patients. Viruses 2022; 14:v14040683. [PMID: 35458413 PMCID: PMC9027527 DOI: 10.3390/v14040683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Since the onset of the HIV-1/AIDS epidemic in 1981, 75 million people have been infected with the virus, and the disease remains a public health crisis worldwide. Circular RNAs (circRNAs) are derived from excised exons and introns during backsplicing, a form of alternative splicing. The relevance of unconventional, non-capped, and non-poly(A) transcripts to transcriptomics studies remains to be routinely investigated. Knowledge gaps to be filled are the interface between host-encoded circRNAs and viral replication in chronically progressed patients and upon treatment with antiviral drugs. We implemented a bioinformatic pipeline and repurpose publicly archived RNA sequence reads from the blood of 19 HIV-1-positive patients that previously compared transcriptomes during viremia and viremia suppression by antiretroviral therapy (ART). The in silico analysis identified viremic patients’ circRNA that became undetectable after ART. The circRNAs originated from a subset of host genes enriched in the HDAC biological pathway. These circRNAs and parental mRNAs held in common a small collection of miRNA response elements (MREs), some of which were present in HIV-1 mRNAs. The function of the MRE-containing target mRNA enriched the RNA polymerase II GO pathway. To visualize the interplay between individual circRNA–miRNA–target mRNA, important for HIV-1 and potentially other diseases, an Interactive Circos tool was developed to efficiently parse the intricately competing endogenous network of circRNA–miRNA–mRNA interactions originating from seven circRNA singled out in viremic versus non-viremic patients. The combined downregulation of the identified circRNAs warrants investigation as a novel antiviral targeting strategy.
Collapse
Affiliation(s)
- Dora Zucko
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (D.Z.); (A.H.)
| | - Abdullgadir Hayir
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (D.Z.); (A.H.)
- Department of Mathematics, Statistics and Computer Science, Macalester College, Saint Paul, MN 55105, USA;
| | - Kelsey Grinde
- Department of Mathematics, Statistics and Computer Science, Macalester College, Saint Paul, MN 55105, USA;
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (D.Z.); (A.H.)
- Correspondence:
| |
Collapse
|
2
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Chowdhury FZ, Ouyang Z, Buzon M, Walker BD, Lichterfeld M, Yu XG. Metabolic pathway activation distinguishes transcriptional signatures of CD8+ T cells from HIV-1 elite controllers. AIDS 2018; 32:2669-2677. [PMID: 30289807 DOI: 10.1097/qad.0000000000002007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Elite controllers, defined as persons maintaining undetectable levels of HIV-1 replication in the absence of antiretroviral therapy, represent living evidence that sustained, natural control of HIV-1 is possible, at least in relatively rare instances. Understanding the complex immunologic and virologic characteristics of these specific patients holds promise for inducing drug-free control of HIV-1 in broader populations of HIV-1 infected patients. DESIGN We used an unbiased transcriptional profiling approach to characterize CD8+ T cells, the strongest correlate of HIV-1 immune control identified thus far, in a large cohort of elite controllers (n = 51); highly active antiretrovial therapy (HAART)-treated patients (n = 32) and HIV-1 negative (n = 10) served as reference cohorts. METHODS We isolated mRNA from total CD8+ T cells isolated from peripheral blood mononuclear cell (PBMC) of each individual followed by microarray analysis of the transcriptional signatures. RESULTS We observed profound transcriptional differences [590 transcripts, false discovery rate (FDR)-adjusted P < 0.05] between elite controller and HAART-treated patients. Interestingly, metabolic and signalling pathways governed by mammalian target of rapamycin (mTOR) and eIF2, known for their key roles in regulating cellular growth, proliferation and metabolism, were among the top functions enriched in the differentially expressed genes, suggesting a therapeutically actionable target as a distinguishing feature of spontaneous HIV-1 immune control. A subsequent bootstrapping approach distinguished five different subgroups of elite controller, each characterized by distinct transcriptional signatures. However, despite this marked heterogeneity, differential regulation of mTOR and eIF2 signalling remained the dominant functional pathway in three of these elite controller subgroups. CONCLUSION These studies suggest that mTOR and eIF2 signalling may play a remarkably universal role for regulating CD8 T-cell function from elite controllers.
Collapse
|
4
|
Javed A, Leuchte N, Salinas G, Opitz L, Stahl-Hennig C, Sopper S, Sauermann U. Pre-infection transcript levels of FAM26F in peripheral blood mononuclear cells inform about overall plasma viral load in acute and post-acute phase after simian immunodeficiency virus infection. J Gen Virol 2016; 97:3400-3412. [PMID: 27902344 PMCID: PMC5203675 DOI: 10.1099/jgv.0.000632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CD8+ cells from simian immunodeficiency virus (SIV)-infected long-term non-progressors and some uninfected macaques can suppress viral replication in vitro without killing the infected cells. The aim of this study was to identify factors responsible for non-cytolytic viral suppression by transcriptional profiling and to investigate their potential impact on SIV replication. Results of microarray experiments and further validation with cells from infected and uninfected macaques revealed that FAM26F RNA levels distinguished CD8+ cells of controllers and non-controllers (P=0.001). However, FAM26F was also expressed in CD4+ T-cells and B-cells. FAM26F expression increased in lymphocytes after in vitro IFN-γ treatment on average 40-fold, and ex vivo FAM26F RNA levels in peripheral blood mononuclear cells correlated with plasma IFN-γ but not with IFN-α. Baseline FAM26F expression appeared to be stable for months, albeit the individual expression levels varied up to tenfold. Investigating its role in SIV-infection revealed that FAM26F was upregulated after infection (P<0.0008), but did not directly correlate with viral load in contrast to MX1 and CXCL10. However, pre-infection levels of FAM26F correlated inversely with overall plasma viral load (AUC) during the acute and post-acute phases of infection (e.g. AUC weeks post infection 0–8; no AIDS vaccine: P<0.0001, Spearman rank correlation coefficient (rs)=−0.89, n=16; immunized with an AIDS vaccine: P=0.033, rs=−0.43; n=25). FAM26F transcript levels prior to infection can provide information about the pace and strength of the antiviral immune response during the early stage of infection. FAM26F expression represented, in our experiments, one of the earliest prognostic markers, and could supplement major histocompatibility complex (MHC)-typing to predict disease progression before SIV-infection.
Collapse
Affiliation(s)
- Aneela Javed
- Deutsches Primatenzentrum GmbH, Leibniz-Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
| | - Nicole Leuchte
- Deutsches Primatenzentrum GmbH, Leibniz-Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
| | - Gabriela Salinas
- Transcriptome and Genome Analysis Laboratory (TAL), Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Lennart Opitz
- Transcriptome and Genome Analysis Laboratory (TAL), Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Christiane Stahl-Hennig
- Deutsches Primatenzentrum GmbH, Leibniz-Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
| | - Sieghart Sopper
- Tumor Immunology Lab, Hematology and Oncology, Medical University Innsbruck and Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ulrike Sauermann
- Deutsches Primatenzentrum GmbH, Leibniz-Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
- Correspondence Ulrike Sauermann
| |
Collapse
|
5
|
Tjernlund A, Burgener A, Lindvall JM, Peng T, Zhu J, Öhrmalm L, Picker LJ, Broliden K, McElrath MJ, Corey L. In Situ Staining and Laser Capture Microdissection of Lymph Node Residing SIV Gag-Specific CD8+ T cells--A Tool to Interrogate a Functional Immune Response Ex Vivo. PLoS One 2016; 11:e0149907. [PMID: 26986062 PMCID: PMC4795610 DOI: 10.1371/journal.pone.0149907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
While a plethora of data describes the essential role of systemic CD8+ T cells in the control of SIV replication little is known about the local in situ CD8+ T cell immune responses against SIV at the intact tissue level, due to technical limitations. In situ staining, using GagCM9 Qdot 655 multimers, were here combined with laser capture microdissection to detect and collect SIV Gag CM9 specific CD8+ T cells in lymph node tissue from SIV infected rhesus macaques. CD8+ T cells from SIV infected and uninfected rhesus macaques were also collected and compared to the SIV GagCM9 specific CD8+ T cells. Illumina bead array and transcriptional analyses were used to assess the transcriptional profiles and the three different CD8+ T cell populations displayed unique transcriptional patterns. This pilot study demonstrates that rapid and specific immunostaining combined with laser capture microdissection in concert with transcriptional profiling may be used to elucidate phenotypic differences between CD8+ T cells in SIV infection. Such technologies may be useful to determine differences in functional activities of HIV/SIV specific T cells.
Collapse
Affiliation(s)
- Annelie Tjernlund
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
- * E-mail:
| | - Adam Burgener
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, 730 William Ave. Winnipeg, MB, Canada
| | - Jessica M. Lindvall
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden
| | - Tao Peng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Lars Öhrmalm
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
| | - Louis J. Picker
- Department of Pathology, Vaccine and Gene Therapy Institute, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
6
|
Discovery of another anti-HIV protein in the search for the CD8+ cell anti-HIV Factor. Proc Natl Acad Sci U S A 2015; 112:7888-9. [PMID: 26085138 DOI: 10.1073/pnas.1509324112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
TOE1 is an inhibitor of HIV-1 replication with cell-penetrating capability. Proc Natl Acad Sci U S A 2015; 112:E3392-401. [PMID: 26056259 DOI: 10.1073/pnas.1500857112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Target of Egr1 (TOE1) is a nuclear protein localized primarily in nucleoli and Cajal bodies that was identified as a downstream target of the immediate early gene Egr1. TOE1 displays a functional deadenylation domain and has been shown to participate in spliceosome assembly. We report here that TOE1 can function as an inhibitor of HIV-1 replication and show evidence that supports a direct interaction of TOE1 with the viral specific transactivator response element as part of the inhibitory mechanism. In addition, we show that TOE1 can be secreted by activated CD8(+) T lymphocytes and can be cleaved by the serine protease granzyme B, one of the main components of cytotoxic granules. Both full-length and cleaved TOE1 can spontaneously cross the plasma membrane and penetrate cells in culture, retaining HIV-1 inhibitory activity. Antiviral potency of TOE1 and its cell-penetrating capability have been identified to lie within a 35-amino-acid region containing the nuclear localization sequence.
Collapse
|
8
|
Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol 2014; 88:9514-28. [PMID: 24899193 DOI: 10.1128/jvi.00802-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The ability of CD8+ T cells to effectively limit HIV-1 replication and block HIV-1 acquisition is determined by the capacity to rapidly respond to HIV-1 antigens. Understanding both the functional properties and regulation of an effective CD8+ response would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies. We assessed the antigen specificity, cytokine signature, and mechanisms that regulate antiviral gene expression in CD8+ T cells from a cohort of HIV-1-infected virus controllers (VCs) (<5,000 HIV-1 RNA copies/ml and CD4+ lymphocyte counts of >400 cells/μl) capable of soluble inhibition of HIV-1. Gag p24 and Nef CD8+ T cell-specific soluble virus inhibition was common among the VCs and correlated with substantial increases in the abundance of mRNAs encoding the antiviral cytokines macrophage inflammatory proteins MIP-1α, MIP-1αP (CCL3L1), and MIP-1β; granulocyte-macrophage colony-stimulating factor (GM-CSF); lymphotactin (XCL1); tumor necrosis factor receptor superfamily member 9 (TNFRSF9); and gamma interferon (IFN-γ). The induction of several of these mRNAs was driven through a coordinated response of both increased transcription and stabilization of mRNA, which together accounted for the observed increase in mRNA abundance. This coordinated response allows rapid and robust induction of mRNA messages that can enhance the CD8+ T cells' ability to inhibit virus upon antigen encounter. IMPORTANCE We show that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells. Regulation at the level of RNA helps enable rapid recall of memory CD8+ T cell effector functions for HIV-1 inhibition. By uncovering and understanding the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, we can identify new strategies for comprehensive identification of other important antiviral genes. This will, in turn, enhance our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.
Collapse
|
9
|
Lefebvre G, Desfarges S, Uyttebroeck F, Muñoz M, Beerenwinkel N, Rougemont J, Telenti A, Ciuffi A. Analysis of HIV-1 expression level and sense of transcription by high-throughput sequencing of the infected cell. J Virol 2011; 85:6205-11. [PMID: 21507965 PMCID: PMC3126515 DOI: 10.1128/jvi.00252-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/08/2011] [Indexed: 01/04/2023] Open
Abstract
Next-generation sequencing offers an unprecedented opportunity to jointly analyze cellular and viral transcriptional activity without prerequisite knowledge of the nature of the transcripts. SupT1 cells were infected with a vesicular stomatitis virus G envelope protein (VSV-G)-pseudotyped HIV vector. At 24 h postinfection, both cellular and viral transcriptomes were analyzed by serial analysis of gene expression followed by high-throughput sequencing (SAGE-Seq). Read mapping resulted in 33 to 44 million tags aligning with the human transcriptome and 0.23 to 0.25 million tags aligning with the genome of the HIV-1 vector. Thus, at peak infection, 1 transcript in 143 is of viral origin (0.7%), including a small component of antisense viral transcription. Of the detected cellular transcripts, 826 (2.3%) were differentially expressed between mock- and HIV-infected samples. The approach also assessed whether HIV-1 infection modulates the expression of repetitive elements or endogenous retroviruses. We observed very active transcription of these elements, with 1 transcript in 237 being of such origin, corresponding on average to 123,123 reads in mock-infected samples (0.40%) and 129,149 reads in HIV-1-infected samples (0.45%) mapping to the genomic Repbase repository. This analysis highlights key details in the generation and interpretation of high-throughput data in the setting of HIV-1 cellular infection.
Collapse
Affiliation(s)
- Gregory Lefebvre
- Institute of Microbiology, University Hospital Center and University of Lausanne, Bugnon 48, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu JQ, Dwyer DE, Dyer WB, Yang YH, Wang B, Saksena NK. Genome-wide analysis of primary CD4+ and CD8+ T cell transcriptomes shows evidence for a network of enriched pathways associated with HIV disease. Retrovirology 2011; 8:18. [PMID: 21410942 PMCID: PMC3068086 DOI: 10.1186/1742-4690-8-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/16/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV preferentially infects CD4+ T cells, and the functional impairment and numerical decline of CD4+ and CD8+ T cells characterize HIV disease. The numerical decline of CD4+ and CD8+ T cells affects the optimal ratio between the two cell types necessary for immune regulation. Therefore, this work aimed to define the genomic basis of HIV interactions with the cellular transcriptome of both CD4+ and CD8+ T cells. RESULTS Genome-wide transcriptomes of primary CD4+ and CD8+ T cells from HIV+ patients were analyzed at different stages of HIV disease using Illumina microarray. For each cell subset, pairwise comparisons were performed and differentially expressed (DE) genes were identified (fold change >2 and B-statistic >0) followed by quantitative PCR validation. Gene ontology (GO) analysis of DE genes revealed enriched categories of complement activation, actin filament, proteasome core and proton-transporting ATPase complex. By gene set enrichment analysis (GSEA), a network of enriched pathways functionally connected by mitochondria was identified in both T cell subsets as a transcriptional signature of HIV disease progression. These pathways ranged from metabolism and energy production (TCA cycle and OXPHOS) to mitochondria meditated cell apoptosis and cell cycle dysregulation. The most unique and significant feature of our work was that the non-progressing status in HIV+ long-term non-progressors was associated with MAPK, WNT, and AKT pathways contributing to cell survival and anti-viral responses. CONCLUSIONS These data offer new comparative insights into HIV disease progression from the aspect of HIV-host interactions at the transcriptomic level, which will facilitate the understanding of the genetic basis of transcriptomic interaction of HIV in vivo and how HIV subverts the human gene machinery at the individual cell type level.
Collapse
Affiliation(s)
- Jing Qin Wu
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Katz BZ, Salimi B, Gadd SL, Huang CC, Kabat WJ, Kersey D, McCabe C, Heald-Sargent T, Katz ED, Yogev R. Differential gene expression of soluble CD8+ T-cell mediated suppression of HIV replication in three older children. J Med Virol 2011; 83:24-32. [PMID: 21108336 DOI: 10.1002/jmv.21933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Suppression of human immunodeficiency virus (HIV) replication by CD8+ T-cells (CD8 suppression) contributes to survival in adults and children <1 year. Soluble CD8 suppression can also be seen in some older children with AIDS. The factor responsible, CD8-derived antiviral factor (CAF), acts at the level of HIV RNA transcription. Differential gene expression techniques have been used to define the gene(s) mediating this phenomenon in adults. Recently, CAF has been linked to exosomes secreted by CD8+ T-cells. To compare the gene expression profiles from pediatric patients with each other, with those reported in 2 previous studies in adults and in those reportedly related to exosomes, we used differential gene expression to study three older children with HIV infection, one who did demonstrate soluble CD-8 suppression and two who did not. Eighteen differentially expressed genes were also seen in one adult study (P = 0.002, χ(2) test), and 38 such genes (P < 0.0001, χ(2) test) in a second adult study. In addition, two exosome components and some RNA's related to exosomal proteins were also differentially expressed. In children with HIV infection, we found significant differentially expressed genes that correlated to those previously reported in two studies in adults. Our data also lends some support to the recent identification of CAF with exosomes secreted by CD8+ T-cells.
Collapse
Affiliation(s)
- Ben Z Katz
- Department of Pediatrics, Northwestern University Feinberg School of Medicine and Children's Memorial Hospital, Chicago, Illinois 60614, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu JQ, Dwyer DE, Dyer WB, Yang YH, Wang B, Saksena NK. Transcriptional profiles in CD8+ T cells from HIV+ progressors on HAART are characterized by coordinated up-regulation of oxidative phosphorylation enzymes and interferon responses. Virology 2008; 380:124-35. [PMID: 18692859 DOI: 10.1016/j.virol.2008.06.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/09/2008] [Accepted: 06/25/2008] [Indexed: 02/06/2023]
Abstract
The functional impairment and numerical decline of CD8+ T cells during HIV infection has a profound effect on disease progression, but only limited microarray studies have used CD8+ T cells. To understand the interactions of HIV and host CD8+ T cells at different disease status, we used the Illumina Human-6 BeadChips to evaluate the transcriptional profile (>48,000 transcripts) in primary CD8+ T cells from HIV+ therapy-naive non-progressors and therapy-experienced progressors. 68 differentially expressed genes were identified, of which 6 have been reported in HIV context, while others are associated with biological functions relevant to HIV pathogenesis. By GSEA, the coordinated up-regulation of oxidative phosphorylation enzymes and interferon responses were detected as fingerprints in HIV progressors on HAART, whereas LTNP displayed a transcriptional signature of coordinated up-regulation of components of MAPK and cytotoxicty pathways. These results will provide biological insights into natural control of HIV versus HIV control under HAART.
Collapse
Affiliation(s)
- Jing Qin Wu
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia.
| | | | | | | | | | | |
Collapse
|