1
|
Zhang C, Kou Z, Wang X, He F, Sun D, Li Y, Feng Y, Zheng Y, Zhang R, Liu Y. Exploring the spatiotemporal effects of meteorological factors on hand, foot and mouth disease: a multiscale geographically and temporally weighted regression study. BMC Public Health 2024; 24:3129. [PMID: 39533262 PMCID: PMC11555952 DOI: 10.1186/s12889-024-20596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The influence of meteorological factors on hand, foot, and mouth disease (HFMD) is not on the same scale, it's rare for previous studies to measure and recognize the independent regression relationship between each variable in space and time scale. This study used a multiscale geographically and temporally weighted regression (MGTWR) model to explore the relationship between the incidence of HFMD and related meteorological factors in Shandong Province, China, during 2015-2019 and attempted to quantify the influence of meteorological factors on HFMD under different spatiotemporal effects. Meanwhile, we used the Global Moran's I statistic and Local Moran's I statistic to test the spatial autocorrelation of the incidence of HFMD. HFMD had spatial autocorrelation at the county level in Shandong Province. The MGTWR model outperformed the OLS and GTWR models in determining the relationship between meteorological factors and HFMD. The study highlights significant spatiotemporal non-stationarity in the relationship between meteorological factors and HFMD. Temperature was predominantly positively correlated with HFMD, especially in the peninsula region during spring and summer. Humidity exhibited a predominantly positive correlation, especially in the Shandong Peninsula. Precipitation also showed a positive correlation with HFMD, particularly in western regions and during the winter months. Wind speed had a predominantly negative correlation with HFMD in the central and southwestern regions. The results might help public health authorities set priorities for targeted prevention and control measures in different regions and weather conditions, and provide guidance for the government to rationally allocate public health resources.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Fenfen He
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Dapeng Sun
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yan Li
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yiping Feng
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yongxiao Zheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China
| | - Rongguo Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China
| | - Yunxia Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China.
- Climate Change and Health Center, Shandong University, Jinan, Shandong Province, P.R. China.
| |
Collapse
|
2
|
Zhang C, Wang X, Sun D, Li Y, Feng Y, Zhang R, Zheng Y, Kou Z, Liu Y. Modification effects of long-term air pollution levels on the relationship between short-term exposure to meteorological factors and hand, foot, and mouth disease: A distributed lag non-linear model-based study in Shandong Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116060. [PMID: 38310825 DOI: 10.1016/j.ecoenv.2024.116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The occurrence of hand, foot, and mouth disease (HFMD) is closely related to meteorological factors. However, location-specific characteristics, such as persistent air pollution, may increase the complexity of the impact of meteorological factors on HFMD, and studies across different areas and populations are largely lacking. In this study, a two-stage multisite time-series analysis was conducted using data from 16 cities in Shandong Province from 2015 to 2019. In the first stage, we obtained the cumulative exposure-response curves of meteorological factors and the number of HFMD cases for each city. In the second stage, we merged the estimations from the first stage and included city-specific air pollution variables to identify significant effect modifiers and how they modified the short-term relationship between HFMD and meteorological factors. High concentrations of air pollutants may reduce the risk effects of high average temperature on HFMD and lead to a distinct peak in the cumulative exposure-response curve, while lower concentrations may increase the risk effects of high relative humidity. Furthermore, the effects of average wind speed on HFMD were different at different levels of air pollution. The differences in modification effects between subgroups were mainly manifested in the diversity and quantity of significant modifiers. The modification effects of long-term air pollution levels on the relationship between sunshine hours and HFMD may vary significantly depending on geographical location. The people in age<3 and male groups were more susceptible to long-term air pollution. These findings contribute to a deepening understanding of the relationship between meteorological factors and HFMD and provide evidence for relevant public health decision-making.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Dapeng Sun
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yan Li
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yiping Feng
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Rongguo Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Yongxiao Zheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Jinan, China.
| | - Yunxia Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China; Climate Change and Health Center, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Luan G, Liu S, Zhang W, Zhai L, Zhang Y, Sun L, Yao H. Estimating the influence of high temperature on hand, foot, and mouth disease incidence in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1477-1484. [PMID: 35915310 DOI: 10.1007/s11356-022-22038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The burden of disease caused by ambient high temperature has become a public health concern, but the associations between high temperature and hand, foot, and mouth disease (HFMD) remain indistinct. We used distributed lag non-linear model (DLNM) to estimate the burden of disease attribute to high temperature, adjusting for long-term trend and weather confounders. Total 18,167,455 cases were reported in 31 Chinese provinces, the incidence of HFMD showed a gradually increasing trend from 2008 to 2017 in China. Minimum morbidity temperature (MMT) was mainly concentrated at 17 to 23 °C in ≤ 5 years old group, 18 to 25 °C in 6 ~ 10 years old group and 19 to 27 °C in > 10 years old group. The greatest relative risk (RR) in age group ≤ 5 years old was 2.06 (95% CI: 1.85 ~ 2.30) in Heilongjiang, and the lowest RR was 1.02 (95% CI: 1.00 ~ 1.05) in Guangdong; the greatest RR in age group 6 ~ 10 years old was 2.24 (95% CI: 1.72 ~ 2.91) in Guizhou, and the lowest RR was 1.01 (95% CI: 0.97 ~ 1.12) in Tianjin; the greatest RR in the age group > 10 years old was 2.53 (95% CI: 1.66 ~ 3.87) in Heilongjiang, and the lowest RR was 1.02 (95% CI: 0.71 ~ 1.46) in Henan. We found the positive association between high temperature and HFMD in China.
Collapse
Affiliation(s)
- Guijie Luan
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Shaonan Liu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Weiyan Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Long Zhai
- Qingdao Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Yingjie Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Liang Sun
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Hongyan Yao
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
4
|
Meng L, Zhou C, Xu Y, Liu F, Zhou C, Yao M, Li X. The lagged effect and attributable risk of apparent temperature on hand, foot, and mouth disease in Changsha, China: a distributed lag non-linear model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11504-11515. [PMID: 36094702 DOI: 10.1007/s11356-022-22875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is the leading Category C infectious disease affecting millions of children in China every year. In the context of global climate change, the understanding and quantification of the impact of weather factors on human health are particularly critical to the development and implementation of climate change adaptation and mitigation strategies. The aim of this study was to quantify the attributable burden of a combined bioclimatic indicator (apparent temperature) on HFMD and to identify temperature-specific sensitive populations. A total of 123,622 HFMD cases were included in the study. The non-linear relationship between apparent temperature and the incidence of HFMD was approximately M-shaped, with hot weather being more likely to be attributable than cold conditions, of which moderately hot accounting for the majority of cases (21,441, 17.34%). Taking the median apparent temperature (19.2 °C) as reference, the cold effect showed a short acute effect with the highest risk on the day of lag 0 (RR = 1.086, 95% CI: 1.024 ~ 1.152), whereas the hot effect lasted longer with the greatest risk at a lag of 7 days (RR = 1.081, 95% CI: 1.059 ~ 1.104). Subgroup analysis revealed that males, children under 3 years old, and scattered children tended to be more vulnerable to HFMD in hot weather, while females, those aged 3 ~ 5 years, and nursery children were sensitive to cold conditions. This study suggests that high temperatures have a greater impact on HFMD than low temperatures as well as lasting longer, of particular concern being moderately high temperatures rather than extreme temperatures. Early intervention takes on greater importance during cold days, while the duration of HFMD intervention must be longer during hot days.
Collapse
Affiliation(s)
- Lijun Meng
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Fuqiang Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Cui Zhou
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Meng Yao
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Xingli Li
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
5
|
Fang CY, Liu CC. Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 2022; 17:27-39. [PMID: 34382876 DOI: 10.1080/17460441.2021.1965987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
6
|
Janissen R, Woodman A, Shengjuler D, Vallet T, Lee KM, Kuijpers L, Moustafa IM, Fitzgerald F, Huang PN, Perkins AL, Harki DA, Arnold JJ, Solano B, Shih SR, Vignuzzi M, Cameron CE, Dekker NH. Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses. Mol Cell 2021; 81:4467-4480.e7. [PMID: 34687604 PMCID: PMC8628313 DOI: 10.1016/j.molcel.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the "backtracked" state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Andrew Woodman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Djoshkun Shengjuler
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Louis Kuijpers
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Fiona Fitzgerald
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Angela L Perkins
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Belén Solano
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
7
|
Analysis of the Complete Genomes of Enterovirus 71 Subtypes in China. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2021; 2021:5564099. [PMID: 34484496 PMCID: PMC8416384 DOI: 10.1155/2021/5564099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV-A71) is one of the most pathogens to hand, foot, and mouth disease (HFMD) as well as neurological complications in young children. Molecular characteristic of EV-A71 is important to prevent the virus outbreak. Here, the complete genomes of EV-A71 from China between 1998 and 2019 were downloaded from GenBank. The phylogenetic trees were developed by MEGA7.0 software, and the complete genetic epidemiological characteristics and amino acid mutations of EV-A71 from China were also analysed. The results showed that major epidemic EV-A71 subtype was C4b before 2004, while it turned to C4a after 2004 in mainland China, and C4 and B5 were major subtypes in Taiwan. VP1, VP4, 2C, 3C, 3D, and complete genome sequence can be used for virus genotyping, and VP1, VP4, and complete genomes have obvious advantages over other segments. There were many significant mutations in the viral complete genome sequence. This study indicated that the major C4 and B5 subtypes will contribute to the development of vaccines and drugs of EV-A71 for prevention and monitoring of EV-A71-associated HFMD in China.
Collapse
|
8
|
Adaptation and Virulence of Enterovirus-A71. Viruses 2021; 13:v13081661. [PMID: 34452525 PMCID: PMC8402912 DOI: 10.3390/v13081661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Outbreaks of hand, foot, and mouth disease caused by enterovirus-A71 (EV-A71) can result in many deaths, due to central nervous system complications. Outbreaks with many fatalities have occurred sporadically in the Asia-Pacific region and have become a serious public health concern. It is hypothesized that virulent mutations in the EV-A71 genome cause these occasional outbreaks. Analysis of EV-A71 neurovirulence determinants is important, but there are no virulence determinants that are widely accepted among researchers. This is because most studies have been done in artificially infected mouse models and because EV-A71 mutates very quickly to adapt to the artificial host environment. Although EV-A71 uses multiple receptors for infection, it is clear that adaptation-related mutations alter the binding specificity of the receptors and allow the virus to adopt the best entry route for each environment. Such mutations have confused interpretations of virulence in animal models. This article will discuss how environment-adapted mutations in EV-A71 occur, how they affect virulence, and how such mutations can be avoided. We also discuss future perspectives for EV-A71 virulence research.
Collapse
|
9
|
Abstract
Hand, Foot and Mouth Disease (HFMD) is usually a self-limiting, mild childhood disease that is caused mainly by Coxsackie virus A16 (CVA16) and Enterovirus A71 (EV-A71), both members of the Picornaviridae family. However, recurring HFMD outbreaks and epidemics due to EV-A71 infection in the Western Pacific region, and the propensity of EV-A71 strains to cause severe neurological complications have made this neurotropic virus a serious public health concern in afflicted countries. High mutation rate leading to viral quasispecies combined with frequent intra- and inter-typic recombination events amongst co-circulating EV-A71 strains have contributed to the great diversity and fast evolution of EV-A71 genomes, making impossible any accurate prediction of the next epidemic strain. Comparative genome sequence analyses and mutagenesis approaches have led to the identification of a number of viral determinants involved in EV-A71 fitness and virulence. These viral determinants include amino acid residues located in the structural proteins of the virus, affecting attachment to the host cell surface, receptor binding, and uncoating events. Critical residues in non-structural proteins have also been identified, including 2C, 3A, 3C proteases and the RNA-dependent RNA polymerase. Finally, mutations altering key secondary structures in the 5’ untranslated region were also found to influence EV-A71 fitness and virulence. While our current understanding of EV-A71 pathogenesis remains fragmented, these studies may help in the rational design of effective treatments and broadly protective vaccine candidates.
Collapse
Affiliation(s)
- Pei Yi Ang
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Connie Wan Hui Chong
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
10
|
Using Geographically Weighted Regression to Study the Seasonal Influence of Potential Risk Factors on the Incidence of HFMD on the Chinese Mainland. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10070448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is an epidemic infectious disease in China. Its incidence is affected by a variety of natural environmental and socioeconomic factors, and its transmission has strong seasonal and spatial heterogeneity. To quantify the spatial relationship between the incidence of HFMD (I-HFMD) and eight potential risk factors (temperature, humidity, precipitation, wind speed, air pressure, altitude, child population density, and per capita GDP) on the Chinese mainland, we established a geographically weighted regression (GWR) model to analyze their impacts in different seasons and provinces. The GWR model successfully describes the spatial changes of the influence of potential risks, and shows greatly improved estimation performance compared with the ordinary linear regression (OLR) method. Our findings help to understand the seasonally and spatially relevant effects of natural environmental and socioeconomic factors on the I-HFMD, and can provide information to be used to develop effective prevention strategies against HFMD at different locations and in different seasons.
Collapse
|
11
|
Molecular epidemiology and recombination of Enterovirus A71 in mainland China from 1987 to 2017. Int Microbiol 2021; 24:291-299. [PMID: 33608776 PMCID: PMC7895512 DOI: 10.1007/s10123-021-00164-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
Enterovirus A71 (EV-A71) is an important pathogen of severe hand, foot, and mouth disease (HFMD) in young children. This study aimed to retrospectively analyze the molecular epidemiology and recombination of EV-A71 in mainland China during 1987–2017. Phylogenetic tree showed that besides the previously reported subgenotypes A, B5, C0, C2, C3, and C4, a new subgenotype C6 emerged in mainland China. Recombination analysis indicated that C4 EV-A71 was derived from a common ancestor as a “double-recombinant” virus by intertypic recombination between C EV-A71 and CVA4, CVA5, CVA14, and CVA16 strains in P3 region and intratypic recombination between C and B EV-A71 strains in P2 region. The B5 EV-A71 shared high similarity with C EV-A71 in P1 region while it contained an unidentified sequence in P2 and P3 regions with two possible recombination patterns: one occurred between C4 EV-A71 and CVA3, CVA5, CVA6, CVA10, and CVA12 stains with one breakpoint in 3C, and the other occurred between C1, C2, C3, and C5 EV-A71 and CVA4, CVA5, CVA14, and CVA16 strains with two breakpoints in the 2A/2B junction and 3C. The C2 EV-A71 was probably a recombinant virus between C4 EV-A71 and CVA8 strains with two breakpoints located in the 5′UTR and 2A/2B junction. Moreover, an incredible recombination of C6 EV-A71 occurred between C4 and C2 EV-A71 with multiple breakpoints. Thus, continuous studies on EV-A71 genome characteristics are still useful and essential for monitoring emergence of new viruses and preventing HFMD outbreaks.
Collapse
|
12
|
Lee YR, Chang CM, Yeh YC, Huang CYF, Lin FM, Huang JT, Hsieh CC, Wang JR, Liu HS. Honeysuckle Aqueous Extracts Induced let-7a Suppress EV71 Replication and Pathogenesis In Vitro and In Vivo and Is Predicted to Inhibit SARS-CoV-2. Viruses 2021; 13:v13020308. [PMID: 33669264 PMCID: PMC7920029 DOI: 10.3390/v13020308] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
Honeysuckle (Lonicera japonica Thunb) is a traditional Chinese medicine (TCM) with an antipathogenic activity. MicroRNAs (miRNAs) are small non-coding RNA molecules that are ubiquitously expressed in cells. Endogenous miRNA may function as an innate response to block pathogen invasion. The miRNA expression profiles of both mice and humans after the ingestion of honeysuckle were obtained. Fifteen overexpressed miRNAs overlapped and were predicted to be capable of targeting three viruses: dengue virus (DENV), enterovirus 71 (EV71) and SARS-CoV-2. Among them, let-7a was examined to be capable of targeting the EV71 RNA genome by reporter assay and Western blotting. Moreover, honeysuckle-induced let-7a suppression of EV71 RNA and protein expression as well as viral replication were investigated both in vitro and in vivo. We demonstrated that let-7a targeted EV71 at the predicted sequences using luciferase reporter plasmids as well as two infectious replicons (pMP4-y-5 and pTOPO-4643). The suppression of EV71 replication and viral load was demonstrated in two cell lines by luciferase activity, RT-PCR, real-time PCR, Western blotting and plaque assay. Furthermore, EV71-infected suckling mice fed honeysuckle extract or inoculated with let-7a showed decreased clinical scores and a prolonged survival time accompanied with decreased viral RNA, protein expression and virus titer. The ingestion of honeysuckle attenuates EV71 replication and related pathogenesis partially through the upregulation of let-7a expression both in vitro and in vivo. Our previous report and the current findings imply that both honeysuckle and upregulated let-7a can execute a suppressive function against the replication of DENV and EV71. Taken together, this evidence indicates that honeysuckle can induce the expression of let-7a and that this miRNA as well as 11 other miRNAs have great potential to prevent and suppress EV71 replication.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Ming Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung Medical Center, Keelung 204, Taiwan;
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chi-Ying F. Huang
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei 112, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Feng-Mao Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Juan-Ting Huang
- Division of Big Data, Phalanx Biotech Group, Hsinchu 300, Taiwan;
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan;
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- M. Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2378)
| |
Collapse
|
13
|
Xu J, Yang M, Zhao Z, Wang M, Guo Z, Zhu Y, Rui J, Wang Y, Liu X, Lin S, Luo L, Su Y, Zhao B, Zhou Y, Frutos R, Chen T. Meteorological Factors and the Transmissibility of Hand, Foot, and Mouth Disease in Xiamen City, China. Front Med (Lausanne) 2021; 7:597375. [PMID: 33553200 PMCID: PMC7862718 DOI: 10.3389/fmed.2020.597375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
Background: As an emerging infectious disease, the prevention and control of hand, foot, and mouth disease (HFMD) poses a significant challenge to the development of public health in China. In this study, we aimed to explore the mechanism of the seasonal transmission characteristics of HFMD and to reveal the correlation and potential path between key meteorological factors and the transmissibility of HFMD. Methods: Combined with daily meteorological data such as average temperature, average relative humidity, average wind velocity, amount of precipitation, average air pressure, evaporation capacity, and sunshine duration, a database of HFMD incidence and meteorological factors was established. Spearman rank correlation was used to calculate the correlation between the various meteorological factors and the incidence of HFMD. The effective reproduction number (R eff ) of HFMD was used as an intermediate variable to further quantify the dynamic relationship between the average temperature and R eff . Results: A total of 43,659 cases of HFMD were reported in Xiamen from 2014 to 2018. There was a significantly positive correlation between the average temperature and the incidence of HFMD (r = 0.596, p < 0.001), and a significantly negative correlation between the average air pressure and the incidence of HFMD (r = -0.511, p < 0.001). There was no correlation between the average wind velocity (r = 0.045, p > 0.05) or amount of precipitation (r = 0.043, p > 0.05) and incidence. There was a temperature threshold for HFMD's transmissibility. Owing to the seasonal transmission characteristics of HFMD in Xiamen, the temperature threshold of HFMD's transmissibility was 13.4-18.4°C and 14.5-29.3°C in spring and summer and in autumn and winter, respectively. Conclusions: HFMD's transmissibility may be affected by the average temperature; the temperature threshold range of transmissibility in autumn and winter is slightly wider than that in spring and summer. Based on our findings, we suggest that the relevant epidemic prevention departments should pay close attention to temperature changes in Xiamen to formulate timely prevention strategies before the arrival of the high-risk period.
Collapse
Affiliation(s)
- Jingwen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Mingzhai Wang
- Xiamen Center for Disease Control and Prevention, Xiamen City, China
| | - Zhinan Guo
- Xiamen Center for Disease Control and Prevention, Xiamen City, China
| | - Yuanzhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Yanhua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Benhua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen City, China
| | - Roger Frutos
- Agricultural Research Centre for International Development, Intertryp, Montpellier, France
- Institut d'Electronique et des Systèmes, Université de Montpellier-Centre National de la Recherche Scientifique, Montpellier, France
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| |
Collapse
|
14
|
Chang CS, Liao CC, Liou AT, Chou YC, Yu YY, Lin CY, Lin JS, Suen CS, Hwang MJ, Shih C. Novel Naturally Occurring Mutations of Enterovirus 71 Associated With Disease Severity. Front Microbiol 2021; 11:610568. [PMID: 33519765 PMCID: PMC7838335 DOI: 10.3389/fmicb.2020.610568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Infection with the re-emerging enterovirus 71 (EV-A71) is associated with a wide range of disease severity, including herpangina, encephalitis, and cardiopulmonary failure. At present, there is no FDA-approved therapeutics for EV-A71. Early diagnosis for the high-risk children is the key to successful patient care. We examined viral genome sequences at the 5′ untranslated region (UTR) and the capsid protein VP1 from 36 mild and 27 severe cases. We identified five EV-A71 mutations associated with severe diseases, including (1) the 5′ UTR mutations C580U, A707G, C709U; (2) a VP1 alanine-to-threonine mutation at position 280 (280T), and (3) a VP1 glutamic acid-to-(non-glutamic acid) at position 145 [145(non-E)]. SCARB2 is a known entry receptor for EV-A71. Based on a recent cryoEM structure of the EV-A71-SCARB2 binding complex, VP1-280T is near the binding interface between the VP1-VP2 complex and its entry receptor SCARB2. A de novo created hydrogen bonding between the mutant VP1-280T and the VP2-139T, could help strengthen a web-like interaction structure of the VP1-VP2 complex. A stabilized loop turn of VP2, once in contact with SCARB2, can enhance interaction with the host SCARB2 receptor for viral entry. Our findings here could facilitate early detection of severe cases infected with EV-A71 in clinical medicine. In addition, it opens up the opportunity of functional studies via infectious cDNA cloning, site-directed mutagenesis, and animal models in the future.
Collapse
Affiliation(s)
- Chih-Shin Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - An-Ting Liou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chun Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Yen Yu
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Yung Lin
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Jen-Shiou Lin
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiaho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Xu YP, Zhou HY, Wang GC, Zhang Y, Yang T, Zhao Y, Li RT, Zhang RR, Guo Y, Wang X, Li XF, Qin CF, Tang R. Rational Design of a Replication-Competent and Inheritable Magnetic Viruses for Targeting Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002435. [PMID: 32954651 DOI: 10.1002/smll.202002435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Infection with live-attenuated vaccines always inevitably induces side effects that reduce their safety. This study suggests a concept of magnetic virus produced by genetically modifying viral surfaces with Fe3 O4 nanoparticles (NPs) to control their tropisms. An iron-affinity peptide is designed to be displayed on the viral surface protein (VP1) of human enterovirus type 71 (EV71), a typical nonenveloped picornavirus, as the model. The modified EV71 can self-bind with Fe3 O4 NPs under physiological conditions, resulting in novel EV71-Fe3 O4 hybrid materials. This rationally engineered EV71 with Fe3 O4 retains its original biological infectivity, but its tropism can be precisely controlled by magnetism. Both in vitro and in vivo experiments demonstrate that EV71-Fe3 O4 can infect only a desired area within the limit of the applied magnetic field, which effectively reduces its pathological damage. More importantly, this characteristic of EV71 can be inherited due to the gene-induced coassembly of viruses and NPs. This achievement provides a proof of concept in virus vaccine improvement by a combination of gene modification and material incorporation, leading to great potential for biomedical developments.
Collapse
Affiliation(s)
- Yan-Peng Xu
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hang-Yu Zhou
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215000, China
| | - Guang-Chuan Wang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ying Zhang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Tianxu Yang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Yueqi Zhao
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiaoyu Wang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
16
|
Pearson D, Basu R, Wu XM, Ebisu K. Temperature and hand, foot and mouth disease in California: An exploratory analysis of emergency department visits by season, 2005-2013. ENVIRONMENTAL RESEARCH 2020; 185:109461. [PMID: 32278924 DOI: 10.1016/j.envres.2020.109461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND For the past decade, hand, foot and mouth disease (HFMD), caused by entero and coxsackie viruses, has been spreading in Asia, particularly among children, overloading healthcare settings and creating economic hardships for parents. Recent studies have found meteorological factors, such as temperature, are associated with HFMD in Asia. However, few studies have explored the relationship in the United States, although HFMD cases have steadily increased recently. As concerns of climate change grow, we explored the association between temperature and HFMD admissions to the Emergency Department (ED) in California. METHODS Weekly counts of HFMD for 16 California climate zones were collected from 2005 to 2013. We calculated weekly temperature for each climate zone using an inverse distance-weighting method. For each climate zone stratified by season, we conducted a time-series using Poisson regression models. We adjusted models for weekly averaged relative humidity, average number of HFMD cases in previous weeks and long-term temporal trends. Climate zone estimates were combined to obtain an overall seasonal estimate. We attempted stratified analyses by region, race/ethnicity, and sex to identify sensitive subpopulations. RESULTS Risk of ED visits for HFMD per 1 °F increase in mean temperature during the same week increased 2.00% (95% confidence intervals 1.15, 2.86%) and 2.35% (1.38, 3.33%) during the warm and cold seasons, respectively. The coastal region showed a higher, though not statistically different, association during the cold season [3.18% (1.99, 4.39)] than the warm season [1.64% (0.47, 2.82)]. CONCLUSIONS Our findings indicated an association between temperature and ED visits for HFMD, with variation by season and region. Thus, the causative pathogen's ability to persist in the atmosphere may vary by season. Furthermore, the mild and wet winter in the coastal region of California may contribute to different results than studies in Asia. With the onset of climate change, HFMD cases will likely grow in California, warranting further investigation on this relationship, including new populations at-risk.
Collapse
Affiliation(s)
- Dharshani Pearson
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, United States.
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, United States
| | - Xiangmei May Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, United States
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, United States
| |
Collapse
|
17
|
Zhang X, Xu C, Xiao G. Spatial heterogeneity of the association between temperature and hand, foot, and mouth disease risk in metropolitan and other areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136623. [PMID: 31954246 DOI: 10.1016/j.scitotenv.2020.136623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 05/26/2023]
Abstract
Interest in assessing the effects of temperature on hand, foot, and mouth disease (HFMD) has increased. However, little evidence is available on spatial heterogeneity in relationship to temperature and HFMD in metropolitan (capital city and municipal districts) and other areas where economic levels are significantly different. In this study, the Bayesian space-time hierarchy model was applied to identify the spatiotemporal heterogeneity of HFMD. GeoDetector was then used to quantify the determinant power of temperature to the disease in regions where the economic level has significant spatial heterogeneity. There was significant spatial heterogeneity in the influence of temperature on the incidence of HFMD in metropolitan and other areas. In metropolitan areas, where the disease risk is higher (hot spots), the HFMD incidence was higher alongside an increase in average temperature. However, in non-metropolitan areas, where the disease risk is lower (cold spots), there was an approximately S-shaped relationship between the temperature and the HFMD risk. More specifically, when the temperature was >25 °C, the HFMD incidence no longer increased monotonically with the increasing temperature. There was significant spatial heterogeneity in the effects of temperature on the HFMD incidence in metropolitan and non-metropolitan areas. This finding may serve as a suggestion and basis for the surveillance and control of this disease and it is conducive to the rational allocation of medical resources in different areas.
Collapse
Affiliation(s)
- XiangXue Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - ChengDong Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - GeXin Xiao
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
18
|
Effects of temperature fluctuations on spatial-temporal transmission of hand, foot, and mouth disease. Sci Rep 2020; 10:2541. [PMID: 32054890 PMCID: PMC7018740 DOI: 10.1038/s41598-020-59265-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/27/2020] [Indexed: 11/08/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD), predominantly occurs among infants and children. Previous studies have shown that suitable, stable temperatures favor HFMD virus reproduction; however, temperature fluctuations also affect virus transmission, and there are, so far, no studies concerning the association between such fluctuations and the incidence of HFMD. The objective of this study was to map the spatial-temporal distribution of HFMD incidence and quantify the long-term effects of temperature fluctuations on HFMD incidence in children. HFMD cases in children under five, from January 2009 to December 2013, in Beijing, Tianjin, and Hebei provinces of China, were used in this study. The GeoDetector and Bayesian space-time hierarchy models were employed to explore the spatial-temporal association between temperature fluctuations and HFMD incidence. The results indicate that HFMD incidence had significant spatial stratified heterogeneity (GeoDetector q-statistic = 0.83, p < 0.05), and that areas with higher risk mainly appeared in metropolises and their adjacent regions. HFMD transmission was negatively associated with temperature fluctuations. A 1 °C increase in the standard deviation of maximum and minimum temperatures was associated with decreases of 8.22% and 11.87% in the risk of HFMD incidence, respectively. The study suggests that large temperature fluctuations affect virus growth or multiplication, thereby inhibiting the activity of the virus and potentially even leading to its extinction, and consequently affecting the spatial-temporal distribution of HFMD. The findings can serve as a reference for the practical control of this disease and offer help in the rational allocation of medical resources.
Collapse
|
19
|
Huang SW, Cheng D, Wang JR. Enterovirus A71: virulence, antigenicity, and genetic evolution over the years. J Biomed Sci 2019; 26:81. [PMID: 31630680 PMCID: PMC6802317 DOI: 10.1186/s12929-019-0574-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
As a neurotropic virus, enterovirus A71 (EV-A71) emerge and remerge in the Asia-Pacific region since the 1990s, and has continuously been a threat to global public health, especially in children. Annually, EV-A71 results in hand-foot-and-mouth disease (HFMD) and occasionally causes severe neurological disease. Here we reviewed the global epidemiology and genotypic evolution of EV-A71 since 1997. The natural selection, mutation and recombination events observed in the genetic evolution were described. In addition, we have updated the antigenicity and virulence determinants that are known to date. Understanding EV-A71 epidemiology, genetic evolution, antigenicity, and virulence determinants can expand our insights of EV-A71 pathogenesis, which may benefit us in the future.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Dayna Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, One, University Road, Tainan, 701, Taiwan. .,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
20
|
Ji T, Guo Y, Lv L, Wang J, Shi Y, Yu Q, Zhang F, Tong W, Ma J, Zeng H, Zhao H, Zhang Y, Han T, Song Y, Yan D, Yang Q, Zhu S, Zhang Y, Xu W. Emerging recombination of the C2 sub-genotype of HFMD-associated CV-A4 is persistently and extensively circulating in China. Sci Rep 2019; 9:13668. [PMID: 31541120 PMCID: PMC6754396 DOI: 10.1038/s41598-019-49859-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Sporadic outbreaks caused by coxsackievirus A4 (CV-A4) have been reported worldwide. To further elucidate the detailed genetic characteristics and evolutionary recombination events of CV-A4, virus samples from nationwide hand, foot and mouth disease (HFMD) surveillance, encompassing 27 out of the 31 provinces in China, were investigated. Comprehensive and systematic phylogenetic analyses were performed by using 29 complete genomes, 142 complete CV-A4 VP1 sequences. Four genotypes (A, B, C and D) and five sub-genotypes (C1-C5) were re-identified based on the complete VP1 sequences. C2 is the predominant sub-genotype of CV-A4 associated with HFMD and has evolved into 3 clusters. Cluster 1 is a major cluster that has been persistently and extensively circulating in China since 2006 and has been associated with all severe cases. All the sequences showed high homology with the CV-A4 prototype in the P1 region, while higher identities with CV-A5, CV-14 and CV-16 in the P2 and P3 regions. Recombination analysis revealed that C2 had two specific genetic recombination patterns with other EV-A prototypes in the 5'-UTR and 3D region compared with C5. These recombination patterns might be associated with the increased transmissibility of C2 viruses, which were obtained due to their persistent and extensive circulation in populations.
Collapse
Affiliation(s)
- Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China
| | - Yue Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China
| | - Likun Lv
- Tianjin Municipal Center for Disease Control and Prevention, Tianjin Municipal, People's Republic of China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Shandong Province, People's Republic of China
| | - Yong Shi
- Jiangxi Center for Disease Control and Prevention, Nanchang, Jiangxi Province, People's Republic of China
| | - Qiuli Yu
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, People's Republic of China
| | - Fan Zhang
- Hunan Center for Disease Control and Prevention, Changsha, Hunan Province, People's Republic of China
| | - Wenbin Tong
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan Province, People's Republic of China
| | - Jiangtao Ma
- Ningxia Center for Disease Control and Prevention, Yinchuan, Ningxia Province, People's Republic of China
| | - Hanri Zeng
- Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong Province, People's Republic of China
| | - Hua Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing Municipal, People's Republic of China
| | - Yong Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China
| | - Taoli Han
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China
| | - Dongmei Yan
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China
| | - Qian Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China
| | - Shuangli Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China.
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention), Beijing, People's Republic of China.
| |
Collapse
|
21
|
Enterovirus A71 Containing Codon-Deoptimized VP1 and High-Fidelity Polymerase as Next-Generation Vaccine Candidate. J Virol 2019; 93:JVI.02308-18. [PMID: 30996087 DOI: 10.1128/jvi.02308-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/31/2019] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD), which occasionally results in severe neurological complications. In this study, we developed four EV-A71 (rgEV-A71) strains by reverse genetics procedures as possible vaccine candidates. The four rgEV-A71 viruses contained various codon-deoptimized VP1 capsid proteins (VP1-CD) and showed replication rates and antigenicity similar to that of the wild-type virus, while a fifth virus, rg4643C4VP-CD, was unable to form plaques but was still able to be examined by median tissue culture infectious dose (TCID50) titers, which were similar to those of the others, indicating the effect of CD on plaque formation. However, the genome stability showed that there were some mutations which appeared during just one passage of the VP1-CD viruses. Thus, we further constructed VP1-CD rgEV-A71 containing high-fidelity determinants in 3D polymerase (CD-HF), and the number of mutations in CD-HF rgEV-A71 was shown to have decreased. The CD-HF viruses showed less virulence than the parental strain in a mouse infection model. After 14 days postimmunization, antibody titers had increased in mice infected with CD-HF viruses. The mouse antisera showed similar neutralizing antibody titers against various CD-HF viruses and different genotypes of EV-A71. The study demonstrates the proof of concept that VP1 codon deoptimization combined with high-fidelity 3D polymerase decreased EV-A71 mutations and virulence in mice but retained their antigenicity, indicating it is a good candidate for next-generation EV-A71 vaccine development.IMPORTANCE EV-A71 can cause severe neurological diseases with fatality in infants and young children, but there are still no effective drugs to date. Here, we developed a novel vaccine strategy with the combination of CD and HF substitutions to generate the genetically stable reverse genetics virus. We found that CD combined with HF polymerase decreased the virulence but maintained the antigenicity of the virus. This work demonstrated the simultaneous introduction of CD genome sequences and HF substitutions as a potential new strategy to develop attenuated vaccine seed virus. Our work provides insight into the development of a low-virulence candidate vaccine virus through a series of genetic editing of virus sequences while maintaining its antigenicity and genome stability, which will provide an additional strategy for next-generation vaccine development of EV-A71.
Collapse
|
22
|
Wang H, Li Y. Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin 2018; 34:9-21. [PMID: 30552635 DOI: 10.1007/s12250-018-0071-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5' UTR and 3' UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
23
|
Chen H, Cheng Y, Liang X, Meng JT, Zuo HJ, Su LY, Wang XX, Yang CB, Luan RS. Molecular characterization of enterovirus 71 sibling strains for thermal adaption in Vero cells with adaptive laboratory evolution. INFECTION GENETICS AND EVOLUTION 2018; 67:44-50. [PMID: 30347249 DOI: 10.1016/j.meegid.2018.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Enterovirus 71 is the main pathogen that causes severe and fatal hand-foot-mouth-disease (HFMD) cases. As the enterovirus virus mutation has implications for pathogenesis, vaccine development, antiviral therapy, and epidemiological disease management of the virus. In this study, we investigated the variations of enterovirus 71 in thermal adaption, using the method of adaptive laboratory evolution. The sibling virus strains were isolated from a 2-year-old severe case of HFMD (#100) and her symptomless close contact (#101). Both strains were cultured in Vero cells by serial passage of 36 generations at the temperatures of 28.0 °C, 33.0 °C and 39.5 °C to construct adaptive lineages. According to the comparative analysis of phenotypes between adapted strains and parental strains, differences in growth rate were observed in the sibling lineages and a larger plaque was found mainly in the hot adapted strains for lineage #101. Two sets of adaptive strains from six time points (parental, 12th 17th, 31st, 35th passage and endpoint) were sequenced and analyzed by both Sanger sequencing and Next Generation Sequencing. Several variations in most coding genes and one reverse mutation in 5'UTR was observed, along with the identity of 99.8% for complete genome for both lineages. Notably, thermal specific non-synonymous mutations were found in the gene of VP1\VP3\3A\2C\3C. Moreover, the concurrent mutations A292G, A434G and A355C/T of sibling lineages in VP1 showed quantificational trace with distinguishing patterns for different temperatures, which were suspected to be the thermo-sensitive mutation hotspots. These results highlight the possible rules of thermal adaption in enterovirus 71, produce a novel picture of genome evolution of the virus, and shed light on viral variation and evolution.
Collapse
Affiliation(s)
- Heng Chen
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Yue Cheng
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Jian-Tong Meng
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Hao-Jiang Zuo
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Yuan Su
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Xi-Xi Wang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Cai-Bin Yang
- Chengdu Center for Disease Control and Prevention, Chengdu 610041, Sichuan Province, China
| | - Rong-Sheng Luan
- West China School of Public Health, & No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
24
|
Coates SJ, Davis MDP, Andersen LK. Temperature and humidity affect the incidence of hand, foot, and mouth disease: a systematic review of the literature - a report from the International Society of Dermatology Climate Change Committee. Int J Dermatol 2018; 58:388-399. [PMID: 30187452 DOI: 10.1111/ijd.14188] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is an enterovirus-mediated condition that predominantly affects children under 5 years of age. The tendency for outbreaks to peak in warmer summer months suggests a relationship between HFMD and weather patterns. We reviewed the English-language literature for articles describing a relationship between meteorological variables and HFMD. Seventy-two studies meeting criteria were identified. A positive, statistically significant relationship was identified between HFMD cases and both temperature (61 of 67 studies, or 91.0%, reported a positive relationship) [CI 81.8-95.8%, P = 0.0001] and relative humidity (41 of 54 studies, or 75.9%) [CI 63.1-85.4%, P = 0.0001]. No significant relationship was identified between HFMD and precipitation, wind speed, and/or sunshine. Most countries reported a single peak of disease each year (most commonly early Summer), but subtropical and tropical climate zones were significantly more likely to experience a bimodal distribution of cases throughout the year (two peaks a year; most commonly late spring/early summer, with a smaller peak in autumn). The rising global incidence of HFMD, particularly in Pacific Asia, may be related to climate change. Weather forecasting might be used effectively in the future to indicate the risk of HFMD outbreaks and the need for targeted public health interventions.
Collapse
Affiliation(s)
- Sarah J Coates
- Department of Dermatology, The University of California San Francisco, San Francisco, CA, USA
| | - Mark D P Davis
- Division of Clinical Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Louise K Andersen
- Department of Dermato-Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
25
|
Li L, Qiu W, Xu C, Wang J. A spatiotemporal mixed model to assess the influence of environmental and socioeconomic factors on the incidence of hand, foot and mouth disease. BMC Public Health 2018; 18:274. [PMID: 29463224 PMCID: PMC5819665 DOI: 10.1186/s12889-018-5169-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 02/09/2018] [Indexed: 11/12/2022] Open
Abstract
Background As a common infectious disease, hand, foot and mouth disease (HFMD) is affected by multiple environmental and socioeconomic factors, and its pathogenesis is complex. Furthermore, the transmission of HFMD is characterized by strong spatial clustering and autocorrelation, and the classical statistical approach may be biased without consideration of spatial autocorrelation. In this paper, we propose to embed spatial characteristics into a spatiotemporal additive model to improve HFMD incidence assessment. Methods Using incidence data (6439 samples from 137 monitoring district) for Shandong Province, China, along with meteorological, environmental and socioeconomic spatial and spatiotemporal covariate data, we proposed a spatiotemporal mixed model to estimate HFMD incidence. Geo-additive regression was used to model the non-linear effects of the covariates on the incidence risk of HFMD in univariate and multivariate models. Furthermore, the spatial effect was constructed to capture spatial autocorrelation at the sub-regional scale, and clusters (hotspots of high risk) were generated using spatiotemporal scanning statistics as a predictor. Linear and non-linear effects were compared to illustrate the usefulness of non-linear associations. Patterns of spatial effects and clusters were explored to illustrate the variation of the HFMD incidence across geographical sub-regions. To validate our approach, 10-fold cross-validation was conducted. Results The results showed that there were significant non-linear associations of the temporal index, spatiotemporal meteorological factors and spatial environmental and socioeconomic factors with HFMD incidence. Furthermore, there were strong spatial autocorrelation and clusters for the HFMD incidence. Spatiotemporal meteorological parameters, the normalized difference vegetation index (NDVI), the temporal index, spatiotemporal clustering and spatial effects played important roles as predictors in the multivariate models. Efron’s cross-validation R2 of 0.83 was acquired using our approach. The spatial effect accounted for 23% of the R2, and notable patterns of the posterior spatial effect were captured. Conclusions We developed a geo-additive mixed spatiotemporal model to assess the influence of meteorological, environmental and socioeconomic factors on HFMD incidence and explored spatiotemporal patterns of such incidence. Our approach achieved a competitive performance in cross-validation and revealed strong spatial patterns for the HFMD incidence rate, illustrating important implications for the epidemiology of HFMD. Electronic supplementary material The online version of this article (10.1186/s12889-018-5169-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lianfa Li
- LREIS, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Wenyang Qiu
- LREIS, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Chengdong Xu
- LREIS, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jinfeng Wang
- LREIS, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
26
|
A Selective Bottleneck Shapes the Evolutionary Mutant Spectra of Enterovirus A71 during Viral Dissemination in Humans. J Virol 2017; 91:JVI.01062-17. [PMID: 28931688 DOI: 10.1128/jvi.01062-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
RNA viruses accumulate mutations to rapidly adapt to environmental changes. Enterovirus A71 (EV-A71) causes various clinical manifestations with occasional severe neurological complications. However, the mechanism by which EV-A71 evolves within the human body is unclear. Utilizing deep sequencing and haplotype analyses of viruses from various tissues of an autopsy patient, we sought to define the evolutionary pathway by which enterovirus A71 evolves fitness for invading the central nervous system in humans. Broad mutant spectra with divergent mutations were observed at the initial infection sites in the respiratory and digestive systems. After viral invasion, we identified a haplotype switch and dominant haplotype, with glycine at VP1 residue 31 (VP1-31G) in viral particles disseminated into the integumentary and central nervous systems. In vitro viral growth and fitness analyses indicated that VP1-31G conferred growth and a fitness advantage in human neuronal cells, whereas VP1-31D conferred enhanced replication in human colorectal cells. A higher proportion of VP1-31G was also found among fatal cases, suggesting that it may facilitate central nervous system infection in humans. Our data provide the first glimpse of EV-A71 quasispecies from oral tissues to the central nervous system within humans, showing broad implications for the surveillance and pathogenesis of this reemerging viral pathogen.IMPORTANCE EV-A71 continues to be a worldwide burden to public health. Although EV-A71 is the major etiological agent of hand, foot, and mouth disease, it can also cause neurological pulmonary edema, encephalitis, and even death, especially in children. Understanding selection processes enabling dissemination and accurately estimating EV-A71 diversity during invasion in humans are critical for applications in viral pathogenesis and vaccine studies. Here, we define a selection bottleneck appearing in respiratory and digestive tissues. Glycine substitution at VP1 residue 31 helps viruses break through the bottleneck and invade the central nervous system. This substitution is also advantageous for replication in neuronal cells in vitro Considering that fatal cases contain enhanced glycine substitution at VP1-31, we suggest that the increased prevalence of VP1-31G may alter viral tropism and aid central nervous system invasion. Our findings provide new insights into a dynamic mutant spectral switch active during acute viral infection with emerging viral pathogens.
Collapse
|
27
|
Du Z, Xu L, Zhang W, Zhang D, Yu S, Hao Y. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China. BMJ Open 2017; 7:e016263. [PMID: 28988169 PMCID: PMC5640051 DOI: 10.1136/bmjopen-2017-016263] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Hand, foot, and mouth disease (HFMD) has caused a substantial burden in China, especially in Guangdong Province. Based on the enhanced surveillance system, we aimed to explore whether the addition of temperate and search engine query data improves the risk prediction of HFMD. DESIGN Ecological study. SETTING AND PARTICIPANTS Information on the confirmed cases of HFMD, climate parameters and search engine query logs was collected. A total of 1.36 million HFMD cases were identified from the surveillance system during 2011-2014. Analyses were conducted at aggregate level and no confidential information was involved. OUTCOME MEASURES A seasonal autoregressive integrated moving average (ARIMA) model with external variables (ARIMAX) was used to predict the HFMD incidence from 2011 to 2014, taking into account temperature and search engine query data (Baidu Index, BDI). Statistics of goodness-of-fit and precision of prediction were used to compare models (1) based on surveillance data only, and with the addition of (2) temperature, (3) BDI, and (4) both temperature and BDI. RESULTS A high correlation between HFMD incidence and BDI (r=0.794, p<0.001) or temperature (r=0.657, p<0.001) was observed using both time series plot and correlation matrix. A linear effect of BDI (without lag) and non-linear effect of temperature (1 week lag) on HFMD incidence were found in a distributed lag non-linear model. Compared with the model based on surveillance data only, the ARIMAX model including BDI reached the best goodness-of-fit with an Akaike information criterion (AIC) value of -345.332, whereas the model including both BDI and temperature had the most accurate prediction in terms of the mean absolute percentage error (MAPE) of 101.745%. CONCLUSIONS An ARIMAX model incorporating search engine query data significantly improved the prediction of HFMD. Further studies are warranted to examine whether including search engine query data also improves the prediction of other infectious diseases in other settings.
Collapse
Affiliation(s)
- Zhicheng Du
- Department of Medical Statistics and Epidemiology & Health Information Research Center & Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Guangzhou, China
| | - Lin Xu
- Department of Medical Statistics and Epidemiology & Health Information Research Center & Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Guangzhou, China
- School of Public Health, University of Hong Kong, Hong Kong, China
| | - Wangjian Zhang
- Department of Medical Statistics and Epidemiology & Health Information Research Center & Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Guangzhou, China
| | - Dingmei Zhang
- Department of Medical Statistics and Epidemiology & Health Information Research Center & Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Guangzhou, China
| | - Shicheng Yu
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuantao Hao
- Department of Medical Statistics and Epidemiology & Health Information Research Center & Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases and Control of the Ministry of Education, Guangzhou, China
| |
Collapse
|
28
|
Wang P, Zhao H, You F, Zhou H, Goggins WB. Seasonal modeling of hand, foot, and mouth disease as a function of meteorological variations in Chongqing, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:1411-1419. [PMID: 28188360 DOI: 10.1007/s00484-017-1318-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/11/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is an enterovirus-induced infectious disease, mainly affecting children under 5 years old. Outbreaks of HFMD in recent years indicate the disease interacts with both the weather and season. This study aimed to investigate the seasonal association between HFMD and weather variation in Chongqing, China. Generalized additive models and distributed lag non-linear models based on a maximum lag of 14 days, with negative binomial distribution assumed to account for overdispersion, were constructed to model the association between reporting HFMD cases from 2009 to 2014 and daily mean temperature, relative humidity, total rainfall and sun duration, adjusting for trend, season, and day of the week. The year-round temperature and relative humidity, rainfall in summer, and sun duration in winter were all significantly associated with HFMD. An inverted-U relationship was found between mean temperature and HFMD above 19 °C in summer, with a maximum morbidity at 27 °C, while the risk increased linearly with the temperature in winter. A hockey-stick association was found for relative humidity in summer with increasing risks over 60%. Heavy rainfall, relative to no rain, was found to be associated with reduced HFMD risk in summer and 2 h of sunshine could decrease the risk by 21% in winter. The present study showed meteorological variables were differentially associated with HFMD incidence in two seasons. Short-term weather variation surveillance and forecasting could be employed as an early indicator for potential HFMD outbreaks.
Collapse
Affiliation(s)
- Pin Wang
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Han Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Fangxin You
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing, China
| | - Hailong Zhou
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing, China
| | - William B Goggins
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
29
|
Shao L, Zhao J. Isolation of a highly pathogenic spring viraemia of carp virus strain from grass carp ( Ctenopharyngodon idella ) in late summer, China, 2016. Virus Res 2017; 238:183-192. [DOI: 10.1016/j.virusres.2017.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
|
30
|
Ren L, Yang D, Ren X, Li M, Mu X, Wang Q, Cao J, Hu K, Yan C, Fan H, Li X, Chen Y, Wang R, An F, An S, Luo M, Wang Y, Xiao Y, Xiang Z, Xiao Y, Li L, Huang F, Jin Q, Gao Z, Wang J. Genotyping of human rhinovirus in adult patients with acute respiratory infections identified predominant infections of genotype A21. Sci Rep 2017; 7:41601. [PMID: 28128353 PMCID: PMC5269714 DOI: 10.1038/srep41601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Human rhinovirus (HRV) is an important causative agent of acute respiratory tract infections (ARTIs). The roles of specific HRV genotypes in patients suffering from ARTIs have not been well established. We recruited 147 adult inpatients with community-acquired pneumonia (CAP) and 291 adult outpatients with upper ARTIs (URTIs). Respiratory pathogens were screened via PCR assays. HRV was detected in 42 patients, with 35 species A, five B and two C. Seventeen genotypes were identified, and HRV-A21 ranked the highest (9/42, 21.4%). The HRV-A21-positive infections were detected in four patients with CAP and in five with URTIs, all without co-infections. The HRV-A21 genome sequenced in this study contained 12 novel coding polymorphisms in viral protein (VP) 1, VP2 EF loop, VP3 knob and 3D regions. The infections of HRV-A21 virus obtained in this study could not be neutralized by antiserum of HRV-A21 prototype strain (VR-1131), indicating remarkable antigenic variation. Metagenomic analysis showed the HRV-A21 reads were dominant in bronchoalveolar lavage fluid of the three HRV-A21-positive patients with severe CAP, in which two dead. Our results highlight an unexpected infection of genotype HRV-A21 in the clinic, indicating the necessity of precise genotyping and surveillance of HRVs to improve the clinical management of ARTIs.
Collapse
Affiliation(s)
- Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Xianwen Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100176, P. R. China
| | | | - Xinlin Mu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, P. R. China
| | - Jie Cao
- Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Ke Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Chunliang Yan
- Department of Respiratory &Critical Care Medicine, Beijing Aerospace General Hospital, Beijing, 100076, P. R. China
| | - Hongwei Fan
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100730, P. R. China
| | - Xiangxin Li
- Department of Respiratory Medicine, Beijing Changping Hospital, Beijing, 102200, P. R. China
| | - Yusheng Chen
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P. R. China
| | - Ruiqin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Tsinghua University, Beijing, 100016, P. R. China
| | - Fucheng An
- Department of Respiratory Medicine, Mentougou District Hospital, Beijing, 102300, P. R. China
| | - Shuchang An
- Department of Respiratory Medicine, The First Affiliated Hospital of Tsinghua University, Beijing, 100016, P. R. China
| | - Ming Luo
- Beijing Center for Disease Prevention and Control, No. 16, Hepingli Middle Avenue of Dongcheng district, Beijing, 100013, P. R. China
| | - Ying Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| | - Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| | - Yan Xiao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100176, P. R. China
| | - Li Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100176, P. R. China
| | - Fang Huang
- Beijing Center for Disease Prevention and Control, No. 16, Hepingli Middle Avenue of Dongcheng district, Beijing, 100013, P. R. China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, 100176, P. R. China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, P. R. China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) &Peking Union Medical College, Beijing 100730, P. R. China
| |
Collapse
|
31
|
The threshold effects of meteorological factors on Hand, foot, and mouth disease (HFMD) in China, 2011. Sci Rep 2016; 6:36351. [PMID: 27848955 PMCID: PMC5111081 DOI: 10.1038/srep36351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022] Open
Abstract
We explored the threshold effects of meteorological factors on hand, foot and mouth disease (HFMD) in mainland China to improve the prevention and early warning. Using HFMD surveillance and meteorological data in 2011, we identified the threshold effects of predictors on the monthly incidence of HFMD and predicted the high risk months, with classification and regression tree models (CART). The results of the classification tree showed that there was an 82.35% chance for a high risk of HFMD when the temperature was greater than 24.03 °C and the relative humidity was less than 60.9% during non-autumn seasons. According to the heatmap of high risk prediction, the HFMD incidence in most provinces was beyond the normal level during May to August. The results of regression tree showed that when the temperature was greater than 24.85 °C and the relative humidity was between 80.59% and 82.55%, the relative risk (RR) of HFMD was 3.49 relative to monthly average incidence. This study provided quantitative evidence for the threshold effects of meteorological factors on HFMD in China. The conditions of a temperature greater than 24.85 °C and a relative humidity between 80.59% and 82.55% would lead to a higher risk of HFMD.
Collapse
|
32
|
Too IHK, Yeo H, Sessions OM, Yan B, Libau EA, Howe JLC, Lim ZQ, Suku-Maran S, Ong WY, Chua KB, Wong BS, Chow VTK, Alonso S. Enterovirus 71 infection of motor neuron-like NSC-34 cells undergoes a non-lytic exit pathway. Sci Rep 2016; 6:36983. [PMID: 27849036 PMCID: PMC5111112 DOI: 10.1038/srep36983] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
Enterovirus 71 (EV71) causing Hand, Foot and Mouth Disease, is regarded as the most important neurotropic virus worldwide. EV71 is believed to replicate in muscles and infect motor neurons to reach the central nervous system (CNS). To further investigate the mechanisms involved, we have employed the motor neuron cell line NSC-34. NSC-34 cells were permissive to EV71 and virus production yields were strain-dependent with differential efficacy at the entry, replication and egress steps. Furthermore, unlike all the other cell lines previously reported, EV71-infected NSC-34 cells neither displayed cytopathic effect nor underwent apoptosis. Instead, autophagy was markedly up-regulated and virus-containing autophagic vacuoles were isolated from the culture supernatant, providing the first experimental evidence that EV71 can adopt a non-lytic exit pathway. Finally, the ability of EV71 to infect productively NSC-34 cells correlated with its ability to invade the CNS in vivo, supporting the relevance of NSC-34 cells to study the intrinsic neurovirulence of EV71 strains.
Collapse
Affiliation(s)
- Issac Horng Khit Too
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Huimin Yeo
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - October Michael Sessions
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore
| | - Benedict Yan
- Department of Laboratory Medicine, 5 Lower Kent Ridge Road, National University Hospital, 119074, Singapore
| | - Eshele Anak Libau
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Josephine L C Howe
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Ze Qin Lim
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Shalini Suku-Maran
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Kaw Bing Chua
- Temasek Life Sciences Laboratory, 5 A Engineering Drive 1, National University of Singapore, 117411, Singapore
| | - Boon Seng Wong
- Neurobiology and Ageing Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| | - Vincent T K Chow
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Sylvie Alonso
- Department of Microbiology &Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.,Immunology Programme, Life Sciences Institute, CeLS building, 28 Medical Drive, National University of Singapore, 117456, Singapore
| |
Collapse
|
33
|
Li R, Lin H, Liang Y, Zhang T, Luo C, Jiang Z, Xu Q, Xue F, Liu Y, Li X. The short-term association between meteorological factors and mumps in Jining, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1069-1075. [PMID: 27353959 DOI: 10.1016/j.scitotenv.2016.06.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 04/15/2023]
Abstract
BACKGROUND An increasing trend of the incidence of mumps has been observed in a few developing countries in recent years, presenting a major threat to children's health. A few studies have examined the relationship between meteorological factors and mumps with inconsistent findings. METHODS The daily data of meteorological variables and mumps from 2009 to 2013 were obtained from Jining, a temperate inland city of China. A generalized additive model was used to quantify the association between meteorological factors and mumps based on the exposure-response relationship. RESULTS A total of 8520 mumps cases were included in this study. We found a nonlinear relationship of daily mean temperature, sunshine duration and relative humidity with mumps, with an approximately linear association for mean temperature above 4°C (excess risk (ER) for 1°C increase was 2.72%, 95% confidence interval (CI): 2.38%, 3.05% on the current day), for relative humidity above 54%, the ER for 1% increase was -1.86% (95% CI: -2.06%, -1.65%) at lag day 14; and for sunshine duration higher than 5h/d, the ER for per 1h/d increase was12.91% (95% CI: 11.38%, 14.47%) at lag day 1. While we found linear effects for daily wind speed (ER: 2.98%, 95% CI: 2.71%, 3.26% at lag day 13). CONCLUSIONS This study suggests that meteorological factors might be important predictors of incidence of mumps, and should be considered in its control and prevention.
Collapse
Affiliation(s)
- Runzi Li
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Hualiang Lin
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yumin Liang
- Jining Center for Disease Control and Prevention, Jining, Shandong, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Cheng Luo
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Zheng Jiang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Qinqin Xu
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Yanxun Liu
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Xiujun Li
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
34
|
Wang P, Goggins WB, Chan EYY. Hand, Foot and Mouth Disease in Hong Kong: A Time-Series Analysis on Its Relationship with Weather. PLoS One 2016; 11:e0161006. [PMID: 27532865 PMCID: PMC4988669 DOI: 10.1371/journal.pone.0161006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) is an emerging enterovirus-induced infectious disease for which the environmental risk factors promoting disease circulation remain inconclusive. This study aims to quantify the association of daily weather variation with hospitalizations for HFMD in Hong Kong, a subtropical city in China. Methods A time series of daily counts of HFMD public hospital admissions from 2008 through 2011 in Hong Kong was regressed on daily mean temperature, relative humidity, wind speed, solar radiation and total rainfall, using a combination of negative binomial generalized additive models and distributed lag non-linear models, adjusting for trend, season, and day of week. Results There was a positive association between temperature and HFMD, with increasing trends from 8 to 20°C and above 25°C with a plateau in between. A hockey-stick relationship of relative humidity with HFMD was found, with markedly increasing risks over 80%. Moderate rainfall and stronger wind and solar radiation were also found to be associated with more admissions. Conclusions The present study provides quantitative evidence that short-term meteorological variations could be used as early indicators for potential HFMD outbreaks. Climate change is likely to lead to a substantial increase in severe HFMD cases in this subtropical city in the absence of further interventions.
Collapse
Affiliation(s)
- Pin Wang
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - William B. Goggins
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail:
| | - Emily Y. Y. Chan
- Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response, School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Clinical and Etiological Characteristics of Atypical Hand-Foot-and-Mouth Disease in Children from Chongqing, China: A Retrospective Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:802046. [PMID: 26693489 PMCID: PMC4674665 DOI: 10.1155/2015/802046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/29/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hand-foot-and-mouth disease (HFMD) is a disease that had similar manifestations to chickenpox, impetigo, and measles, which is easy to misdiagnose and subsequently causes delayed therapy and subsequent epidemic. To date, no study has been conducted to report the clinical and epidemiological characteristics of atypical HFMD. METHODS 64 children with atypical HFMD out of 887 HFMD children were recruited, stool was collected, and viral VP1 was detected. RESULTS The atypical HFMD accounted for 7.2% of total HFMD in the same period (64/887) and there were two peaks in its prevalence in nonepidemic seasons. Ten children (15.6%) had manifestations of neurologic involvement, of whom 4 (6.3%) were diagnosed with severe HFMD and 1 with critically severe HFMD, but all recovered smoothly. Onychomadesis and desquamation were found in 14 patients (21.9%) and 15 patients (23.4%), respectively. The most common pathogen was coxsackievirus A6 (CV-A6) which accounted for 67.2%, followed by nontypable enterovirus (26.6%), enterovirus 71 (EV-A71) (4.7%), and coxsackievirus A16 (A16) (1.5%). CONCLUSIONS Atypical HFMD has seasonal prevalence. The manifestations of neurologic involvement in atypical HFMD are mild and usually have a good prognosis. CV-A6 is a major pathogen causing atypical HFMD, but not a major pathogen in Chongqing, China.
Collapse
|
36
|
Construction and characterization of an infectious clone of coxsackievirus A6 that showed high virulence in neonatal mice. Virus Res 2015; 210:165-8. [PMID: 26272672 DOI: 10.1016/j.virusres.2015.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 11/23/2022]
Abstract
Atypical hand, foot, and mouth disease (aHFMD) outbreaks have been frequently reported worldwide in recent years. It is believed that coxsackievirus A6 (CA6) is the major pathogen for aHFMD. Studies regarding CA6 infection are limited and the genetic mechanism for the high pathogenicity of some new CA6 variants is still unclear. Infectious clones are powerful tools for studying the genetic mechanisms of RNA viruses. In this study, we describe the construction of a full-length cDNA clone of CA6 strain TW-2007-00141. The whole genome of CA6 was amplified in a single step and ligated into a plasmid vector through an efficient cloning method, Gibson assembly. The whole genome sequence of CA6 strain TW-2007-00141 was determined and phylogenetic analysis indicated that it shared a high degree of similarity (≥94%) with the CA6 strains found in Taiwan in 2009. The infectious clone of CA6 viruses were recovered by transfection into 293FT cells and showed similar biological properties to the parental virus. Viral particles were purified by CsCl isopycnic centrifugation, and two types of viral particles were observed under transmission electron microscopy. The rescued virus showed high virulence in one-day-old suckling mice. This clone may be useful for establishing animal models for the evaluation of CA6 vaccine efficiency in future.
Collapse
|
37
|
Lei X, Cui S, Zhao Z, Wang J. Etiology, pathogenesis, antivirals and vaccines of hand, foot, and mouth disease. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Hand, foot, and mouth disease (HFMD), caused by enteroviruses, is a syndrome characterized by fever with vesicular eruptions mainly on the skin of the hands, feet, and oral cavity. HFMD primarily affects infants and young children. Although infection is usually self-limited, severe neurological complications in the central nervous system can present in some cases, which can lead to death. Widespread infection of HFMD across the Asia-Pacific region over the past two decades has made HFMD a major public health challenge, ranking first among the category C notifiable communicable diseases in China every year since 2008. This review summarizes our understanding of HFMD, focusing on the etiology and pathogenesis of the disease, as well as on progress toward antivirals and vaccines. The review also discusses the implications of these studies as they relate to the control and prevention of the disease.
Collapse
Affiliation(s)
- Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
38
|
Enterovirus 71 Proteins 2A and 3D Antagonize the Antiviral Activity of Gamma Interferon via Signaling Attenuation. J Virol 2015; 89:7028-37. [PMID: 25926657 DOI: 10.1128/jvi.00205-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) infection causes severe mortality involving multiple possible mechanisms, including cytokine storm, brain stem encephalitis, and fulminant pulmonary edema. Gamma interferon (IFN-γ) may confer anti-EV71 activity; however, the claim that disease severity is highly correlated to an increase in IFN-γ is controversial and would indicate an immune escape initiated by EV71. This study, investigating the role of IFN-γ in EV71 infection using a murine model, showed that IFN-γ was elevated. Moreover, IFN-γ receptor-deficient mice showed higher mortality rates and more severe disease progression with slower viral clearance than wild-type mice. In vitro results showed that IFN-γ pretreatment reduced EV71 yield, whereas EV71 infection caused IFN-γ resistance with attenuated IFN-γ signaling in IFN regulatory factor 1 (IRF1) gene transactivation. To study the immunoediting ability of EV71 proteins in IFN-γ signaling, 11 viral proteins were stably expressed in cells without cytotoxicity; however, viral proteins 2A and 3D blocked IFN-γ-induced IRF1 transactivation following a loss of signal transducer and activator of transcription 1 (STAT1) nuclear translocation. Viral 3D attenuated IFN-γ signaling accompanied by a STAT1 decrease without interfering with IFN-γ receptor expression. Restoration of STAT1 or blocking 3D activity was able to rescue IFN-γ signaling. Interestingly, viral 2A attenuated IFN-γ signaling using another mechanism by reducing the serine phosphorylation of STAT1 following the inactivation of extracellular signal-regulated kinase without affecting STAT1 expression. These results demonstrate the anti-EV71 ability of IFN-γ and the immunoediting ability by EV71 2A and 3D, which attenuate IFN-γ signaling through different mechanisms. IMPORTANCE Immunosurveillance by gamma interferon (IFN-γ) may confer anti-enterovirus 71 (anti-EV71) activity; however, the claim that disease severity is highly correlated to an increase in IFN-γ is controversial and would indicate an immune escape initiated by EV71. IFN-γ receptor-deficient mice showed higher mortality and more severe disease progression, indicating the anti-EV71 property of IFN-γ. However, EV71 infection caused cellular insusceptibility in response to IFN-γ stimulation. We used an in vitro system with viral protein expression to explore the novel IFN-γ inhibitory properties of the EV71 2A and 3D proteins through the different mechanisms. According to this study, targeting either 2A or 3D pharmacologically and/or genetically may sustain a cellular susceptibility in response to IFN-γ, particularly for IFN-γ-mediated anti-EV71 activity.
Collapse
|
39
|
Lee PH, Liu CM, Ho TS, Tsai YC, Lin CC, Wang YF, Chen YL, Yu CK, Wang SM, Liu CC, Shiau AL, Lei HY, Chang CP. Enterovirus 71 virion-associated galectin-1 facilitates viral replication and stability. PLoS One 2015; 10:e0116278. [PMID: 25706563 PMCID: PMC4338065 DOI: 10.1371/journal.pone.0116278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/04/2014] [Indexed: 01/05/2023] Open
Abstract
Enterovirus 71 (EV71) infection causes a myriad of diseases from mild hand-foot-and-mouth disease or herpangina to fatal brain stem encephalitis complicated with pulmonary edema. Several severe EV71 endemics have occurred in Asia-Pacific region, including Taiwan, and have become a serious threat to children’s health. EV71 infection is initiated by the attachment of the virion to the target cell surface. Although this process relies primarily upon interaction between viruses and cell surface receptors, soluble factors may also influence the binding of EV71 to host cells.Galectin-1 has been reported to participate in several virus infections, but is not addressed in EV71. In this study, we found that the serum levels of galectin-1 in EV71-infected children were higher than those in non-infected people. In EV71 infected cells, galectin-1 was found to be associated with the EV71 VP1 and VP3 via carbohydrate residues and subsequently released and bound to another cell surface along with the virus. EV71 propagated from galectin-1 knockdown SK-N-SH cells exhibited lower infectivity in cultured cells and less pathogenicity in mice than the virus propagated from parental cells. In addition, this galectin-1-free EV71 virus was sensitive to high temperature and lost its viability after long-term storage, which could be restored following supplement of recombinant galectin-1. Taken together, our findings uncover a new role of galectin-1 in facilitating EV71 virus infection.
Collapse
Affiliation(s)
- Pei-Huan Lee
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-Ming Liu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tzong-Shiann Ho
- Department of Emergency Medicine, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Che Tsai
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi-Cheng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yuh-Ling Chen
- Department of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Keung Yu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Min Wang
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Huan-Yao Lei
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Association of viral replication capacity with the pathogenicity of enterovirus 71. Virus Res 2014; 189:1-7. [DOI: 10.1016/j.virusres.2014.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/28/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022]
|
41
|
Phylogenetic analysis of the VP1 gene of Enterovirus 71 in Guangzhou during the high occurrence period of 2008. Virus Genes 2014; 48:538-42. [DOI: 10.1007/s11262-014-1046-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
42
|
Han JF, Yu N, Pan YX, He SJ, Xu LJ, Cao RY, Li YX, Zhu SY, Zhang Y, Qin ED, Che XY, Qin CF. Phenotypic and genomic characterization of human coxsackievirus A16 strains with distinct virulence in mice. Virus Res 2013; 179:212-9. [PMID: 24211607 DOI: 10.1016/j.virusres.2013.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/18/2023]
Abstract
Human coxsackievirus A16 (CA16) infection results in hand, foot, and mouth disease (HFMD) along with other severe neurological diseases in children and poses an important public health threat in Asian countries. During an HFMD epidemic in 2009 in Guangdong, China, two CA16 strains (GD09/119 and GD09/24) were isolated and characterized. Although both strains were similar in plaque morphology and growth properties in vitro, the two isolates exhibited distinct pathogenicity in neonatal mice upon intraperitoneal or intracranial injection. Complete genome sequences of both CA16 strains were determined, and the possible virulence determinants were analyzed and predicted. Phylogenetic analysis revealed that these CA16 isolates from Guangdong belonged to the B1b genotype and were closely related to other recent CA16 strains isolated in mainland China. Similarity and bootscanning analyses of these CA16 strains detected homologous recombination with the EV71 prototype strain BrCr in the non-structural gene regions and the 3'-untranslated regions. Together, the phenotypic and genomic characterizations of the two clinical CA16 isolates circulating in China were compared in detail, and the potential amino acid residues responsible for CA16 virulence in mice were predicted. These findings will help explain the evolutionary relationship of the CA16 strains circulating in China, warranting future studies investigating enterovirus virulence.
Collapse
Affiliation(s)
- Jian-Feng Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Nan Yu
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Yu-Xian Pan
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Si-Jie He
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Li-Juan Xu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rui-Yuan Cao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yue-Xiang Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yu Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Yan Che
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
43
|
Wu JS, Zhao N, Pan H, Wang CM, Wu B, Zhang HM, He HX, Liu D, Amer S, Liu SL. Patterns of polymorphism and divergence in the VP1 gene of enterovirus 71 circulating in the Asia-Pacific region between 1994 and 2013. J Virol Methods 2013; 193:713-28. [PMID: 23933074 DOI: 10.1016/j.jviromet.2013.07.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/28/2022]
Abstract
Enterovirus 71 has been implicated in several outbreaks of hand, foot and mouth disease in the Asia-Pacific region. The present study aimed to achieve comprehensive evolutionary dynamic aspects of EV71 during 1994-2013, based on phylogenetic analyses of the VP1 sequences. The results indicated that 4 genotypes, namely C4, C1, C2 and B4 are the predominant strains, especially in Southeast Asian countries. No common ancestor was shared in different countries. Fourteen sites of substitutions were detected in the VP1 gene sequences; including the most common sites related to neutralization at position V249I [47.1% (189/401)] and A289T [42.6% (171/401)]. However, the sites Q22H and Q22R associated with increased virulence were recognized only in 13.7% (55/401) and 18% (72/401), respectively. None of the above mutations seemed to become fixed because the ratio of Ka/Ks was greater than 1.0. Mutations K43E, A58T, S184T, and T240S could possibly change the spatial structure. Two mutations, G145E and T240S, could obviously affect the hydrophobicity of VP1 and thus alter the EV71 immunoreactivity. In conclusion, the VP1 gene of EV71 strains circulating in the Asia-Pacific region during 1994-2013, showed polymorphisms and divergence with very slow evolution rate, which may be one of the reasons for periodic outbreaks in this area.
Collapse
Affiliation(s)
- Jun-Song Wu
- Department of Orthopaedics & Trauma Center of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proc Natl Acad Sci U S A 2013; 110:7619-24. [PMID: 23589862 DOI: 10.1073/pnas.1300233110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of vaccines against infectious diseases represents one of the most important contributions to medical science. However, vaccine-preventable diseases still cause millions of deaths each year due to the thermal instability and poor efficacy of vaccines. Using the human enterovirus type 71 vaccine strain as a model, we suggest a combined, rational design approach to improve the thermostability and immunogenicity of live vaccines by self-biomineralization. The biomimetic nucleating peptides are rationally integrated onto the capsid of enterovirus type 71 by reverse genetics so that calcium phosphate mineralization can be biologically induced onto vaccine surfaces under physiological conditions, generating a mineral exterior. This engineered self-biomineralized virus was characterized in detail for its unique structural, virological, and chemical properties. Analogous to many exteriors, the mineral coating confers some new properties on enclosed vaccines. The self-biomineralized vaccine can be stored at 26 °C for more than 9 d and at 37 °C for approximately 1 wk. Both in vitro and in vivo experiments demonstrate that this engineered vaccine can be used efficiently after heat treatment or ambient temperature storage, which reduces the dependence on a cold chain. Such a combination of genetic technology and biomineralization provides an economic solution for current vaccination programs, especially in developing countries that lack expensive refrigeration infrastructures.
Collapse
|
45
|
Huang Y, Deng T, Yu S, Gu J, Huang C, Xiao G, Hao Y. Effect of meteorological variables on the incidence of hand, foot, and mouth disease in children: a time-series analysis in Guangzhou, China. BMC Infect Dis 2013; 13:134. [PMID: 23497074 PMCID: PMC3626782 DOI: 10.1186/1471-2334-13-134] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/06/2013] [Indexed: 11/28/2022] Open
Abstract
Background Over the last decade, major outbreaks of hand, foot, and mouth disease (HFMD) have been reported in Asian countries, resulting in thousands of deaths among children. However, less is known regarding the effect of meteorological variables on the incidence of HFMD in children. This study aims at quantifying the relationship between meteorological variables and the incidence of HFMD among children in Guangzhou, China. Methods The association between weekly HFMD cases in children aged <15 years and meteorological variables in Guangzhou from 2008 to 2011 were analyzed using the generalized additive model (GAM) and time-series method, after controlling for long-term trend and seasonality, holiday effects, influenza period and delayed effects. Results Temperature and relative humidity with one week lag were significantly associated with HFMD infection among children. We found that a 1°C increase in temperature led to an increase of 1.86% (95% CI: 0.92, 2.81%) in the weekly number of cases in the 0–14 years age group. A one percent increase in relative humidity may lead to an increase of 1.42% (95% CI: 0.97, 1.87%) in the weekly number of cases in the 0–14 years age group. Conclusions This study provides quantitative evidence that the incidence of HFMD in children was associated with high average temperature and high relative humidity. The one-week delay in the effects of temperature and relative humidity on HFMD is consistent with the enterovirus incubation period and the potential time lag between onset of children’s sickness and parental awareness and response.
Collapse
Affiliation(s)
- Yong Huang
- Department of Medical Statistics and Epidemiology & Health Information Research Center & Guangdong Key Laboratory of Medicine, School of Public Health, Sun Yat-sen University, Zhongshan Road II, Guangzhou, Guangdong Province, 510080, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Lee YP, Wang YF, Wang JR, Huang SW, Yu CK. Enterovirus 71 blocks selectively type I interferon production through the 3C viral protein in mice. J Med Virol 2012; 84:1779-89. [PMID: 22997081 DOI: 10.1002/jmv.23377] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Type I interferons (IFNs) represent an essential innate defense mechanism for controlling enterovirus 71 (EV 71) infection. Mice inoculated with EV 71 produced a significantly lower amount of type I IFNs than those inoculated with poly (I:C), adenovirus type V, or coxsackievirus B3 (CB3). EV 71 infection, however, mounted a proinflammatory response with a significant increase in the levels of serum and brain interleukin (IL)-6, monocyte chemoattractant protein-1, tumor necrosis factor, and IFN-γ. EV 71 infection abolished both poly (I:C)- and CB3-induced type I IFN production of mice. Such effect was not extended to other enteroviruses including coxsackievirus A24, B2, B3, and echovirus 9, as mice infected with these viruses retained type I IFN responsiveness upon poly (I:C) challenge. In addition, EV 71-infected RAW264.7 cells produced significantly lower amount of type I IFNs than non-infected cells upon poly (I:C) stimulation. The inhibitory effect of EV 71 on type I IFN production was attributed to the viral protein 3C, which was confirmed using over-expression systems in both mice and RAW264.7 cells. The 3C over-expression, however, did not interfere with poly (I:C)-induced proinflammatory cytokine production. These findings indicate that EV 71 can hamper the host innate defense by blocking selectively type I IFN synthesis through the 3C viral protein.
Collapse
Affiliation(s)
- Yi-Ping Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Chang HL, Chio CP, Su HJ, Liao CM, Lin CY, Shau WY, Chi YC, Cheng YT, Chou YL, Li CY, Chen KL, Chen KT. The association between enterovirus 71 infections and meteorological parameters in Taiwan. PLoS One 2012; 7:e46845. [PMID: 23071650 PMCID: PMC3465260 DOI: 10.1371/journal.pone.0046845] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 09/10/2012] [Indexed: 12/03/2022] Open
Abstract
Background Enterovirus 71 (EV71) infections are a significant cause of neurological disorder and death in children worldwide. Seasonal variations in EV71 infections have been recognized, but the mechanisms responsible for this phenomenon remain unknown. The purpose of this study was to examine the relationship between meteorological parameters and EV71 infection. Methods and Findings We analyzed the number of EV71 infections and daily climate data collected in Taiwan between 1998 and 2008 and used Poisson regression analysis and case-crossover methodology to evaluate the association between weather variability and the incidence of EV71 infection. A total of 1,914 EV71-infected patients were reported between 1998 and 2008. The incidence of EV71 infections reflected significant summertime seasonality (for oscillation, p<0.001). The incidence of EV71 infections began to rise at temperatures above 13°C (r2 = 0.76, p<0.001); at temperatures higher than approximately 26°C (r2 = 0.94, p<0.05), the incidence began to decline, producing an inverted V-shaped relationship. The increase in the incidence with increasing relative humidity was positive and linear (r2 = 0.68, p<0.05). EV71 infection was most highly correlated with temperature and relative humidity in the period that likely preceded the infection. Conclusion Our study provides quantitative evidence that the rate of EV71 infection increased significantly with increasing mean temperature and relative humidity in Taiwan.
Collapse
Affiliation(s)
- Hsiao-Ling Chang
- Division of Surveillance, Center for Disease Control, Department of Health, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bek EJ, McMinn PC. The Pathogenesis and Prevention of Encephalitis due to Human Enterovirus 71. Curr Infect Dis Rep 2012; 14:397-407. [PMID: 22639066 DOI: 10.1007/s11908-012-0267-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human enterovirus 71 (HEV71) has emerged as a major cause of viral encephalitis in Southeast Asia, with increased epidemic activity observed since 1997. This is reflected in a large increase in scientific publications relating directly to HEV71. New research is elucidating details of the viral life cycle, confirming similarities between HEV71 and other enteroviruses. Scavenger receptor B2 (SCARB2) is a receptor for HEV71, although other receptors are likely to be identified. Currently, the only strategies to prevent HEV71-associated disease are early diagnosis and aggressive supportive management of identified cases. As more information emerges regarding the molecular processes of HEV71 infection, further advances may lead to the development of effective antiviral treatments and ultimately a vaccine-protection strategy. The protective efficacies of several inactivated HEV71 vaccines have been confirmed in animal models, suggesting that an effective vaccine may become available in the next decade.
Collapse
Affiliation(s)
- Emily Jane Bek
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Blackburn Building D06, Sydney, NSW, 2006, Australia
| | | |
Collapse
|
49
|
Chursov A, Kopetzky SJ, Leshchiner I, Kondofersky I, Theis FJ, Frishman D, Shneider A. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus. RNA Biol 2012; 9:1266-74. [PMID: 22995831 PMCID: PMC3583857 DOI: 10.4161/rna.22081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32-39°C) can lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature. We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena.
Collapse
Affiliation(s)
- Andrey Chursov
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Replication kinetics of coxsackievirus A16 in human rhabdomyosarcoma cells. Virol Sin 2012; 27:221-7. [PMID: 22899429 DOI: 10.1007/s12250-012-3245-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022] Open
Abstract
Coxsackievirus A16 (CVA16), together with enterovirus type 71 (EV71), is responsible for most cases of hand, foot and mouth disease (HFMD) worldwide. Recent findings suggest that the recombination between CVA16 and EV71, and the co-circulation of these two viruses may have contributed to the increase of HFMD cases in China over the past few years. It is therefore important to further understand the virology, epidemiology, virus-host interactions and host pathogenesis of CVA16. In this study, we describe the viral kinetics of CVA16 in human rhabdomyosarcoma (RD) cells by analyzing the cytopathic effect (CPE), viral RNA replication, viral protein expression, viral RNA package and viral particle secretion in RD cells. We show that CVA16 appears to first attach, uncoat and enter into the host cell after adsorption for 1 h. Later on, CVA16 undergoes rapid replication from 3 to 6 h at MOI 1 and until 9 h at MOI 0.1. At MOI 0.1, CVA16 initiates a secondary infection as the virions were secreted before 9 h p.i. CPE was observed after 12 h p.i., and viral antigen was first detected at 6 h p.i. at MOI 1 and at 9 h p.i. at MOI 0.1. Thus, our study provides important information for further investigation of CVA16 in order to better understand and ultimately control infections with this virus.
Collapse
|