1
|
Kelly JA, Aida-Ficken V, McMullan LK, Chatterjee P, Shrivastava-Ranjan P, Marot S, Jenks MH, Lo MK, Montgomery JM, Spiropoulou CF, Flint M. Mechanisms of action of repurposed Ebola virus antivirals - the roles of phospholipidosis and cholesterol homeostasis. Antiviral Res 2025; 238:106167. [PMID: 40245950 DOI: 10.1016/j.antiviral.2025.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Cell-based drug repurposing screens have been a common approach to identifying compounds with antiviral properties. For Ebola virus (EBOV), such screens yield unexpectedly high hit rates. We investigated two mechanisms underlying the anti-EBOV activities of repurposed compounds. Phospholipidosis (PLD) is excessive accumulation of cellular lipids that confounds screens for SARS-CoV-2. We performed a meta-analysis of published screens and supplemented these with our own using infectious EBOV at biosafety level-4. A list of nearly 400 hit compounds from seven anti-EBOV screens was compiled. Most (63 %) of these hits were predicted to induce PLD, and their anti-EBOV activities broadly correlated with PLD induction. PLD-inducing compounds did not inhibit infection by several other highly pathogenic viruses, suggesting that PLD was not a confounding factor for screens against Lassa, Crimean-Congo hemorrhagic fever, and Rift Valley fever viruses. Of four cells lines tested, HeLa cells were the least susceptible to PLD induction. In addition to PLD, many of the hit compounds identified disrupt cholesterol homeostasis. Previous research found inhibition of cholesterol synthesis by statins blocked EBOV infection. To understand if compounds inhibiting this mechanism could contribute to high hit rates, we further examined this pathway. We identified multiple additional inhibitors of cholesterol biosynthesis, that also blocked EBOV infection, albeit with varying potency and cytotoxicity across cell lines. EBOV inhibitors that acted through this mechanism were suppressed by the addition of exogenous cholesterol. Our findings help define the effects that contribute to anti-EBOV activities and hence facilitate the selection of lead molecules suitable for subsequent development.
Collapse
Affiliation(s)
- Jamie A Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA; Auburn University College of Veterinary Medicine, Department of Pathobiology, Auburn, AL, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Stéphane Marot
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - M Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
2
|
Lo MK, Jain S, Davies KA, Sorvillo TE, Welch SR, Coleman-McCray JD, Chatterjee P, Hotard AL, O'Neal T, Flint M, Ai H, Albariño CG, Spengler JR, Montgomery JM, Spiropoulou CF. Optimization of Bangladesh and Malaysian genotype recombinant reporter Nipah viruses for in vitro antiviral screening and in vivo disease modeling. Antiviral Res 2024; 231:106013. [PMID: 39326503 PMCID: PMC11772256 DOI: 10.1016/j.antiviral.2024.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Nipah virus (NiV) causes near-annual outbreaks of fatal encephalitis and respiratory disease in South Asia with a high mortality rate (∼70%). Since there are no approved therapeutics for NiV disease in humans, the WHO has designated NiV and henipaviral diseases priority pathogens for research and development. We generated a new recombinant green fluorescent reporter NiV of the circulating Bangladesh genotype (rNiV-B-ZsG) and optimized it alongside our previously generated Malaysian genotype reporter counterpart (rNiV-M-ZsG) for antiviral screening in primary-like human respiratory cell types. Validating our platform for rNiV-B-ZsG with a synthetic compound library directed against viral RNA-dependent RNA polymerases, we identified a hit compound and confirmed its sub-micromolar activity against wild-type NiV, green fluorescent reporter, and the newly constructed bioluminescent red fluorescent double reporter (rNiV-B-BREP) NiV. We furthermore demonstrated that rNiV-B-ZsG and rNiV-B-BREP viruses showed pathogenicity comparable to wild-type NiV-B in the Syrian golden hamster model of disease, supporting additional use of these tools for both pathogenesis and advanced pre-clinical studies in vivo.
Collapse
Affiliation(s)
- Michael K Lo
- Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Shilpi Jain
- Emory National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Katherine A Davies
- Centers for Disease Control and Prevention, Atlanta, GA, USA; U.S. Department of Agriculture, Agricultural Research Service, Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | | | - Stephen R Welch
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Anne L Hotard
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Troy O'Neal
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike Flint
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Huiwang Ai
- University of Virginia, School of Medicine, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
3
|
Kainulainen MH, Harmon JR, Whitesell AN, Bergeron É, Karaaslan E, Cossaboom CM, Malenfant JH, Kofman A, Montgomery JM, Choi MJ, Albariño CG, Spiropoulou CF. Recombinant Sudan virus and evaluation of humoral cross-reactivity between Ebola and Sudan virus glycoproteins after infection or rVSV-ΔG-ZEBOV-GP vaccination. Emerg Microbes Infect 2023; 12:2265660. [PMID: 37787119 PMCID: PMC10623891 DOI: 10.1080/22221751.2023.2265660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Ebola disease outbreaks are major public health events because of human-to-human transmission and high mortality. These outbreaks are most often caused by Ebola virus, but at least three related viruses can also cause the disease. In 2022, Sudan virus re-emerged causing more than 160 confirmed and probable cases. This report describes generation of a recombinant Sudan virus and demonstrates its utility by quantifying antibody cross-reactivity between Ebola and Sudan virus glycoproteins after human infection or vaccination with a licensed Ebola virus vaccine.
Collapse
Affiliation(s)
- Markus H. Kainulainen
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amy N. Whitesell
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Caitlin M. Cossaboom
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jason H. Malenfant
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aaron Kofman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary J. Choi
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César G. Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
4
|
Davies KA, Welch SR, Jain S, Sorvillo TE, Coleman-McCray JD, Montgomery JM, Spiropoulou CF, Albariño C, Spengler JR. Fluorescent and Bioluminescent Reporter Mouse-Adapted Ebola Viruses Maintain Pathogenicity and Can Be Visualized in Vivo. J Infect Dis 2023; 228:S536-S547. [PMID: 37145895 PMCID: PMC11014640 DOI: 10.1093/infdis/jiad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA) EBOVs, including 1 based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 73% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using handheld blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models.
Collapse
Affiliation(s)
- Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - César Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
5
|
McMillan RE, Lo MK, Zhang XQ, Beadle JR, Valiaeva N, Garretson AF, Clark AE, Freshman JE, Murphy J, Montgomery JM, Spiropoulou CF, Schooley RT, Hostetler KY, Carlin AF. Enhanced broad spectrum in vitro antiviral efficacy of 3-F-4-MeO-Bn, 3-CN, and 4-CN derivatives of lipid remdesivir nucleoside monophosphate prodrugs. Antiviral Res 2023; 219:105718. [PMID: 37758067 PMCID: PMC10790242 DOI: 10.1016/j.antiviral.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Broad spectrum oral antivirals are urgently needed for the early treatment of many RNA viruses of clinical concern. We previously described the synthesis of 1-O-octadecyl-2-O-benzyl-glycero-3-phospho-RVn (V2043), an orally bioavailable lipid prodrug of remdesivir nucleoside (RVn, GS-441524) with broad spectrum antiviral activity against viruses with pandemic potential. Here we compared the relative activity of V2043 with new RVn lipid prodrugs containing sn-1 alkyl ether or sn-2 glycerol modifications. We found that 3-F-4-MeO-Bn, 3-CN-Bn, and 4-CN-Bn sn-2 glycerol modifications improved antiviral activity compared to V2043 when tested in vitro against clinically important RNA viruses from 5 virus families. These results support the continued development of V2043 and sn-2 glycerol modified RVn lipid prodrugs for the treatment of a broad range of RNA viruses for which there are limited therapies.
Collapse
Affiliation(s)
- Rachel E McMillan
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, CA, USA
| | - Xing-Quan Zhang
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - James R Beadle
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Nadejda Valiaeva
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Aaron F Garretson
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Alex E Clark
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jon E Freshman
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Joyce Murphy
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, CA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Department of Health and Human Services, Atlanta, CA, USA
| | - Robert T Schooley
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Karl Y Hostetler
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Aaron F Carlin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA; Department of Pathology, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
6
|
Jain S, Shrivastava-Ranjan P, Flint M, Montgomery JM, Spiropoulou CF, Albariño CG. Development of reverse genetic tools to study Chapare and Machupo viruses. Virology 2023; 588:109888. [PMID: 37774602 PMCID: PMC11539271 DOI: 10.1016/j.virol.2023.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Arenaviruses are highly pathogenic viruses that pose a serious public health threat. Chapare virus (CHAV) and Machupo virus (MACV), two New World arenaviruses, cause hemorrhagic fevers with case fatality rates of up to 45%. Research on therapeutic drug targets and vaccines for these viruses is limited because biosafety level 4 containment is required for handling them. In this study, we developed reverse genetics systems, including minigenomes and recombinant viruses, that will facilitate the study of these pathogens. The minigenome system is based on the S segment of CHAV or MACV genomes expressing the fluorescent reporter gene ZsGreen (ZsG). We also generated recombinant CHAV and MACV with and without the ZsG reporter gene. As a proof-of-concept study, we used both minigenomes and recombinant viruses to test the inhibitory effects of previously reported antiviral compounds. The new reverse genetics system described here will facilitate future therapeutic studies for these two life-threatening arenaviruses.
Collapse
Affiliation(s)
- Shilpi Jain
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
7
|
Heiden B, Mühlberger E, Lennon CW, Hume AJ. Labeling Ebola Virus with a Self-Splicing Fluorescent Reporter. Microorganisms 2022; 10:2110. [PMID: 36363701 PMCID: PMC9696229 DOI: 10.3390/microorganisms10112110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 07/21/2023] Open
Abstract
Inteins (intervening proteins) are polypeptides that interrupt the sequence of other proteins and remove themselves through protein splicing. In this intein-catalyzed reaction, the two peptide bonds surrounding the intein are rearranged to release the intein from the flanking protein sequences, termed N- and C-exteins, which are concurrently joined by a peptide bond. Because of this unique functionality, inteins have proven exceptionally useful in protein engineering. Previous work has demonstrated that heterologous proteins can be inserted within an intein, with both the intein and inserted protein retaining function, allowing for intein-containing genes to coexpress additional coding sequences. Here, we show that a fluorescent protein (ZsGreen) can be inserted within the Pyrococcus horikoshii RadA intein, with the hybrid protein (ZsG-Int) maintaining fluorescence and splicing capability. We used this system to create a recombinant Ebola virus expressing a fluorescent protein. We first tested multiple potential insertion sites for ZsG-Int within individual Ebola virus proteins, identifying a site within the VP30 gene that facilitated efficient intein splicing in mammalian cells while also preserving VP30 function. Next, we successfully rescued a virus containing the ZsG-Int-VP30 fusion protein, which displayed fluorescence in the infected cells. We thus report a new intein-based application for adding reporters to systems without the need to add additional genes. Further, this work highlights a novel reporter design, whereby the reporter is only made if the protein of interest is translated and does not remain fused to the protein of interest.
Collapse
Affiliation(s)
- Baylee Heiden
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | | | - Adam J. Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA 02118, USA
| |
Collapse
|
8
|
Vanmechelen B, Stroobants J, Chiu W, Naesens L, Schepers J, Vermeire K, Maes P. Development and optimization of biologically contained Marburg virus for high-throughput antiviral screening. Antiviral Res 2022; 207:105426. [DOI: 10.1016/j.antiviral.2022.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
9
|
Exploring inactivation of SARS-CoV-2, MERS-CoV, Ebola, Lassa, and Nipah viruses on N95 and KN95 respirator material using photoactivated methylene blue to enable reuse. Am J Infect Control 2022; 50:863-870. [PMID: 35908824 PMCID: PMC9329093 DOI: 10.1016/j.ajic.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
Abstract
Background The COVID-19 pandemic resulted in a worldwide shortage of N95 respirators, prompting the development of decontamination methods to enable limited reuse. Countries lacking reliable supply chains would also benefit from the ability to safely reuse PPE. Methylene blue (MB) is a light-activated dye with demonstrated antimicrobial activity used to sterilize blood plasma. Decontamination of respirators using photoactivated MB requires no specialized equipment, making it attractive for use in the field during outbreaks. Methods We examined decontamination of N95 and KN95 respirators using photoactivated MB and 3 variants of SARS-CoV-2, the virus that causes COVID-19; and 4 World Health Organization priority pathogens: Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Lassa virus. Virus inactivation by pretreating respirator material was also tested. Results Photoactivated MB inactivated all tested viruses on respirator material, albeit with varying efficiency. Virus applied to respirator material pre-treated with MB was also inactivated, thus MB pretreatment may potentially protect respirator wearers from virus exposure in real-time. Conclusions These results demonstrate that photoactivated MB represents a cost-effective, rapid, and widely deployable method to decontaminate N95 respirators for reuse during supply shortages.
Collapse
|
10
|
Mellors J, Tipton T, Fehling SK, Akoi Bore J, Koundouno FR, Hall Y, Hudson J, Alexander F, Longet S, Taylor S, Gorringe A, Magassouba N, Konde MK, Hiscox J, Strecker T, Carroll M. Complement-Mediated Neutralisation Identified in Ebola Virus Disease Survivor Plasma: Implications for Protection and Pathogenesis. Front Immunol 2022; 13:857481. [PMID: 35493467 PMCID: PMC9039621 DOI: 10.3389/fimmu.2022.857481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The 2013-2016 Ebola virus (EBOV) epidemic in West Africa was unprecedented in case numbers and fatalities, and sporadic outbreaks continue to arise. Antibodies to the EBOV glycoprotein (GP) are strongly associated with survival and their use in immunotherapy is often initially based on their performance in neutralisation assays. Other immune effector functions also contribute to EBOV protection but are more complex to measure. Their interactions with the complement system in particular are comparatively under-researched and commonly excluded from cellular immunoassays. Using EBOV convalescent plasma samples from the 2013-2016 epidemic, we investigated antibody and complement-mediated neutralisation and how these interactions can influence immunity in response to EBOV-GP and its secreted form (EBOV-sGP). We defined two cohorts: one with low-neutralising titres in relation to EBOV-GP IgG titres (LN cohort) and the other with a direct linear relationship between neutralisation and EBOV-GP IgG titres (N cohort). Using flow cytometry antibody-dependent complement deposition (ADCD) assays, we found that the LN cohort was equally efficient at mediating ADCD in response to the EBOV-GP but was significantly lower in response to the EBOV-sGP, compared to the N cohort. Using wild-type EBOV neutralisation assays with a cohort of the LN plasma, we observed a significant increase in neutralisation associated with the addition of pooled human plasma as a source of complement. Flow cytometry ADCD was also applied using the GP of the highly virulent Sudan virus (SUDV) of the Sudan ebolavirus species. There are no licensed vaccines or therapeutics against SUDV and it overlaps in endemicity with EBOV. We found that the LN plasma was significantly less efficient at cross-reacting and mediating ADCD. Overall, we found a differential response in ADCD between LN and N plasma in response to various Ebolavirus glycoproteins, and that these interactions could significantly improve EBOV neutralisation for selected LN plasma samples. Preservation of the complement system in immunoassays could augment our understanding of neutralisation and thus protection against infection.
Collapse
Affiliation(s)
- Jack Mellors
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Joseph Akoi Bore
- Center for Training and Research on Priority Diseases including Malaria in Guinea, Conakry, Guinea.,Department of Research, Ministry of Health Guinea, Conakry, Guinea
| | - Fara Raymond Koundouno
- Department of Research, Ministry of Health Guinea, Conakry, Guinea.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Yper Hall
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Jacob Hudson
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom.,School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Surrey, United Kingdom
| | - Frances Alexander
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Stephanie Longet
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Taylor
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Andrew Gorringe
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - N'Faly Magassouba
- Viral Haemorrhagic Fever Reference Department, Projet Laboratoire Fièvres Hémorragiques, Conakry, Guinea
| | - Mandy Kader Konde
- Center for Training and Research on Priority Diseases including Malaria in Guinea, Conakry, Guinea
| | - Julian Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Miles Carroll
- Wellcome Centre for Human Genetics and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Hume AJ, Heiden B, Olejnik J, Suder EL, Ross S, Scoon WA, Bullitt E, Ericsson M, White MR, Turcinovic J, Thao TTN, Hekman RM, Kaserman JE, Huang J, Alysandratos KD, Toth GE, Jakab F, Kotton DN, Wilson AA, Emili A, Thiel V, Connor JH, Kemenesi G, Cifuentes D, Mühlberger E. Recombinant Lloviu virus as a tool to study viral replication and host responses. PLoS Pathog 2022; 18:e1010268. [PMID: 35120176 PMCID: PMC8849519 DOI: 10.1371/journal.ppat.1010268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/16/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2023] Open
Abstract
Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness. Due to increasing utilization of high-throughput sequencing technologies, RNA sequences of many unknown viruses have been discovered in bats and other animal species. Research on the pathogenic potential of these viruses is hampered by incomplete viral genome sequences and difficulties in isolating infectious virus from the animal hosts. One example of these potentially zoonotic pathogens is Lloviu virus (LLOV), a filovirus which is closely related to Ebola virus. Here we applied molecular virological approaches, including minigenome assays, to complement the incomplete LLOV genome ends with sequences from related viruses and identify cis-acting elements required for LLOV replication and transcription that were missing in the published LLOV sequence. The resulting full-length clones were used to generate infectious recombinant LLOV. We used this virus for electron microscopic analyses, infection studies in human cells, host response analysis, and antiviral drug testing. Our results provide new insights into the pathogenic potential of LLOV and delineate a roadmap for studying uncultured viruses.
Collapse
Affiliation(s)
- Adam J. Hume
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
- * E-mail: (AJH); (EM)
| | - Baylee Heiden
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Ellen L. Suder
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Stephen Ross
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Whitney A. Scoon
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Mitchell R. White
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Jacquelyn Turcinovic
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
- Program in Bioinformatics, Boston University; Boston, Massachusetts, United States of America
| | - Tran T. N. Thao
- Institute of Virology and Immunology (IVI); Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern; Bern, Switzerland
| | - Ryan M. Hekman
- Department of Biochemistry, Boston University School of Medicine; Boston, Massachusetts, United States of America
- Center for Network Systems Biology, Boston University; Boston, Massachusetts, United States of America
| | - Joseph E. Kaserman
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Gabor E. Toth
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs; Pécs, Hungary
| | - Ferenc Jakab
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs; Pécs, Hungary
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center; Boston, Massachusetts, United States of America
| | - Andrew A. Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine; Boston, Massachusetts, United States of America
- Center for Network Systems Biology, Boston University; Boston, Massachusetts, United States of America
- Department of Biology, Boston University; Boston, Massachusetts, United States of America
| | - Volker Thiel
- Institute of Virology and Immunology (IVI); Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern; Bern, Switzerland
| | - John H. Connor
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Gabor Kemenesi
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs; Pécs, Hungary
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
- * E-mail: (AJH); (EM)
| |
Collapse
|
12
|
Marburg Virus Persistence on Fruit as a Plausible Route of Bat to Primate Filovirus Transmission. Viruses 2021; 13:v13122394. [PMID: 34960663 PMCID: PMC8708721 DOI: 10.3390/v13122394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Marburg virus (MARV), the causative agent of Marburg virus disease, emerges sporadically in sub-Saharan Africa and is often fatal in humas. The natural reservoir for this zoonotic virus is the frugivorous Egyptian rousette bat (Rousettus aegyptiacus) that when infected, sheds virus in the highest amounts in oral secretions and urine. Being fruit bats, these animals forage nightly for ripened fruit throughout the year, including those types often preferred by humans. During feeding, they continually discard partially eaten fruit on the ground that could then be consumed by other Marburg virus susceptible animals or humans. In this study, using qRT-PCR and virus isolation, we tested fruit discarded by Egyptian rousette bats experimentally infected with a natural bat isolate of Marburg virus. We then separately tested viral persistence on fruit varieties commonly cultivated in sub-Saharan Africa using a recombinant Marburg virus expressing the fluorescent ZsGreen1. Marburg virus RNA was repeatedly detected on fruit in the food bowls of the infected bats and viable MARV was recovered from inoculated fruit for up to 6 h.
Collapse
|
13
|
The Methanolic Extract of Perilla frutescens Robustly Restricts Ebola Virus Glycoprotein-Mediated Entry. Viruses 2021; 13:v13091793. [PMID: 34578374 PMCID: PMC8473196 DOI: 10.3390/v13091793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV), one of the most infectious human viruses and a leading cause of viral hemorrhagic fever, imposes a potential public health threat with several recent outbreaks. Despite the difficulties associated with working with this pathogen in biosafety level-4 containment, a protective vaccine and antiviral therapeutic were recently approved. However, the high mortality rate of EBOV infection underscores the necessity to continuously identify novel antiviral strategies to help expand the scope of prophylaxis/therapeutic management against future outbreaks. This includes identifying antiviral agents that target EBOV entry, which could improve the management of EBOV infection. Herein, using EBOV glycoprotein (GP)-pseudotyped particles, we screened a panel of natural medicinal extracts, and identified the methanolic extract of Perilla frutescens (PFME) as a robust inhibitor of EBOV entry. We show that PFME dose-dependently impeded EBOV GP-mediated infection at non-cytotoxic concentrations, and exerted the most significant antiviral activity when both the extract and the pseudoparticles are concurrently present on the host cells. Specifically, we demonstrate that PFME could block viral attachment and neutralize the cell-free viral particles. Our results, therefore, identified PFME as a potent inhibitor of EBOV entry, which merits further evaluation for development as a therapeutic strategy against EBOV infection.
Collapse
|
14
|
Lo MK, Shrivastava-Ranjan P, Chatterjee P, Flint M, Beadle JR, Valiaeva N, Schooley RT, Hostetler KY, Montgomery JM, Spiropoulou C. Broad-spectrum in vitro antiviral activity of ODBG-P-RVn: an orally-available, lipid-modified monophosphate prodrug of remdesivir parent nucleoside (GS-441524). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34401879 PMCID: PMC8366795 DOI: 10.1101/2021.08.06.455494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The intravenous administration of remdesivir for COVID-19 confines its utility to hospitalized patients. We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified monophosphate prodrug of the remdesivir parent nucleoside (GS-441524) against viruses that cause diseases of human public health concern, including SARS-CoV-2. ODBG-P-RVn showed 20-fold greater antiviral activity than GS-441524 and had near-equivalent activity to remdesivir in primary-like human small airway epithelial cells. Our results warrant investigation of ODBG-P-RVn efficacy in vivo.
Collapse
|
15
|
Abstract
Ebola virus is among the most dangerous viral pathogens, with a case fatality rate of up to 90%. Since 2013, the two largest and most complex Ebola outbreaks in West Africa have revealed the lack of investigation on this notorious virus. Ebola virus (EBOV) is a highly pathogenic negative-stranded RNA virus that has caused several deadly endemics in the past decades. EBOV reverse genetics systems are available for studying live viruses under biosafety level 4 (BSL-4) or subviral particles under BSL-2 conditions. However, these systems all require cotransfection of multiple plasmids expressing viral genome and viral proteins essential for EBOV replication, which is technically challenging and unable to naturally mimic virus propagation using the subviral particle. Here, we established a new EBOV reverse genetics system only requiring transfection of a single viral RNA genome into an engineered cell line that stably expresses viral nucleoprotein (NP), viral protein 35 (VP35), VP30, and large (L) proteins and has been fine-tuned for its superior permissiveness for EBOV replication. Using this system, subviral particles expressing viral VP40, glycoprotein (GP), and VP24 could be produced and continuously propagated and eventually infect the entire cell population. We demonstrated the authentic response of the subviral system to antivirals and uncovered that the VP35 amount is critical for optimal virus replication. Furthermore, we showed that fully infectious virions can be efficiently rescued by delivering the full-length EBOV genome into the same supporting cell, and the efficiency is not affected by genome polarity or virus variant specificity. In summary, our work provides a new tool for studying EBOV under different biosafety levels. IMPORTANCE Ebola virus is among the most dangerous viral pathogens, with a case fatality rate of up to 90%. Since 2013, the two largest and most complex Ebola outbreaks in Africa have revealed the lack of investigation on this notorious virus. A reverse genetics system is an important tool for studying viruses by producing mutant viruses or generating safer and convenient model systems. Here, we developed an EBOV life cycle modeling system in which subviral particles can spontaneously propagate in cell culture. In addition, this system can be employed to rescue infectious virions of homologous or heterologous EBOV isolates using either sense or antisense viral RNA genomes. In summary, we developed a new tool for EBOV research.
Collapse
|
16
|
IgY antibodies against Ebola virus possess post-exposure protection in a murine pseudovirus challenge model and excellent thermostability. PLoS Negl Trop Dis 2021; 15:e0008403. [PMID: 33711011 PMCID: PMC7990235 DOI: 10.1371/journal.pntd.0008403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/24/2021] [Accepted: 02/21/2021] [Indexed: 01/07/2023] Open
Abstract
Ebola virus (EBOV) is one of the most virulent pathogens that causes hemorrhagic fever and displays high mortality rates and low prognosis rates in both humans and nonhuman primates. The post-exposure antibody therapies to prevent EBOV infection are considered effective as of yet. However, owing to the poor thermal stability of mammalian antibodies, their application in the tropics has remained limited. Therefore, a thermostable therapeutic antibody against EBOV was developed modelled on the poultry(chicken) immunoglobulin Y (IgY). The IgY antibodies retaining their neutralising activity at 25°C for one year, displayed excellent thermal stability, opposed to conventional polyclonal antibodies (pAbs) or monoclonal antibodies (mAbs). Laying hens were immunised with a variety of EBOV vaccine candidates and it was confirmed that VSVΔG/EBOVGP encoding the EBOV glycoprotein could induce high titer neutralising antibodies against EBOV. The therapeutic efficacy of immune IgY antibodies in vivo was evaluated in the newborn Balb/c mice who have been challenged with the VSVΔG/EBOVGP model. Mice that have been challenged with a lethal dose of the pseudovirus were treated 2 or 24 h post-infection with different doses of anti-EBOV IgY. The group receiving a high dose of 106 NAU/kg (neutralising antibody units/kilogram) showed complete protection with no symptoms of a disease, while the low-dose group was only partially protected. Conversely, all mice receiving naive IgY died within 10 days. In conclusion, the anti-EBOV IgY exhibits excellent thermostability and protective efficacy. Anti-EBOV IgY shows a lot of promise in entering the realm of efficient Ebola virus treatment regimens. Despite the amount of efficient Ebola virus therapeutic antibodies reported in recent years, their application in tropical endemic areas has remained limited due to the low thermal stability of mammalian antibodies. A highly thermostable therapeutic polyclonal antibody against EBOV was developed based on chicken immunoglobulin Y (IgY). The EBOV specific IgY antibodies displayed excellent thermal stability, retaining their neutralising activity at 25°C for one year. The newborn mice receiving the passive transfer of IgY achieved complete protection against a lethal dose of virus challenge proving that the anti-EBOV IgY provides a promising recourse to solve some of the current clinical application hindrances of Ebola antibody-based treatments in Africa due to thermal stability.
Collapse
|
17
|
Guito JC, Prescott JB, Arnold CE, Amman BR, Schuh AJ, Spengler JR, Sealy TK, Harmon JR, Coleman-McCray JD, Kulcsar KA, Nagle ER, Kumar R, Palacios GF, Sanchez-Lockhart M, Towner JS. Asymptomatic Infection of Marburg Virus Reservoir Bats Is Explained by a Strategy of Immunoprotective Disease Tolerance. Curr Biol 2020; 31:257-270.e5. [PMID: 33157026 DOI: 10.1016/j.cub.2020.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022]
Abstract
Marburg virus (MARV) is among the most virulent pathogens of primates, including humans. Contributors to severe MARV disease include immune response suppression and inflammatory gene dysregulation ("cytokine storm"), leading to systemic damage and often death. Conversely, MARV causes little to no clinical disease in its reservoir host, the Egyptian rousette bat (ERB). Previous genomic and in vitro data suggest that a tolerant ERB immune response may underlie MARV avirulence, but no significant examination of this response in vivo yet exists. Here, using colony-bred ERBs inoculated with a bat isolate of MARV, we use species-specific antibodies and an immune gene probe array (NanoString) to temporally characterize the transcriptional host response at sites of MARV replication relevant to primate pathogenesis and immunity, including CD14+ monocytes/macrophages, critical immune response mediators, primary MARV targets, and skin at the inoculation site, where highest viral loads and initial engagement of antiviral defenses are expected. Our analysis shows that ERBs upregulate canonical antiviral genes typical of mammalian systems, such as ISG15, IFIT1, and OAS3, yet demonstrate a remarkable lack of significant induction of proinflammatory genes classically implicated in primate filoviral pathogenesis, including CCL8, FAS, and IL6. Together, these findings offer the first in vivo functional evidence for disease tolerance as an immunological mechanism by which the bat reservoir asymptomatically hosts MARV. More broadly, these data highlight factors determining disparate outcomes between reservoir and spillover hosts and defensive strategies likely utilized by bat hosts of other emerging pathogens, knowledge that may guide development of effective antiviral therapies.
Collapse
Affiliation(s)
- Jonathan C Guito
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joseph B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Catherine E Arnold
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Brian R Amman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Amy J Schuh
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Tara K Sealy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kirsten A Kulcsar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elyse R Nagle
- Center for Genome Sciences, USAMRIID, Fort Detrick, MD 21702, USA
| | - Raina Kumar
- Center for Genome Sciences, USAMRIID, Fort Detrick, MD 21702, USA
| | | | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, USAMRIID, Fort Detrick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Lo MK, Albariño CG, Perry JK, Chang S, Tchesnokov EP, Guerrero L, Chakrabarti A, Shrivastava-Ranjan P, Chatterjee P, McMullan LK, Martin R, Jordan R, Götte M, Montgomery JM, Nichol ST, Flint M, Porter D, Spiropoulou CF. Remdesivir targets a structurally analogous region of the Ebola virus and SARS-CoV-2 polymerases. Proc Natl Acad Sci U S A 2020; 117:26946-26954. [PMID: 33028676 PMCID: PMC7604432 DOI: 10.1073/pnas.2012294117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted.
Collapse
Affiliation(s)
- Michael K Lo
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329;
| | - César G Albariño
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | | | | | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lisa Guerrero
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Ayan Chakrabarti
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Payel Chatterjee
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Laura K McMullan
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | | | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Joel M Montgomery
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Stuart T Nichol
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Mike Flint
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329
| | | | - Christina F Spiropoulou
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA 30329;
| |
Collapse
|
19
|
Sandoval-Jaime C. Astrovirus reverse genetics systems, a story of success. Curr Opin Virol 2020; 44:57-65. [PMID: 32683123 DOI: 10.1016/j.coviro.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Astroviruses are one of the main causes of gastroenteritis of medical and veterinary relevance worldwide. Recently, these viruses were associated with neurological disease in mammals, including humans. Reverse genetics systems are the most powerful tool to improve our understanding of the virus replication, and eventually to develop safe vaccine candidates. In the present review, it is summarized the current knowledge on the different strategies used to develop reverse genetics systems for mamastroviruses and avastroviruses, and some of the biological answers that have provided are discussed.
Collapse
Affiliation(s)
- Carlos Sandoval-Jaime
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
20
|
Schuh AJ, Amman BR, Sealy TK, Kainulainen MH, Chakrabarti AK, Guerrero LW, Nichol ST, Albarino CG, Towner JS. Antibody-Mediated Virus Neutralization Is Not a Universal Mechanism of Marburg, Ebola, or Sosuga Virus Clearance in Egyptian Rousette Bats. J Infect Dis 2020; 219:1716-1721. [PMID: 30590775 DOI: 10.1093/infdis/jiy733] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 11/14/2022] Open
Abstract
Although bats are increasingly being recognized as natural reservoir hosts of emerging zoonotic viruses, little is known about how they control and clear virus infection in the absence of clinical disease. Here, we test >50 convalescent sera from Egyptian rousette bats (ERBs) experimentally primed or prime-boosted with Marburg virus, Ebola virus, or Sosuga virus for the presence of virus-specific neutralizing antibodies, using infectious reporter viruses. After serum neutralization testing, we conclude that antibody-mediated virus neutralization does not contribute significantly to the control and clearance of Marburg virus, Ebola virus, or Sosuga virus infection in ERBs.
Collapse
Affiliation(s)
- Amy J Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta.,Commissioned Corps, US Public Health Service, Rockville, Maryland
| | - Brian R Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta
| | - Tara K Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta
| | - Markus H Kainulainen
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta
| | - Ayan K Chakrabarti
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta
| | - Lisa W Guerrero
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta
| | - Cesar G Albarino
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
21
|
Marzi A, Chadinah S, Haddock E, Feldmann F, Arndt N, Martellaro C, Scott DP, Hanley PW, Nyenswah TG, Sow S, Massaquoi M, Feldmann H. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models. Cell Rep 2019; 23:1806-1816. [PMID: 29742435 DOI: 10.1016/j.celrep.2018.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/01/2017] [Accepted: 04/04/2018] [Indexed: 10/16/2022] Open
Abstract
Ebola virus (EBOV), isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Spencer Chadinah
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Nicolette Arndt
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | | - Samba Sow
- Centre des Operations d'Urgence, Centre pour le Développement des Vaccins (CVD-Mali), Centre National d'Appui à la lutte contre la Maladie, Ministère de la Sante et de l'Hygiène Publique, Bamako, Mali
| | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
22
|
Wong G, Leung A, He S, Cao W, De La Vega MA, Griffin BD, Soule G, Kobinger GP, Kobasa D, Qiu X. The Makona Variant of Ebola Virus Is Highly Lethal to Immunocompromised Mice and Immunocompetent Ferrets. J Infect Dis 2019; 218:S466-S470. [PMID: 29878131 DOI: 10.1093/infdis/jiy141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During 2013-2016, a novel isolate of Ebola virus (EBOV-Makona) caused an epidemic in West Africa. The virus was distinct from known EBOV strains (EBOV-Kikwit and EBOV-Mayinga), which were responsible for previous outbreaks in Central Africa. To investigate the pathogenicity of EBOV-Makona, we engineered and rescued an early isolate (H.sapiens-wt/GIN/2014/Makona-Gueckedou-C07, called rgEBOV-C07) using an updated reverse-genetics system. rgEBOV-C07 was found to be highly pathogenic in both the knockout mouse and ferret models, with median lethal dose values of 0.078 and 0.015 plaque-forming units, respectively. Therefore, these animals are appropriate for screening potential countermeasures against EBOV-Makona without the need for species adaptation.
Collapse
Affiliation(s)
- Gary Wong
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba.,Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, China.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anders Leung
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Shihua He
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Wenguang Cao
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marc-Antoine De La Vega
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec City, Canada
| | - Bryan D Griffin
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Geoff Soule
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec City, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
23
|
Probing the Effects of Pyrimidine Functional Group Switches on Acyclic Fleximer Analogues for Antiviral Activity. Molecules 2019; 24:molecules24173184. [PMID: 31480658 PMCID: PMC6749450 DOI: 10.3390/molecules24173184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/29/2023] Open
Abstract
Due to their ability to inhibit viral DNA or RNA replication, nucleoside analogues have been used for decades as potent antiviral therapeutics. However, one of the major limitations of nucleoside analogues is the development of antiviral resistance. In that regard, flexible nucleoside analogues known as “fleximers” have garnered attention over the years due to their ability to survey different amino acids in enzyme binding sites, thus overcoming the potential development of antiviral resistance. Acyclic fleximers have previously demonstrated antiviral activity against numerous viruses including Middle East Respiratory Syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), and, most recently, flaviviruses such as Dengue (DENV) and Yellow Fever Virus (YFV). Due to these interesting results, a Structure Activity Relationship (SAR) study was pursued in order to analyze the effect of the pyrimidine functional group and acyl protecting group on antiviral activity, cytotoxicity, and conformation. The results of those studies are presented herein.
Collapse
|
24
|
McMullan LK, Flint M, Chakrabarti A, Guerrero L, Lo MK, Porter D, Nichol ST, Spiropoulou CF, Albariño C. Characterisation of infectious Ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: a phylogenetic and in vitro analysis. THE LANCET. INFECTIOUS DISEASES 2019; 19:1023-1032. [PMID: 31300330 PMCID: PMC11144275 DOI: 10.1016/s1473-3099(19)30291-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The ongoing Ebola virus outbreak in the Ituri and North Kivu Provinces of the Democratic Republic of the Congo, which began in July, 2018, is the second largest ever recorded. Despite civil unrest, outbreak control measures and the administration of experimental therapies and a vaccine have been initiated. The aim of this study was to test the efficacy of candidate therapies and diagnostic tests with the outbreak strain Ituri Ebola virus. Lacking a virus isolate from this outbreak, a recombinant Ituri Ebola virus was compared with a similarly engineered Makona virus from the 2013-16 outbreak. METHODS Using Ebola virus sequences provided by organisations in DR Congo and a reverse genetics system, we generated an authentic Ebola virus from the ongoing outbreak in Ituri and North Kivu provinces. To relate this virus to other Ebola viruses in DR Congo, we did a phylogenetic analysis of representative complete Ebola virus genome sequences from previous outbreaks. We evaluated experimental therapies being tested in clinical trials in DR Congo, including remdesivir and ZMapp monoclonal antibodies, for their ability to inhibit the growth of infectious Ituri Ebola virus in cell culture. We also tested diagnostic assays for detection of the Ituri Ebola virus sequence. FINDINGS The phylogenetic analysis of whole-genome sequences from each Ebola virus outbreak suggests there are at least two Ebola virus strains in DR Congo, which have independently crossed into the human population. The Ituri Ebola strain initially grew slower than the Makona strain, yet reached similar mean yields of 3 × 107 50% tissue culture infectious dose by 72 h infection in Huh-7 cells. Ituri Ebola virus was similar to Makona in its susceptibility to inhibition by remdesivir and to neutralisation by monoclonal antibodies from ZMapp and other monoclonal antibodies. Remdesivir inhibited Ituri Ebola virus at a 50% effective concentration (EC50) of 12nM (with a selectivity index of 303) and Makona Ebola virus at 13nM (with a selectivity index of 279). The Zmapp monoclonal antibodies 2G4 and 4G7 neutralised Ituri Ebola virus with a mean EC50 of 0·24 μg/mL and 0·48 μg/mL, and Makona Ebola virus with a mean EC50 of 0·45 μg/mL and 0·2 μg/mL. The Xpert Ebola and US Centers for Disease Control and Prevention real-time RT-qPCR diagnostic assays detected Ituri and Makona Ebola virus sequences with similar sensitivities and efficiencies, despite primer site binding mismatches in the Ituri Ebola virus. INTERPRETATION Our findings provide a rationale for the continued testing of investigational therapies, confirm the effectiveness of the diagnostic assays used in the region, and establish a paradigm for the use of reverse genetics to inform response activities in an outbreak. FUNDING US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ayan Chakrabarti
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa Guerrero
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
25
|
Wendt L, Bostedt L, Hoenen T, Groseth A. High-throughput screening for negative-stranded hemorrhagic fever viruses using reverse genetics. Antiviral Res 2019; 170:104569. [PMID: 31356830 DOI: 10.1016/j.antiviral.2019.104569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Viral hemorrhagic fevers (VHFs) cause thousands of fatalities every year, but the treatment options for their management remain very limited. In particular, the development of therapeutic interventions is restricted by the lack of commercial viability of drugs targeting individual VHF agents. This makes approaches like drug repurposing and/or the identification of broad range therapies (i.e. those directed at host responses or common proviral factors) highly attractive. However, the identification of candidates for such antiviral repurposing or of host factors/pathways important for the virus life cycle is reliant on high-throughput screening (HTS). Recently, such screening work has been increasingly facilitated by the availability of reverse genetics-based approaches, including tools such as full-length clone (FLC) systems to generate reporter-expressing viruses or various life cycle modelling (LCM) systems, many of which have been developed and/or greatly improved during the last years. In particular, since LCM systems are capable of modelling specific steps in the life cycle, they are a valuable tool for both targeted screening (i.e. for inhibitors of a specific pathway) and mechanism of action studies. This review seeks to summarize the currently available reverse genetics systems for negative-sense VHF causing viruses (i.e. arenaviruses, bunyaviruses and filoviruses), and to highlight the recent advancements made in applying these systems for HTS to identify either antivirals or new virus-host interactions that might hold promise for the development of future treatments for the infections caused by these deadly but neglected virus groups.
Collapse
Affiliation(s)
- Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Linus Bostedt
- Junior Research Group - Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| | - Allison Groseth
- Junior Research Group - Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| |
Collapse
|
26
|
Flint M, Chatterjee P, Lin DL, McMullan LK, Shrivastava-Ranjan P, Bergeron É, Lo MK, Welch SR, Nichol ST, Tai AW, Spiropoulou CF. A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus. Nat Commun 2019; 10:285. [PMID: 30655525 PMCID: PMC6336797 DOI: 10.1038/s41467-018-08135-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
There are no approved therapies for Ebola virus infection. Here, to find potential therapeutic targets, we perform a screen for genes essential for Ebola virus (EBOV) infection. We identify GNPTAB, which encodes the α and β subunits of N-acetylglucosamine-1-phosphate transferase. We show that EBOV infection of a GNPTAB knockout cell line is impaired, and that this is reversed by reconstituting GNPTAB expression. Fibroblasts from patients with mucolipidosis II, a disorder associated with mutations in GNPTAB, are refractory to EBOV, whereas cells from their healthy parents support infection. Impaired infection correlates with loss of the expression of cathepsin B, known to be essential for EBOV entry. GNPTAB activity is dependent upon proteolytic cleavage by the SKI-1/S1P protease. Inhibiting this protease with the small-molecule PF-429242 blocks EBOV entry and infection. Disruption of GNPTAB function may represent a strategy for a host-targeted therapy for EBOV. Genetic screens are important tools to identify host factors associated with viral infections. Here, Flint et al. perform a genome-wide CRISPR screen using infectious Ebola virus (EBOV) and show that the host transferase GNPTAB is required for EBOV infection and a potential target for antiviral therapies
Collapse
Affiliation(s)
- Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - David L Lin
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Andrew W Tai
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| |
Collapse
|
27
|
Albariño CG, Wiggleton Guerrero L, Chakrabarti AK, Nichol ST. Transcriptional analysis of viral mRNAs reveals common transcription patterns in cells infected by five different filoviruses. PLoS One 2018; 13:e0201827. [PMID: 30071116 PMCID: PMC6072132 DOI: 10.1371/journal.pone.0201827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022] Open
Abstract
Filoviruses are notorious viral pathogens responsible for high-consequence diseases in humans and non-human primates. Transcription of filovirus mRNA shares several common features with transcription in other non-segmented negative-strand viruses, including differential expression of genes located across the viral genome. Transcriptional patterns of Ebola virus (EBOV) and Marburg virus (MARV) have been previously described using traditional, laborious methods, such as northern blots and in vivo labeling of viral mRNAs. More recently, however, the availability of the next generation sequencing (NGS) technology has offered a more straightforward approach to assess transcriptional patterns. In this report, we analyzed the transcription patterns of four ebolaviruses—EBOV, Sudan (SUDV), Bundibugyo (BDBV), and Reston (RESTV) viruses—in two different cell lines using standard NGS library preparation and sequencing protocols. In agreement with previous reports mainly focused on EBOV and MARV, the remaining filoviruses used in this study also showed a consistent transcription pattern, with only minor variations between the different viruses. We have also analyzed the proportions of the three mRNAs transcribed from the GP gene, which are characteristic of the genus Ebolavirus and encode the glycoprotein (GP), the soluble GP (sGP), and the small soluble GP (ssGP). In addition, we used NGS methodology to analyze the transcription pattern of two previously described recombinant MARV. This analysis allowed us to correct our construction design, and to make an improved version of the original MARV expressing reporter genes.
Collapse
Affiliation(s)
- César G. Albariño
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | - Lisa Wiggleton Guerrero
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ayan K. Chakrabarti
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Stuart T. Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
28
|
Lo MK, Jordan PC, Stevens S, Tam Y, Deval J, Nichol ST, Spiropoulou CF. Susceptibility of paramyxoviruses and filoviruses to inhibition by 2'-monofluoro- and 2'-difluoro-4'-azidocytidine analogs. Antiviral Res 2018; 153:101-113. [PMID: 29601894 PMCID: PMC6066796 DOI: 10.1016/j.antiviral.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
Ebolaviruses, marburgviruses, and henipaviruses are zoonotic pathogens belonging to the Filoviridae and Paramyxoviridae families. They exemplify viruses that continue to spill over into the human population, causing outbreaks characterized by high mortality and significant clinical sequelae in survivors of infection. There are currently no approved small molecule therapeutics for use in humans against these viruses. In this study, we evaluated the antiviral activity of the nucleoside analog 4'-azidocytidine (4'N3-C, R1479) and its 2'-monofluoro- and 2'-difluoro-modified analogs (2'F-4'N3-C and 2'diF-4'N3-C) against representative paramyxoviruses (Nipah virus, Hendra virus, measles virus, and human parainfluenza virus 3) and filoviruses (Ebola virus, Sudan virus, and Ravn virus). We observed enhanced antiviral activity against paramyxoviruses with both 2'diF-4'N3-C and 2'F-4'N3-C compared to R1479. On the other hand, while R1479 and 2'diF-4'N3-C inhibited filoviruses similarly to paramyxoviruses, we observed 10-fold lower filovirus inhibition by 2'F-4'N3-C. To our knowledge, this is the first study to compare the susceptibility of paramyxoviruses and filoviruses to R1479 and its 2'-fluoro-modified analogs. The activity of these compounds against negative-strand RNA viruses endorses the development of 4'-modified nucleoside analogs as broad-spectrum therapeutics against zoonotic viruses of public health importance.
Collapse
Affiliation(s)
- Michael K Lo
- US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Paul C Jordan
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA
| | - Sarah Stevens
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA
| | - Yuen Tam
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA
| | - Jerome Deval
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, CA, USA
| | - Stuart T Nichol
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
29
|
Abstract
Ebolaviruses cause severe hemorrhagic fever with high case fatality rates. Despite recent progress, there is a continued need for the development of antivirals against these viruses. Reporter-expressing ebolaviruses, which can be generated using reverse genetics systems, are powerful tools for antiviral screening. While viruses expressing fluorescent reporters are amenable for this purpose and can be used for high-content imaging-type screens, as an alternative, luciferase-expressing reporter viruses have recently been developed and have the advantages of being extremely easy to use and having short assay times. Here we provide a detailed protocol for the use of such a luciferase-expressing reporter virus for antiviral screening in a 96-well format, with parallel assessment of cytotoxicity of the screened compounds.
Collapse
|
30
|
|
31
|
Dutta M, Robertson SJ, Okumura A, Scott DP, Chang J, Weiss JM, Sturdevant GL, Feldmann F, Haddock E, Chiramel AI, Ponia SS, Dougherty JD, Katze MG, Rasmussen AL, Best SM. A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection. Cell Rep 2017; 18:816-829. [PMID: 28099857 DOI: 10.1016/j.celrep.2016.12.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/11/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Abstract
The unprecedented 2013-2016 outbreak of Ebola virus (EBOV) resulted in over 11,300 human deaths. Host resistance to RNA viruses requires RIG-I-like receptor (RLR) signaling through the adaptor protein, mitochondrial antiviral signaling protein (MAVS), but the role of RLR-MAVS in orchestrating anti-EBOV responses in vivo is not known. Here we apply a systems approach to MAVS-/- mice infected with either wild-type or mouse-adapted EBOV. MAVS controlled EBOV replication through the expression of IFNα, regulation of inflammatory responses in the spleen, and prevention of cell death in the liver, with macrophages implicated as a major cell type influencing host resistance. A dominant role for RLR signaling in macrophages was confirmed following conditional MAVS deletion in LysM+ myeloid cells. These findings reveal tissue-specific MAVS-dependent transcriptional pathways associated with resistance to EBOV, and they demonstrate that EBOV adaptation to cause disease in mice involves changes in two distinct events, RLR-MAVS antagonism and suppression of RLR-independent IFN-I responses.
Collapse
Affiliation(s)
- Mukta Dutta
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 59105, USA
| | - Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Atsushi Okumura
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 59105, USA; Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Jean Chang
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 59105, USA
| | - Jeffrey M Weiss
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 59105, USA
| | - Gail L Sturdevant
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Elaine Haddock
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Sanket S Ponia
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Jonathan D Dougherty
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Michael G Katze
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 59105, USA
| | - Angela L Rasmussen
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 59105, USA; Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA.
| |
Collapse
|
32
|
Welch SR, Scholte FEM, Flint M, Chatterjee P, Nichol ST, Bergeron É, Spiropoulou CF. Identification of 2'-deoxy-2'-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antiviral Res 2017; 147:91-99. [PMID: 29024765 DOI: 10.1016/j.antiviral.2017.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 12/31/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne orthonairovirus, causes a severe hemorrhagic disease in humans (Crimean-Congo hemorrhagic fever, CCHF). Currently, no vaccines are approved to prevent CCHF; treatment is limited to supportive care and the use of ribavirin, the therapeutic benefits of which remain unclear. CCHF is part of WHO's priority list of infectious diseases warranting further research and development. To aid in the identification of new antiviral compounds, we generated a recombinant CCHFV expressing a reporter protein, allowing us to quantify virus inhibition by measuring the reduction in fluorescence in infected cells treated with candidate compounds. The screening assay was readily adaptable to high-throughput screening (HTS) of compounds using Huh7 cells, with a signal-to-noise ratio of 50:1, and Z'-factors > 0.6 in both 96- and 384-well formats. A screen of candidate nucleoside analog compounds identified 2'-deoxy-2'-fluorocytidine (EC50 = 61 ± 18 nM) as having 200 × the potency of ribavirin (EC50 = 12.5 ± 2.6 μM), as well as 17 × the potency of T-705 (favipiravir), another compound with reported anti-CCHFV activity (EC50 = 1.03 ± 0.16 μM). Furthermore, we also determined that 2'-deoxy-2'-fluorocytidine acts synergistically with T-705 to inhibit CCHFV replication without causing cytotoxicity. The incorporation of this reporter virus into the high-throughput screening assay described here will allow more rapid identification of effective therapeutic options to combat this emerging human pathogen.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| |
Collapse
|
33
|
Hotard AL, He B, Nichol ST, Spiropoulou CF, Lo MK. 4'-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antiviral Res 2017. [PMID: 28629988 DOI: 10.1016/j.antiviral.2017.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The henipaviruses Nipah virus and Hendra virus are highly pathogenic zoonotic paramyxoviruses which have caused fatal outbreaks of encephalitis and respiratory disease in humans. Despite the availability of a licensed equine Hendra virus vaccine and a neutralizing monoclonal antibody shown to be efficacious against henipavirus infections in non-human primates, there remains no approved therapeutics or vaccines for human use. To explore the possibility of developing small-molecule nucleoside inhibitors against henipaviruses, we evaluated the antiviral activity of 4'-azidocytidine (R1479), a drug previously identified to inhibit flaviviruses, against henipaviruses along with other representative members of the family Paramyxoviridae. We observed similar levels of R1479 antiviral activity across the family, regardless of virus genus. Our brief study expands the documented range of viruses susceptible to R1479, and provides the basis for future investigation and development of 4'-modified nucleoside analogs as potential broad-spectrum antiviral therapeutics across both positive and negative-sense RNA virus families.
Collapse
Affiliation(s)
- Anne L Hotard
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael K Lo
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
34
|
GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep 2017; 7:43395. [PMID: 28262699 PMCID: PMC5338263 DOI: 10.1038/srep43395] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/24/2017] [Indexed: 12/17/2022] Open
Abstract
GS-5734 is a monophosphate prodrug of an adenosine nucleoside analog that showed therapeutic efficacy in a non-human primate model of Ebola virus infection. It has been administered under compassionate use to two Ebola patients, both of whom survived, and is currently in Phase 2 clinical development for treatment of Ebola virus disease. Here we report the antiviral activities of GS-5734 and the parent nucleoside analog across multiple virus families, providing evidence to support new indications for this compound against human viruses of significant public health concern.
Collapse
|
35
|
Hoenen T, Brandt J, Caì Y, Kuhn JH, Finch C. Reverse Genetics of Filoviruses. Curr Top Microbiol Immunol 2017; 411:421-445. [PMID: 28918537 DOI: 10.1007/82_2017_55] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reverse genetics systems are used for the generation of recombinant viruses. For filoviruses, this technology has been available for more than 15 years and has been used to investigate questions regarding the molecular biology, pathogenicity, and host adaptation determinants of these viruses. Further, reporter-expressing, recombinant viruses are increasingly used as tools for screening for and characterization of candidate medical countermeasures. Thus, reverse genetics systems represent powerful research tools. Here we provide an overview of available reverse genetics systems for the generation of recombinant filoviruses, potential applications, and the achievements that have been made using these systems.
Collapse
Affiliation(s)
- Thomas Hoenen
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Janine Brandt
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| | - Courtney Finch
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| |
Collapse
|
36
|
Welch SR, Guerrero LW, Chakrabarti AK, McMullan LK, Flint M, Bluemling GR, Painter GR, Nichol ST, Spiropoulou CF, Albariño CG. Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems. Antiviral Res 2016; 136:9-18. [PMID: 27771389 DOI: 10.1016/j.antiviral.2016.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022]
Abstract
Lassa virus (LASV) and Ebola virus (EBOV) infections are important global health issues resulting in significant morbidity and mortality. While several promising drug and vaccine trials for EBOV are ongoing, options for LASV infection are currently limited to ribavirin treatment. A major factor impeding the development of antiviral compounds to treat these infections is the need to manipulate the virus under BSL-4 containment, limiting research to a few institutes worldwide. Here we describe the development of a novel LASV minigenome assay based on the ambisense LASV S segment genome, with authentic terminal untranslated regions flanking a ZsGreen (ZsG) fluorescent reporter protein and a Gaussia princeps luciferase (gLuc) reporter gene. This assay, along with a similar previously established EBOV minigenome, was optimized for high-throughput screening (HTS) of potential antiviral compounds under BSL-2 containment. In addition, we rescued a recombinant LASV expressing ZsG, which, in conjunction with a recombinant EBOV reporter virus, was used to confirm any potential antiviral hits in vitro. Combining an initial screen to identify potential antiviral compounds at BSL-2 containment before progressing to HTS with infectious virus will reduce the amount of expensive and technically challenging BSL-4 containment research. Using these assays, we identified 6-azauridine as having anti-LASV activity, and demonstrated its anti-EBOV activity in human cells. We further identified 2'-deoxy-2'-fluorocytidine as having potent anti-LASV activity, with an EC50 value 10 times lower than that of ribavirin.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MG G-14, Atlanta, GA, 30329, USA
| | - Lisa Wiggleton Guerrero
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MG G-14, Atlanta, GA, 30329, USA
| | - Ayan K Chakrabarti
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MG G-14, Atlanta, GA, 30329, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MG G-14, Atlanta, GA, 30329, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MG G-14, Atlanta, GA, 30329, USA
| | | | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MG G-14, Atlanta, GA, 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MG G-14, Atlanta, GA, 30329, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MG G-14, Atlanta, GA, 30329, USA.
| |
Collapse
|
37
|
Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease. J Virol 2016; 90:9209-23. [PMID: 27489269 DOI: 10.1128/jvi.01033-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics.
Collapse
|
38
|
Albariño CG, Guerrero LW, Chakrabarti AK, Kainulainen MH, Whitmer SLM, Welch SR, Nichol ST. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach. Virology 2016; 496:237-243. [PMID: 27366976 DOI: 10.1016/j.virol.2016.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays.
Collapse
Affiliation(s)
- César G Albariño
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA.
| | | | - Ayan K Chakrabarti
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA
| | | | - Shannon L M Whitmer
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA
| | - Stephen R Welch
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA
| | - Stuart T Nichol
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA
| |
Collapse
|
39
|
Spengler JR, Ervin ED, Towner JS, Rollin PE, Nichol ST. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016. Emerg Infect Dis 2016; 22:956-63. [PMID: 27070842 PMCID: PMC4880067 DOI: 10.3201/eid2206.160021] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many features of this outbreak reinforce the benefit of continued investment in global health security. The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013–2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community’s insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.
Collapse
|
40
|
Islam MK, Baudin M, Eriksson J, Öberg C, Habjan M, Weber F, Överby AK, Ahlm C, Evander M. High-Throughput Screening Using a Whole-Cell Virus Replication Reporter Gene Assay to Identify Inhibitory Compounds against Rift Valley Fever Virus Infection. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:354-62. [PMID: 26762502 DOI: 10.1177/1087057115625184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/10/2015] [Indexed: 11/17/2022]
Abstract
Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection.
Collapse
Affiliation(s)
- Md Koushikul Islam
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Maria Baudin
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Jonas Eriksson
- Department of Chemistry, Umeå University, Umeå, Sweden Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden, Solna, Sweden
| | - Christopher Öberg
- Department of Chemistry, Umeå University, Umeå, Sweden Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden, Solna, Sweden
| | - Matthias Habjan
- Innate Immunity Laboratory, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University Gießen, Gießen, Germany
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
41
|
Ladner JT, Wiley MR, Mate S, Dudas G, Prieto K, Lovett S, Nagle ER, Beitzel B, Gilbert ML, Fakoli L, Diclaro JW, Schoepp RJ, Fair J, Kuhn JH, Hensley LE, Park DJ, Sabeti PC, Rambaut A, Sanchez-Lockhart M, Bolay FK, Kugelman JR, Palacios G. Evolution and Spread of Ebola Virus in Liberia, 2014-2015. Cell Host Microbe 2015; 18:659-69. [PMID: 26651942 PMCID: PMC4711363 DOI: 10.1016/j.chom.2015.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
The 2013-present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread, and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host.
Collapse
Affiliation(s)
- Jason T Ladner
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA.
| | - Michael R Wiley
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Suzanne Mate
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Gytis Dudas
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Karla Prieto
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Sean Lovett
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Elyse R Nagle
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Brett Beitzel
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Merle L Gilbert
- Molecular and Translational Sciences Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Lawrence Fakoli
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | - Joseph W Diclaro
- Naval Medical Research Unit 3, 3A Imtidad Ramses Street, Cairo, Egypt 11517
| | - Randal J Schoepp
- Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Joseph Fair
- MRI Global, 1330 Piccard Avenue, Rockville, MD, 20850, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Daniel J Park
- Broad Institute, 75 Ames St, Cambridge, MA, 02142, USA
| | - Pardis C Sabeti
- Broad Institute, 75 Ames St, Cambridge, MA, 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Centre for Immunology, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Fogarty International Center, NIH, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Fatorma K Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | - Jeffrey R Kugelman
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA
| | - Gustavo Palacios
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
42
|
Reynard O, Nguyen XN, Alazard-Dany N, Barateau V, Cimarelli A, Volchkov VE. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication. Viruses 2015; 7:6233-40. [PMID: 26633464 PMCID: PMC4690858 DOI: 10.3390/v7122934] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022] Open
Abstract
The current outbreak of Ebola virus (EBOV) in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC) demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV.
Collapse
Affiliation(s)
- Olivier Reynard
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| | - Xuan-Nhi Nguyen
- Host Pathogen interaction during lentiviral infection, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| | - Nathalie Alazard-Dany
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| | - Véronique Barateau
- Host Pathogen interaction during lentiviral infection, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| | - Andrea Cimarelli
- Host Pathogen interaction during lentiviral infection, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| | - Viktor E Volchkov
- Molecular Basis of Viral Pathogenicity, CIRI, INSERM, U1111-CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| |
Collapse
|