1
|
Sulaiman X, Han Y, Liu S, Li K, Shang M, Yang L, White K, Zang Y, Shen J, Wan J. Enrichment of G-to-U Substitution in SARS-CoV-2 Functional Regions and Its Compensation via Concurrent Mutations. J Med Virol 2025; 97:e70353. [PMID: 40249051 PMCID: PMC12007394 DOI: 10.1002/jmv.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
We surveyed single nucleotide variant (SNV) patterns from 5 903 647 complete SARS-CoV-2 genomes. Among 10 012 SNVs, APOBEC-mediated C-to-U (C > U) deamination was the most prevalent, followed by G > U and other RNA editing-related substitutions including (A > G, U > C, G > A). However, C > U mutations were less frequent in functional regions, for example, S protein, intrinsic disordered regions, and nonsynonymous mutations, where G > U were over-represented. Notably, G-loss substitutions rarely appeared together. Instead, G-gain mutations tended to more frequently co-occur with others, with a marked preference in the S protein, suggesting a compensatory mechanism for G loss in G > U mutations. The temporal patterns revealed C > U frequency declined until late 2021 then resurged in early 2022. Conversely, G > U steadily decreased, with a pronounced drop in January 2022, coinciding with reduced COVID-19 severity. Vaccinated individuals exhibited a slightly but significantly higher C > U frequency and a notably lower G > U frequency compared to the unvaccinated group. Additionally, cancer patients had higher G > U frequency than general patients during the same period. Interestingly, none of the C > U SNVs were uniquely identified in 2724 environmental samples. These findings suggest novel functional roles of G > U in COVID-19 symptoms, potentially linked to oxidative stress and reactive oxygen species, while C > U remains the dominant substitution, likely driven by host immune-mediated RNA editing.
Collapse
Affiliation(s)
- Xierzhatijiang Sulaiman
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yan Han
- Department of Biostatistics & Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sheng Liu
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kailing Li
- Department of BioHealth InformaticsIndiana University School of Informatics and Computing at IUPUIIndianapolisIndianaUSA
| | | | - Lei Yang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
- Herman B Wells Center for Pediatric Research, Department of PediatricsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kenneth White
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yong Zang
- Department of Biostatistics & Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jikui Shen
- The Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jun Wan
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Department of BioHealth InformaticsIndiana University School of Informatics and Computing at IUPUIIndianapolisIndianaUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
2
|
Berlanga JJ, Matamoros T, Pulido M, Sáiz M, Bayón M, Toribio R, Ventoso I. The differential effect of SARS-CoV-2 NSP1 on mRNA translation and stability reveals new insights linking ribosome recruitment, codon usage, and virus evolution. Nucleic Acids Res 2025; 53:gkaf261. [PMID: 40193709 PMCID: PMC11975289 DOI: 10.1093/nar/gkaf261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
The nonstructural protein 1 (NSP1) of SARS-CoV-2 blocks the messenger RNA (mRNA) entry channel of the 40S ribosomal subunit, causing inhibition of translation initiation and subsequent degradation of host mRNAs. However, target mRNA specificity and how viral mRNAs escape NSP1-mediated degradation have not been clarified to date. Here we found that NSP1 acts as a translational switch capable of blocking or enhancing translation depending on how preinitiation complex, 43S-PIC, is recruited to the mRNA, whereas NSP1-mediated mRNA degradation mostly depends on codon usage bias. Thus, fast-translating mRNAs with optimal codon usage for human cells that preferentially recruit 43S-PIC by threading showed a dramatic sensitivity to NSP1. Translation of SARS-CoV-2 mRNAs escapes NSP1-mediated inhibition by a proper combination of suboptimal codon usage and slotting-prone 5' UTR. Thus, the prevalence of nonoptimal codons found in SARS-CoV-2 and other coronavirus genomes is favored by the distinctive effect that NSP1 plays on translation and mRNA stability.
Collapse
Affiliation(s)
- Juan José Berlanga
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Tania Matamoros
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Miguel Rodríguez Pulido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mercedes Núñez Bayón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - René Toribio
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Iván Ventoso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Jones LR. Intra-host variability of SARS-CoV-2: Patterns, causes and impact on COVID-19. Virology 2025; 603:110366. [PMID: 39724740 DOI: 10.1016/j.virol.2024.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Intra-host viral variability is related to pathogenicity, persistence, drug resistance, and the emergence of new clades. This work reviews the large amount of data on SARS-CoV-2 intra-host variability accumulated to date, addressing known and potential implications in COVID-19 and the emergence of VOCs and lineage-defining mutations. Topics covered include the distribution of intra-host polymorphisms across the genome, the corresponding mutational signatures, their patterns of emergence and extinction throughout infection, and the processes governing their abundance, frequency, and type (synonymous, nonsynonymous, indels, nonsense). Besides, evidence is reviewed that the virus can replicate and mutate in isolation at different anatomical compartments, which may imply that what we have learned from respiratory samples could be part of a broader picture.
Collapse
Affiliation(s)
- Leandro R Jones
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, C1083ACA Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Virología y Genética Molecular (LVGM), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Belgrano 160, Trelew, CP, 9100, Argentina.
| |
Collapse
|
4
|
Simmonds P. C→U transition biases in SARS-CoV-2: still rampant 4 years from the start of the COVID-19 pandemic. mBio 2024; 15:e0249324. [PMID: 39475243 PMCID: PMC11633203 DOI: 10.1128/mbio.02493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has been characterized by rapid adaptive changes that confer immune escape and enhanced human-to-human transmissibility. Sequence change is additionally marked by an excess number of C→U transitions suggested as being due to host-mediated genome editing. To investigate how these influence the evolutionary trajectory of SARS-CoV-2, 2,000 high-quality, coding complete genome sequences of SARS-CoV-2 variants collected pre-September 2020 and from each subsequently appearing alpha, delta, BA.1, BA.2, BA.5, XBB, EG, HK, and JN.1 lineages were downloaded from NCBI Virus in April 2024. C→U transitions were the most common substitution during the diversification of SARS-CoV-2 lineages over the 4-year observation period. A net loss of C bases and accumulation of U's occurred at a constant rate of approximately 0.2%-0.25%/decade. C→U transitions occurred in over a quarter of all sites with a C (26.5%; range 20.0%-37.2%) around five times more than observed for the other transitions (5.3%-6.8%). In contrast to an approximately random distribution of other transitions across the genome, most C→U substitutions occurred at statistically preferred sites in each lineage. However, only the most C→U polymorphic sites showed evidence for a preferred 5'U context previously associated with APOBEC 3A editing. There was a similarly weak preference for unpaired bases suggesting much less stringent targeting of RNA than mediated by A3 deaminases in DNA editing. Future functional studies are required to determine editing preferences, impacts on replication fitness in vivo of SARS-CoV-2 and other RNA viruses, and impact on host tropism. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pandemic and post-pandemic periods has shown a remarkable capacity to adapt and evade human immune responses and increase its human-to-human transmissibility. The genome of SARS-CoV-2 is also increasingly scarred by the effects of multiple C→U mutations from host genome editing as a cellular defense mechanism akin to restriction factors for retroviruses. Through the analysis of large data sets of SARS-CoV-2 isolate sequences collected throughout the pandemic period and beyond, we show that C→U transitions have driven a base compositional change over time amounting to a net loss of C bases and accumulation of U's at a rate of approximately 0.2%-0.25%/decade. Most C→U substitutions occurred in the absence of the preferred upstream-base context or targeting of unpaired RNA bases previously associated with the host RNA editing protein, APOBEC 3A. The analyses provide a series of testable hypotheses that can be experimentally investigated in the future.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Maiti AK. MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients. Clin Rev Allergy Immunol 2024; 67:58-72. [PMID: 39460899 DOI: 10.1007/s12016-024-09008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Apart from the skin and mucosal immune barrier, the first line of defense of the human immune system includes MDA5 (ifih1 gene) which acts as a cellular sensor protein for certain viruses including SARS-CoV-2. Upon binding with viral RNA, MDA5 activates cell-intrinsic innate immunity, humoral responses, and MAVS (mitochondrial antiviral signaling). MAVS signaling induces type I and III interferon (IFN) expressions that further induce ISGs (interferon stimulatory genes) expressions to initiate human cell-mediated immune responses and attenuate viral replication. SARS-CoV-2 counteracts by producing NSP1, NSP2, NSP3, NSP5, NSP7, NSP12, ORF3A, ORF9, N, and M protein and directs anti-MDA5 antibody production presumably to antagonize IFN signaling. Furthermore, COVID-19 resembles several diseases that carry anti-MDA5 antibodies and the current COVID-19 vaccines induced anti-MDA5 phenotypes in healthy individuals. GWAS (genome-wide association studies) identified several polymorphisms (SNPs) in the ifih1-ifn pathway genes including rs1990760 in ifih1 that are strongly associated with COVID-19, and the associated risk allele is correlated with reduced IFN production. The genetic association of SNPs in ifih1 and ifih1-ifn pathway genes reinforces the molecular findings of the critical roles of MDA5 in sensing SARS-CoV-2 and subsequently the IFN responses to inhibit viral replication and host immune evasion. Thus, MDA5 or its pathway genes could be targeted for therapeutic development of COVID-19.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 28475 Greenfield Rd, Southfield, MI, USA.
| |
Collapse
|
6
|
Kazanov FM, Matveev EV, Ponomarev GV, Ivankov DN, Kazanov MD. Analysis of the abundance and diversity of RNA secondary structure elements in RNA viruses using the RNAsselem Python package. Sci Rep 2024; 14:28587. [PMID: 39562668 PMCID: PMC11577020 DOI: 10.1038/s41598-024-80240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
Recent advancements in experimental and computational methods for RNA secondary structure detection have revealed the crucial role of RNA structural elements in diverse molecular processes within living cells. It has been demonstrated that the secondary structure of the entire viral genome is often responsible for performing crucial functions in the viral life cycle and also influences virus evolution. To investigate the role of viral RNA secondary structure, alongside experimental techniques, the use of bioinformatics tools is important for analyzing various secondary structure patterns, including hairpin loops, internal loops, multifurcations, external loops, bulges, stems, and pseudoknots. Here, we have introduced a Python package for analyzing RNA secondary structure elements in viral genomes, which includes the recognition of common secondary structure patterns, the generation of descriptive statistics for these structural elements, and the provision of their basic properties. We applied the developed package to analyze the secondary structures of complete viral genomes collected from the literature, aiming to gain insights into viral function and evolution. Both the package and the collection of secondary structures of viral genomes are available at http://github.com/KazanovLab/RNAsselem .
Collapse
Affiliation(s)
| | - Evgenii V Matveev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117998, Russia
| | - Gennady V Ponomarev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Dmitry N Ivankov
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Marat D Kazanov
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117998, Russia.
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
7
|
Vu TH, Nakamura K, Shigeyasu K, Kashino C, Okamoto K, Kubo K, Kamada Y, Masuyama H. Apolipoprotein-B mRNA-editing complex 3B could be a new potential therapeutic target in endometriosis. Sci Rep 2024; 14:24968. [PMID: 39443671 PMCID: PMC11499600 DOI: 10.1038/s41598-024-76589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigated the correlation of Apolipoprotein-B mRNA-editing complex 3B (APOBEC3B) expression with hypoxia inducible factor 1α (HIF-1α), Kirsten rat sarcoma virus (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in endometriosis patients, and the inhibitory effects of APOBEC3B knockdown in a human endometriotic cell line. Here, APOBEC3B, HIF-1α, KRAS, and PIK3CA were examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR). The apoptosis, cell proliferation, invasion, migration, and biological function of APOBEC3B knockdown were explored in 12Z immortalized human endometriotic cell line. We observed APOBEC3B, HIF-1α, KRAS and PIK3CA expressions were significantly higher in endometriosis patients (p < 0.001, p < 0.001, p = 0.029, p = 0.001). Knockdown of APOBEC3B increased apoptosis, which was 28.03% and 22.27% higher than in mock and control siRNA samples, respectively. APOBEC3B knockdown also decreased PIK3CA expression and increased Caspase 8 expression, suggesting a potential role in the regulation of apoptosis. Furthermore, knockdown of APOBEC3B significantly inhibited cell proliferation, invasion, and migration compared to mock and control siRNA. (Cell proliferation: mock: p < 0.001 and control siRNA: p = 0.049. Cell invasion: mock: p < 0.001 and control siRNA: p = 0.029. Cell migration: mock: p = 0.004, and control siRNA: p = 0.014). In conclusion, this study suggests that APOBEC3B may be a new potential therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Thuy Ha Vu
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
- Department of Histopathology, Haiphong University of Medicine and Pharmacy, 72A Nguyen Binh Khiem St, Ngo Quyen Dist, Hai Phong, 180000, Vietnam
| | - Keiichiro Nakamura
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan.
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Chiaki Kashino
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Kazuhiro Okamoto
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Kotaro Kubo
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Yasuhiko Kamada
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700- 8558, Japan
| |
Collapse
|
8
|
Holmes EC. The Emergence and Evolution of SARS-CoV-2. Annu Rev Virol 2024; 11:21-42. [PMID: 38631919 DOI: 10.1146/annurev-virology-093022-013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
9
|
Karim B, Barary M, Fereydouni Z, Sanjari E, Hosseinzadeh R, Salehi-Vaziri M, Maleki A. The nuts and bolts of recombination in the generation of SARS-CoV-2 variants; from XA to XBB. Lett Appl Microbiol 2024; 77:ovae074. [PMID: 39081071 DOI: 10.1093/lambio/ovae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 01/28/2025]
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), new variants with enhanced transmissibility and pathogenicity have surfaced. The World Health Organization has designated five such variants-Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529)-as variants of concern. Each variant exhibits distinct characteristics, with many displaying a combination of point mutations and insertions/deletions (indels). These genetic alterations, including mutations, recombinations, and rearrangements, contribute to the emergence of new strains that may exhibit modified phenotypes. However, identifying recombinant forms can be challenging due to their resemblance to other lineages. It is critical to monitor the evolution of new recombinant variants, particularly in light of the potential for vaccine-resistant strains and their accelerated propagation. Recombination has played a pivotal role in the development of certain SARS-CoV-2 variants, such as XA, XD, XF, XE, and XBB, among others. This report delves into the significance of recombination in the evolution of SARS-CoV-2 variants, especially Omicron sublineages, underscoring the necessity for continuous surveillance of the SARS-CoV-2 genome to identify newly emerged recombinant variants.
Collapse
Affiliation(s)
- Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Zahra Fereydouni
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| | - Elaheh Sanjari
- Student Research Committee, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol 678, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Pasteur Ave., Tehran 01316943551, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| |
Collapse
|
10
|
García-Crespo C, de Ávila AI, Gallego I, Soria ME, Durán-Pastor A, Somovilla P, Martínez-González B, Muñoz-Flores J, Mínguez P, Salar-Vidal L, Esteban-Muñoz M, Cañar-Camacho E, Ferrer-Orta C, Zuñiga S, Sola I, Enjuanes L, Esteban J, Fernández-Roblas R, Gadea I, Gómez J, Verdaguer N, Domingo E, Perales C. Synergism between remdesivir and ribavirin leads to SARS-CoV-2 extinction in cell culture. Br J Pharmacol 2024; 181:2636-2654. [PMID: 38616133 DOI: 10.1111/bph.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE There is a need for effective anti-COVID-19 treatments, mainly for individuals at risk of severe disease such as the elderly and the immunosuppressed. Drug repositioning has proved effective in identifying drugs that can find a new application for the control of coronavirus disease, in particular COVID-19. The purpose of the present study was to find synergistic antiviral combinations for COVID-19 based on lethal mutagenesis. EXPERIMENTAL APPROACH The effect of combinations of remdesivir and ribavirin on the infectivity of SARS-CoV-2 in cell culture has been tested. Viral populations were monitored by ultra-deep sequencing, and the decrease of infectivity as a result of the treatment was measured. KEY RESULTS Remdesivir and ribavirin exerted a synergistic inhibitory activity against SARS-CoV-2, quantified both by CompuSyn (Chou-Talalay method) and Synergy Finder (ZIP-score model). In serial passage experiments, virus extinction was readily achieved with remdesivir-ribavirin combinations at concentrations well below their cytotoxic 50 value, but not with the drugs used individually. Deep sequencing of treated viral populations showed that remdesivir, ribavirin, and their combinations evoked significant increases of the number of viral mutations and haplotypes, as well as modification of diversity indices that characterize viral quasi-species. CONCLUSION AND IMPLICATIONS SARS-CoV-2 extinction can be achieved by synergistic combination treatments based on lethal mutagenesis. In addition, the results offer prospects of triple drug treatments for effective SARS-CoV-2 suppression.
Collapse
Affiliation(s)
- Carlos García-Crespo
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Antoni Durán-Pastor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | | | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Elizabeth Cañar-Camacho
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ricardo Fernández-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Jordi Gómez
- Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada, Spain
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
11
|
Chattopadhyay P, Mehta P, Kanika, Mishra P, Chen Liu CS, Tarai B, Budhiraja S, Pandey R. RNA editing in host lncRNAs as potential modulator in SARS-CoV-2 variants-host immune response dynamics. iScience 2024; 27:109846. [PMID: 38770134 PMCID: PMC11103575 DOI: 10.1016/j.isci.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Both host and viral RNA editing plays a crucial role in host's response to infection, yet our understanding of host RNA editing remains limited. In this study of in-house generated RNA sequencing (RNA-seq) data of 211 hospitalized COVID-19 patients with PreVOC, Delta, and Omicron variants, we observed a significant differential editing frequency and patterns in long non-coding RNAs (lncRNAs), with Delta group displaying lower RNA editing compared to PreVOC/Omicron patients. Notably, multiple transcripts of UGDH-AS1 and NEAT1 exhibited high editing frequencies. Expression of ADAR1/APOBEC3A/APOBEC3G and differential abundance of repeats were possible modulators of differential editing across patient groups. We observed a shift in crucial infection-related pathways wherein the pathways were downregulated in Delta compared to PreVOC and Omicron. Our genomics-based evidence suggests that lncRNA editing influences stability, miRNA binding, and expression of both lncRNA and target genes. Overall, the study highlights the role of lncRNAs and how editing within host lncRNAs modulates the disease severity.
Collapse
Affiliation(s)
- Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanika
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Zhang Y, Zhou Y, Chen J, Wu J, Wang X, Zhang Y, Wang S, Cui P, Xu Y, Li Y, Shen Z, Xu T, Zhang Q, Cai J, Zhang H, Wang P, Ai J, Jiang N, Qiu C, Zhang W. Vaccination Shapes Within-Host SARS-CoV-2 Diversity of Omicron BA.2.2 Breakthrough Infection. J Infect Dis 2024; 229:1711-1721. [PMID: 38149984 DOI: 10.1093/infdis/jiad572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present. METHODS We investigated the genetic variation of SARS-CoV-2 in individuals who were unvaccinated, partially vaccinated, or fully vaccinated during Shanghai's Omicron BA.2.2 wave. We substantiated the connection between particular amino acid substitutions and immune-mediated selection through a pseudovirus neutralization assay or by cross-verification with the human leukocyte antigen-associated T-cell epitopes. RESULTS In contrast to those with immunologic naivety or partial vaccination, participants who were fully vaccinated had intrahost variant spectra characterized by reduced diversity. Nevertheless, the distribution of mutations in the fully vaccinated group was enriched in the spike protein. The distribution of intrahost single-nucleotide variants in individuals who were immunocompetent did not demonstrate notable signs of positive selection, in contrast to the observed adaptation in 2 participants who were immunocompromised who had an extended period of viral shedding. CONCLUSIONS In SARS-CoV-2 infections, vaccine-induced immunity was associated with decreased diversity of within-host variant spectra, with milder inflammatory pathophysiology. The enrichment of mutations in the spike protein gene indicates selection pressure exerted by vaccination on the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Xun Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yumeng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Shiyong Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Yuanyuan Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengfei Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Ning Jiang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Ayubov MS, Mirzakhmedov MK, Yusupov AN, Asrorov AM, Nosirov BV, Usmanov DE, Shermatov SE, Ubaydullaeva KA, Abdukarimov A, Buriev ZT, Abdurakhmonov IY. Most accurate mutations in SARS-CoV-2 genomes identified in Uzbek patients show novel amino acid changes. Front Med (Lausanne) 2024; 11:1401655. [PMID: 38882660 PMCID: PMC11176497 DOI: 10.3389/fmed.2024.1401655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
PURPOSE The rapid changes in the coronavirus genomes created new strains after the first variation was found in Wuhan in 2019. SARS-CoV-2 genotypes should periodically undergo whole genome sequencing to control it because it has been extremely helpful in combating the virus. Many diagnoses, treatments, and vaccinations have been developed against it based on genome sequencing. With its practical implications, this study aimed to determine changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic by genome sequencing, thereby providing crucial insights for developing effective control strategies that can be directly applied in the field. DESIGN We meticulously generated 17 high-quality whole-genome sequence data from 48 SARS-CoV-2 genotypes of COVID-19 patients who tested positive by PCR in Tashkent, Uzbekistan. Our rigorous approach, which includes stringent quality control measures and multiple rounds of verification, ensures the accuracy and reliability of our findings. METHODS Our study employed a unique combination of genome sequencing and bioinformatics web tools to analyze amino acid (AA) changes in the virus genomes. This approach allowed us to understand the genetic changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. RESULTS Our study revealed significant nucleotide polymorphisms, including non-synonymous (missense) and synonymous mutations in the coding regions of the sequenced sample genomes. These findings, categorized by phylogenetic analysis into the G clade (or GK sub-clade), contribute to our understanding of the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. A total of 134 mutations were identified, consisting of 65 shared and 69 unique mutations. These nucleotide changes, including one frameshift mutation, one conservative and disruptive insertion-deletion, four upstream region mutations, four downstream region mutations, 39 synonymous mutations, and 84 missense mutations, are crucial in the ongoing battle against the virus. CONCLUSION The comprehensive whole-genome sequencing data presented in this study aids in tracing the origins and sources of circulating SARS-CoV-2 variants and analyzing emerging variations within Uzbekistan and globally. The genome sequencing of SARS-CoV-2 from samples collected in Uzbekistan in late 2021, during the peak of the pandemic's second wave nationwide, is detailed here. Following acquiring these sequences, research efforts have focused on developing DNA and plant-based edible vaccines utilizing prevalent SARS-CoV-2 strains in Uzbekistan, which are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Mirzakamol S. Ayubov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | | | - Abdurakhmon N. Yusupov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Akmal M. Asrorov
- Department of Chemistry for Natural Substances, National University of Uzbekistan, Tashkent, Uzbekistan
| | | | - Dilshod E. Usmanov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Shukhrat E. Shermatov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Khurshida A. Ubaydullaeva
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Abdusattor Abdukarimov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Zabardast T. Buriev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Republic of Uzbekistan
| |
Collapse
|
14
|
Colson P, Chaudet H, Delerce J, Pontarotti P, Levasseur A, Fantini J, La Scola B, Devaux C, Raoult D. Role of SARS-CoV-2 mutations in the evolution of the COVID-19 pandemic. J Infect 2024; 88:106150. [PMID: 38570164 DOI: 10.1016/j.jinf.2024.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES The SARS-CoV-2 pandemic and large-scale genomic surveillance provided an exceptional opportunity to analyze mutations that appeared over three years in viral genomes. Here we studied mutations and their epidemic consequences for SARS-CoV-2 genomes from our center. METHODS We analyzed 61,397 SARS-CoV-2 genomes we sequenced from respiratory samples for genomic surveillance. Mutations frequencies were calculated using Nextclade, Microsoft Excel, and an in-house Python script. RESULTS A total of 22,225 nucleotide mutations were identified, 220 (1.0%) being each at the root of ≥836 genomes, classifying mutations as 'hyperfertile'. Two seeded the European pandemic: P323L in RNA polymerase, associated with an increased mutation rate, and D614G in spike that improved fitness. Most 'hyperfertile' mutations occurred in areas not predicted with increased virulence. Their mean number was 8±6 (0-22) per 1000 nucleotides per gene. They were 3.7-times more frequent in accessory than informational genes (13.8 versus 3.7/1000 nucleotides). Particularly, they were 4.1-times more frequent in ORF8 than in the RNA polymerase gene. Interestingly, stop codons were present in 97 positions, almost only in accessory genes, including ORF8 (21/100 codons). CONCLUSIONS most 'hyperfertile' mutations did not predict emergence of a new epidemic, and some were stop codons indicating the existence of so-named 'non-virulence' genes.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Hervé Chaudet
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France; Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Vecteurs, Infections Tropicales et Méditerranéennes (VITROME), 27 Boulevard Jean Moulin, 13005 Marseille, France; French Armed Forces Center for Epidemiology and Public Health (CESPA), Camp de Sainte Marthe, Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Department of Biological Sciences, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Jacques Fantini
- "Aix-Marseille Université, INSERM UMR UA 16, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 Rue Saint-Pierre, 13005 Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Department of Biological Sciences, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), 27 Boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
15
|
Majchrzak M, Madej Ł, Łysek-Gładysińska M, Zarębska-Michaluk D, Zegadło K, Dziuba A, Nogal-Nowak K, Kondziołka W, Sufin I, Myszona-Tarnowska M, Jaśkowski M, Kędzierski M, Maciukajć J, Matykiewicz J, Głuszek S, Adamus-Białek W. The RdRp genotyping of SARS-CoV-2 isolated from patients with different clinical spectrum of COVID-19. BMC Infect Dis 2024; 24:281. [PMID: 38439047 PMCID: PMC10913261 DOI: 10.1186/s12879-024-09146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The evolution of SARS-CoV-2 has been observed from the very beginning of the fight against COVID-19, some mutations are indicators of potentially dangerous variants of the virus. However, there is no clear association between the genetic variants of SARS-CoV-2 and the severity of COVID-19. We aimed to analyze the genetic variability of RdRp in correlation with different courses of COVID-19. RESULTS The prospective study included 77 samples of SARS-CoV-2 isolated from outpatients (1st degree of severity) and hospitalized patients (2nd, 3rd and 4th degree of severity). The retrospective analyses included 15,898,266 cases of SARS-CoV-2 genome sequences deposited in the GISAID repository. Single-nucleotide variants were identified based on the four sequenced amplified fragments of SARS-CoV-2. The analysis of the results was performed using appropriate statistical methods, with p < 0.05, considered statistically significant. Additionally, logistic regression analysis was performed to predict the strongest determinants of the observed relationships. The number of mutations was positively correlated with the severity of the COVID-19, and older male patients. We detected four mutations that significantly increased the risk of hospitalization of COVID-19 patients (14676C > T, 14697C > T, 15096 T > C, and 15279C > T), while the 15240C > T mutation was common among strains isolated from outpatients. The selected mutations were searched worldwide in the GISAID database, their presence was correlated with the severity of COVID-19. CONCLUSION Identified mutations have the potential to be used to assess the increased risk of hospitalization in COVID-19 positive patients. Experimental studies and extensive epidemiological data are needed to investigate the association between individual mutations and the severity of COVID-19.
Collapse
Affiliation(s)
- Michał Majchrzak
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Łukasz Madej
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | | | | | - Katarzyna Zegadło
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Anna Dziuba
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | | | | | | | | | | | | | | | | | - Stanisław Głuszek
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | | |
Collapse
|
16
|
Misawa K, Ootsuki R. A simple method for estimating time-irreversible nucleotide substitution rates in the SARS-CoV-2 genome. NAR Genom Bioinform 2024; 6:lqae009. [PMID: 39678027 PMCID: PMC11640943 DOI: 10.1093/nargab/lqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 12/17/2024] Open
Abstract
SARS-CoV-2 is the cause of the current worldwide pandemic of severe acute respiratory syndrome. The change of nucleotide composition of the SARS-CoV-2 genome is crucial for understanding the spread and transmission dynamics of the virus because viral nucleotide sequences are essential in identifying viral strains. Recent studies have shown that cytosine (C) to uracil (U) substitutions are overrepresented in SARS-CoV-2 genome sequences. These asymmetric substitutions between C and U indicate that traditional time-reversible substitution models cannot be applied to the evolution of SARS-CoV-2 sequences. Thus, we develop a new time-irreversible model of nucleotide substitutions to estimate the substitution rates in SARS-CoV-2 genomes. We investigated the number of nucleotide substitutions among the 7862 genomic sequences of SARS-CoV-2 registered in the Global Initiative on Sharing All Influenza Data (GISAID) that have been sampled from all over the world. Using the new method, the substitution rates in SARS-CoV-2 genomes were estimated. The C-to-U substitution rates of SARS-CoV-2 were estimated to be 1.95 × 10-3 ± 4.88 × 10-4 per site per year, compared with 1.48 × 10-4 ± 7.42 × 10-5 per site per year for all other types of substitutions.
Collapse
Affiliation(s)
- Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of
Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama
236-0004, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1
Nihonbashi, Chuo-ku, Tokyo 103-0027,
Japan
| | - Ryo Ootsuki
- Department of Natural Sciences, Faculty of Arts and Sciences,
1-23-1 Komazawa, Setagaya-ku,
Tokyo 154-8525, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan
Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| |
Collapse
|
17
|
Lovšin N, Gangupam B, Bergant Marušič M. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathogens 2024; 13:187. [PMID: 38535531 PMCID: PMC10974850 DOI: 10.3390/pathogens13030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Bhavani Gangupam
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| |
Collapse
|
18
|
Colson P, Delerce J, Pontarotti P, Devaux C, La Scola B, Fantini J, Raoult D. Resistance-associated mutations to the anti-SARS-CoV-2 agent nirmatrelvir: Selection not induction. J Med Virol 2024; 96:e29462. [PMID: 38363015 DOI: 10.1002/jmv.29462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Mutations associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance to antiprotease nirmatrelvir were reported. We aimed to detect them in SARS-CoV-2 genomes and quasispecies retrieved in our institute before drug availability in January 2022 and to analyze the impact of mutations on protease (3CLpro) structure. We sought for 38 3CLpro nirmatrelvir resistance mutations in a set of 62 673 SARS-CoV-2 genomes obtained in our institute from respiratory samples collected between 2020 and 2023 and for these mutations in SARS-CoV-2 quasispecies for 90 samples collected in 2020, using Python. SARS-CoV-2 protease with major mutation E166V was generated with Swiss Pdb Viewer and Molegro Molecular Viewer. We detected 22 (58%) of the resistance-associated mutations in 417 (0.67%) of the genomes analyzed; 325 (78%) of these genomes had been obtained from samples collected in 2020-2021. APOBEC signatures were found for 12/22 mutations. We also detected among viral quasispecies from 90 samples some minority reads harboring any of 15 nirmatrelvir resistance mutations, including E166V. Also, we predicted that E166V has a very limited effect on 3CLpro structure but may prevent drug attachment. Thus, we evidenced that mutations associated with nirmatrelvir resistance pre-existed in SARS-CoV-2 before drug availability. These findings further warrant SARS-CoV-2 genomic surveillance and SARS-CoV-2 quasispecies characterization.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jérémy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
| | - Pierre Pontarotti
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Department of Biological Sciences, Centre National de la Recherche 16 Scientifique (CNRS)-SNC5039, Marseille, France
| | | | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, Marseille, France
- Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, Marseille, France
| |
Collapse
|
19
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Timmerman AL, Schönert ALM, van der Hoek L. Anelloviruses versus human immunity: how do we control these viruses? FEMS Microbiol Rev 2024; 48:fuae005. [PMID: 38337179 PMCID: PMC10883694 DOI: 10.1093/femsre/fuae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
One continuous companion and one of the major players in the human blood virome are members of the Anelloviridae family. Anelloviruses are probably found in all humans, infection occurs early in life and the composition (anellome) is thought to remain stable and personal during adulthood. The stable anellome implies a great balance between the host immune system and the virus. However, the lack of a robust culturing system hampers direct investigation of interactions between virus and host cells. Other techniques, however, including next generation sequencing, AnelloScan-antibody tests, evolution selection pressure analysis, and virus protein structures, do provide new insights into the interactions between anelloviruses and the host immune system. This review aims at providing an overview of the current knowledge on the immune mechanisms acting on anelloviruses and the countering viral mechanisms allowing immune evasion.
Collapse
Affiliation(s)
- Anne L Timmerman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Antonia L M Schönert
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Timmerman AL, Commandeur L, Deijs M, Burggraaff MGJM, Lavell AHA, van der Straten K, Tejjani K, van Rijswijk J, van Gils MJ, Sikkens JJ, Bomers MK, van der Hoek L. The Impact of First-Time SARS-CoV-2 Infection on Human Anelloviruses. Viruses 2024; 16:99. [PMID: 38257799 PMCID: PMC10818381 DOI: 10.3390/v16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the Anelloviridae family dominate the blood virome, emerging early in life. The anellome, representing the variety of anelloviruses within an individual, stabilizes by adulthood. Despite their supposedly commensal nature, elevated anellovirus concentrations under immunosuppressive treatment indicate an equilibrium controlled by immunity. Here, we investigated whether anelloviruses are sensitive to the immune activation that accompanies a secondary infection. As a model, we investigated 19 health care workers (HCWs) with initial SARS-CoV-2 infection, with blood sampling performed pre and post infection every 4 weeks in a 3-month-follow-up during the early 2020 COVID-19 pandemic. A concurrently followed control group (n = 27) remained SARS-CoV-2-negative. Serum anellovirus loads were measured using qPCR. A significant decrease in anellovirus load was found in the first weeks after SARS-CoV-2 infection, whereas anellovirus concentrations remained stable in the uninfected control group. A restored anellovirus load was seen approximately 10 weeks after SARS-CoV-2 infection. For five subjects, an in-time anellome analysis via Illumina sequencing could be performed. In three of the five HCWs, the anellome visibly changed during SARS-CoV-2 infection and returned to baseline in two of these cases. In conclusion, anellovirus loads in blood can temporarily decrease upon an acute secondary infection.
Collapse
Affiliation(s)
- Anne L. Timmerman
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Lisanne Commandeur
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Maarten G. J. M. Burggraaff
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - A. H. Ayesha Lavell
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Karlijn van der Straten
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Khadija Tejjani
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Jacqueline van Rijswijk
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Jonne J. Sikkens
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marije K. Bomers
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| |
Collapse
|
22
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining Distinct RNA-Protein Interactomes of SARS-CoV-2 Genomic and Subgenomic RNAs. J Proteome Res 2024; 23:149-160. [PMID: 38043095 PMCID: PMC10804885 DOI: 10.1021/acs.jproteome.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M'bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Formentin M, Chignola R, Favretti M. Optimal entropic properties of SARS-CoV-2 RNA sequences. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231369. [PMID: 38298394 PMCID: PMC10827432 DOI: 10.1098/rsos.231369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
The reaction of the scientific community against the COVID-19 pandemic has generated a huge (approx. 106 entries) dataset of genome sequences collected worldwide and spanning a relatively short time window. These unprecedented conditions together with the certain identification of the reference viral genome sequence allow for an original statistical study of mutations in the virus genome. In this paper, we compute the Shannon entropy of every sequence in the dataset as well as the relative entropy and the mutual information between the reference sequence and the mutated ones. These functions, originally developed in information theory, measure the information content of a sequence and allows us to study the random character of mutation mechanism in terms of its entropy and information gain or loss. We show that this approach allows us to set in new format known features of the SARS-CoV-2 mutation mechanism like the CT bias, but also to discover new optimal entropic properties of the mutation process in the sense that the virus mutation mechanism track closely theoretically computable lower bounds for the entropy decrease and the information transfer.
Collapse
Affiliation(s)
- Marco Formentin
- Department of Mathematics Tullio Levi-Civita, University of Padova, via Trieste 63 35131 Padova, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada le Grazie 15-CV1, 37134 Verona, Italy
| | - Marco Favretti
- Department of Mathematics Tullio Levi-Civita, University of Padova, via Trieste 63 35131 Padova, Italy
| |
Collapse
|
25
|
Lamb KD, Luka MM, Saathoff M, Orton RJ, Phan MVT, Cotten M, Yuan K, Robertson DL. Mutational signature dynamics indicate SARS-CoV-2's evolutionary capacity is driven by host antiviral molecules. PLoS Comput Biol 2024; 20:e1011795. [PMID: 38271457 PMCID: PMC10868779 DOI: 10.1371/journal.pcbi.1011795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/15/2024] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has been characterised by sequential variant-specific waves shaped by viral, individual human and population factors. SARS-CoV-2 variants are defined by their unique combinations of mutations and there has been a clear adaptation to more efficient human infection since the emergence of this new human coronavirus in late 2019. Here, we use machine learning models to identify shared signatures, i.e., common underlying mutational processes and link these to the subset of mutations that define the variants of concern (VOCs). First, we examined the global SARS-CoV-2 genomes and associated metadata to determine how viral properties and public health measures have influenced the magnitude of waves, as measured by the number of infection cases, in different geographic locations using regression models. This analysis showed that, as expected, both public health measures and virus properties were associated with the waves of regional SARS-CoV-2 reported infection numbers and this impact varies geographically. We attribute this to intrinsic differences such as vaccine coverage, testing and sequencing capacity and the effectiveness of government stringency. To assess underlying evolutionary change, we used non-negative matrix factorisation and observed three distinct mutational signatures, unique in their substitution patterns and exposures from the SARS-CoV-2 genomes. Signatures 1, 2 and 3 were biased to C→T, T→C/A→G and G→T point mutations. We hypothesise assignments of these mutational signatures to the host antiviral molecules APOBEC, ADAR and ROS respectively. We observe a shift amidst the pandemic in relative mutational signature activity from predominantly Signature 1 changes to an increasingly high proportion of changes consistent with Signature 2. This could represent changes in how the virus and the host immune response interact and indicates how SARS-CoV-2 may continue to generate variation in the future. Linkage of the detected mutational signatures to the VOC-defining amino acids substitutions indicates the majority of SARS-CoV-2's evolutionary capacity is likely to be associated with the action of host antiviral molecules rather than virus replication errors.
Collapse
Affiliation(s)
- Kieran D. Lamb
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Martha M. Luka
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Megan Saathoff
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| | - Richard J. Orton
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| | - My V. T. Phan
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Matthew Cotten
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
- Complex Adaptive Systems Initiative, Arizona State University, Scottsdale, Arizona, United States of America
| | - Ke Yuan
- School of Computing Science, University of Glasgow, Glasgow, Scotland, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Cancer Research UK Scotland Institute, Glasgow, Scotland, United Kingdom
| | - David L. Robertson
- Medical Research Council - University of Glasgow Centre for Virus Research, School of Infection and Immunity, Glasgow, Scotland, United Kingdom
| |
Collapse
|
26
|
Domingo E, Martínez-González B, García-Crespo C, Somovilla P, de Ávila AI, Soria ME, Durán-Pastor A, Perales C. Puzzles, challenges, and information reservoir of SARS-CoV-2 quasispecies. J Virol 2023; 97:e0151123. [PMID: 38092661 PMCID: PMC10734546 DOI: 10.1128/jvi.01511-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Upon the emergence of SARS-CoV-2 in the human population, it was conjectured that for this coronavirus the dynamic intra-host heterogeneity typical of RNA viruses would be toned down. Nothing of this sort is observed. Here we review the main observations on the complexity and diverse composition of SARS-CoV-2 mutant spectra sampled from infected patients, within the framework of quasispecies dynamics. The analyses suggest that the information provided by myriads of genomic sequences within infected individuals may have a predictive value of the genomic sequences that acquire epidemiological relevance. Possibilities to reconcile the presence of broad mutant spectra in the large RNA coronavirus genome with its encoding a 3' to 5' exonuclease proofreading-repair activity are considered. Indeterminations in the behavior of individual viral genomes provide a benefit for the survival of the ensemble. We propose that this concept falls in the domain of "stochastic thinking," a notion that applies also to cellular processes, as a means for biological systems to face unexpected needs.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Brenda Martínez-González
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Antoni Durán-Pastor
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
27
|
Kurkowiak M, Fletcher S, Daniels A, Mozolewski P, Silvestris DA, Król E, Marek-Trzonkowska N, Hupp T, Tait-Burkard C. Differential RNA editing landscapes in host cell versus the SARS-CoV-2 genome. iScience 2023; 26:108031. [PMID: 37876814 PMCID: PMC10590966 DOI: 10.1016/j.isci.2023.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The SARS-CoV-2 pandemic was defined by the emergence of new variants formed through virus mutation originating from random errors not corrected by viral proofreading and/or the host antiviral response introducing mutations into the viral genome. While sequencing information hints at cellular RNA editing pathways playing a role in viral evolution, here, we use an in vitro human cell infection model to assess RNA mutation types in two SARS-CoV-2 strains representing the original and the alpha variants. The variants showed both different cellular responses and mutation patterns with alpha showing higher mutation frequency with most substitutions observed being C-U, indicating an important role for apolipoprotein B mRNA editing catalytic polypeptide-like editing. Knockdown of select APOBEC3s through RNAi increased virus production in the original virus, but not in alpha. Overall, these data suggest a deaminase-independent anti-viral function of APOBECs in SARS-CoV-2 while the C-U editing itself might function to enhance genetic diversity enabling evolutionary adaptation.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sarah Fletcher
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Alison Daniels
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Infection Medicine, University of Edinburgh, Little France Crescent, UK
| | - Paweł Mozolewski
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine Medical University of Gdańsk, Gdańsk, Poland
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Cell Signalling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
28
|
Delamonica B, Davalos L, Larijani M, Anthony SJ, Liu J, MacCarthy T. Evolutionary potential of the monkeypox genome arising from interactions with human APOBEC3 enzymes. Virus Evol 2023; 9:vead047. [PMID: 37577211 PMCID: PMC10422979 DOI: 10.1093/ve/vead047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
APOBEC3, an enzyme subfamily that plays a role in virus restriction by generating mutations at particular DNA motifs or mutational 'hotspots', can drive viral mutagenesis with host-specific preferential hotspot mutations contributing to pathogen variation. While previous analysis of viral genomes from the 2022 Mpox (formerly Monkeypox) disease outbreak has shown a high frequency of C>T mutations at TC motifs, suggesting recent mutations are human APOBEC3-mediated, how emerging monkeypox virus (MPXV) strains will evolve as a consequence of APOBEC3-mediated mutations remains unknown. By measuring hotspot under-representation, depletion at synonymous sites, and a combination of the two, we analyzed APOBEC3-driven evolution in human poxvirus genomes, finding varying hotspot under-representation patterns. While the native poxvirus molluscum contagiosum exhibits a signature consistent with extensive coevolution with human APOBEC3, including depletion of TC hotspots, variola virus shows an intermediate effect consistent with ongoing evolution at the time of eradication. MPXV, likely the result of recent zoonosis, showed many genes with more TC hotspots than expected by chance (over-representation) and fewer GC hotspots than expected (under-representation). These results suggest the MPXV genome: (1) may have evolved in a host with a particular APOBEC GC hotspot preference, (2) has inverted terminal repeat (ITR) regions-which may be exposed to APOBEC3 for longer during viral replication-and longer genes likely to evolve faster, and therefore (3) has a heightened potential for future human APOBEC3-meditated evolution as the virus spreads in the human population. Our predictions of MPXV mutational potential can both help guide future vaccine development and identification of putative drug targets and add urgency to the task of containing human Mpox disease transmission and uncovering the ecology of the virus in its reservoir host.
Collapse
Affiliation(s)
- Brenda Delamonica
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Liliana Davalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
29
|
Delamonica B, Davalos L, Larijani M, Anthony SJ, Liu J, MacCarthy T. Evolutionary potential of the monkeypox genome arising from interactions with human APOBEC3 enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546779. [PMID: 37425914 PMCID: PMC10326987 DOI: 10.1101/2023.06.27.546779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
APOBEC3, an enzyme subfamily that plays a role in virus restriction by generating mutations at particular DNA motifs or mutational "hotspots," can drive viral mutagenesis with host-specific preferential hotspot mutations contributing to pathogen variation. While previous analysis of viral genomes from the 2022 Mpox (formerly Monkeypox) disease outbreak has shown a high frequency of C>T mutations at T C motifs, suggesting recent mutations are human APOBEC3-mediated, how emerging monkeypox virus (MPXV) strains will evolve as a consequence of APOBEC3-mediated mutations remains unknown. By measuring hotspot under-representation, depletion at synonymous sites, and a combination of the two, we analyzed APOBEC3-driven evolution in human poxvirus genomes, finding varying hotspot under-representation patterns. While the native poxvirus molluscum contagiosum exhibits a signature consistent with extensive coevolution with human APOBEC3, including depletion of T C hotspots, variola virus shows an intermediate effect consistent with ongoing evolution at the time of eradication. MPXV, likely the result of recent zoonosis, showed many genes with more T C hotspots than expected by chance (over-representation) and fewer G C hotspots than expected (under-representation). These results suggest the MPXV genome: 1) may have evolved in a host with a particular APOBEC G C hotspot preference, 2) has inverted terminal repeat (ITR) regions -which may be exposed to APOBEC3 for longer during viral replication- and longer genes likely to evolve faster, and therefore 3) has a heightened potential for future human APOBEC3-meditated evolution as the virus spreads in the human population. Our predictions of MPXV mutational potential can both help guide future vaccine development and identification of putative drug targets and add urgency to the task of containing human Mpox disease transmission and uncovering the ecology of the virus in its reservoir host.
Collapse
Affiliation(s)
- Brenda Delamonica
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Liliana Davalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA; Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada; Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
30
|
Ratcliff J, Simmonds P. The roles of nucleic acid editing in adaptation of zoonotic viruses to humans. Curr Opin Virol 2023; 60:101326. [PMID: 37031485 PMCID: PMC10155873 DOI: 10.1016/j.coviro.2023.101326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023]
Abstract
Following spillover, viruses must adapt to new selection pressures exerted by antiviral responses in their new hosts. In mammals, cellular defense mechanisms often include viral nucleic acid editing pathways mediated through protein families apolipoprotein-B mRNA-editing complex (APOBEC) and Adenosine Deaminase Acting on ribonucleic acid (ADAR). APOBECs induce C→U transitions in viral genomes; the APOBEC locus is highly polymorphic with variable numbers of APOBEC3 paralogs and target preferences in humans and other mammals. APOBEC3 paralogs have shaped the evolutionary history of human immunodeficiency virus, with compelling bioinformatic evidence also for its mutagenic impact on monkeypox virus and severe acute respiratory syndrome coronavirus 2. ADAR-1 induces adenose-to-inosine (A→I) substitutions in double-stranded ribonucleic acid (RNA); its role in virus adaptation is less clear, as are epigenetic modifications to viral genomes, such as methylation. Nucleic acid editing restricts evolutionary space in which viruses can explore and may restrict viral-host range.
Collapse
Affiliation(s)
- Jeremy Ratcliff
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
31
|
Saldivar-Espinoza B, Garcia-Segura P, Novau-Ferré N, Macip G, Martínez R, Puigbò P, Cereto-Massagué A, Pujadas G, Garcia-Vallve S. The Mutational Landscape of SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24109072. [PMID: 37240420 DOI: 10.3390/ijms24109072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mutation research is crucial for detecting and treating SARS-CoV-2 and developing vaccines. Using over 5,300,000 sequences from SARS-CoV-2 genomes and custom Python programs, we analyzed the mutational landscape of SARS-CoV-2. Although almost every nucleotide in the SARS-CoV-2 genome has mutated at some time, the substantial differences in the frequency and regularity of mutations warrant further examination. C>U mutations are the most common. They are found in the largest number of variants, pangolin lineages, and countries, which indicates that they are a driving force behind the evolution of SARS-CoV-2. Not all SARS-CoV-2 genes have mutated in the same way. Fewer non-synonymous single nucleotide variations are found in genes that encode proteins with a critical role in virus replication than in genes with ancillary roles. Some genes, such as spike (S) and nucleocapsid (N), show more non-synonymous mutations than others. Although the prevalence of mutations in the target regions of COVID-19 diagnostic RT-qPCR tests is generally low, in some cases, such as for some primers that bind to the N gene, it is significant. Therefore, ongoing monitoring of SARS-CoV-2 mutations is crucial. The SARS-CoV-2 Mutation Portal provides access to a database of SARS-CoV-2 mutations.
Collapse
Affiliation(s)
- Bryan Saldivar-Espinoza
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Garcia-Segura
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Nil Novau-Ferré
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Guillem Macip
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | | - Pere Puigbò
- Department of Biology, University of Turku, 20500 Turku, Finland
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Spain
- Eurecat, Technology Centre of Catalonia, Unit of Nutrition and Health, 43204 Reus, Spain
| | - Adrià Cereto-Massagué
- EURECAT Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallve
- Departament de Bioquímica i Biotecnologia, Research Group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
32
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining distinct RNA-protein interactomes of SARS-CoV-2 genomic and subgenomic RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540806. [PMID: 37293069 PMCID: PMC10245570 DOI: 10.1101/2023.05.15.540806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral defense mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA at either of two time points. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. The interactomes indicated viral associations with cell response pathways including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We validated the significance of five protein interactors predicted to exhibit antiviral activity (APOBEC3F, TRIM71, PPP1CC, LIN28B, and MSI2) using siRNA knockdowns, with each knockdown yielding increases in viral production. This study describes new technology for studying SARS-CoV-2 and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T. Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Rachel A. Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - M’bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| |
Collapse
|
33
|
De La Cruz-Montoya AH, Díaz Velásquez CE, Martínez-Gregorio H, Ruiz-De La Cruz M, Bustos-Arriaga J, Castro-Jiménez TK, Olguín-Hernández JE, Rodríguez-Sosa M, Terrazas-Valdes LI, Jiménez-Alvarez LA, Regino-Zamarripa NE, Ramírez-Martínez G, Cruz-Lagunas A, Peralta-Arrieta I, Armas-López L, Contreras-Garza BM, Palma-Cortés G, Cabello-Gutierrez C, Báez-Saldaña R, Zúñiga J, Ávila-Moreno F, Vaca-Paniagua F. Molecular transition of SARS-CoV-2 from critical patients during the first year of the COVID-19 pandemic in Mexico City. Front Cell Infect Microbiol 2023; 13:1155938. [PMID: 37260697 PMCID: PMC10227454 DOI: 10.3389/fcimb.2023.1155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Background The SARS-CoV-2 virus has caused unprecedented mortality since its emergence in late 2019. The continuous evolution of the viral genome through the concerted action of mutational forces has produced distinct variants that became dominant, challenging human immunity and vaccine development. Aim and methods In this work, through an integrative genomic approach, we describe the molecular transition of SARS-CoV-2 by analyzing the viral whole genome sequences from 50 critical COVID-19 patients recruited during the first year of the pandemic in Mexico City. Results Our results revealed differential levels of the evolutionary forces across the genome and specific mutational processes that have shaped the first two epidemiological waves of the pandemic in Mexico. Through phylogenetic analyses, we observed a genomic transition in the circulating SARS-CoV-2 genomes from several lineages prevalent in the first wave to a dominance of the B.1.1.519 variant (defined by T478K, P681H, and T732A mutations in the spike protein) in the second wave. Conclusion This work contributes to a better understanding of the evolutionary dynamics and selective pressures that act at the genomic level, the prediction of more accurate variants of clinical significance, and a better comprehension of the molecular mechanisms driving the evolution of SARS-CoV-2 to improve vaccine and drug development.
Collapse
Affiliation(s)
- Aldo Hugo De La Cruz-Montoya
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Héctor Martínez-Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Miguel Ruiz-De La Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, Mexico
| | - José Bustos-Arriaga
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Tannya Karen Castro-Jiménez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Jonadab Efraín Olguín-Hernández
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Ignacio Terrazas-Valdes
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Armando Jiménez-Alvarez
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Nora Elemi Regino-Zamarripa
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Irlanda Peralta-Arrieta
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | | - Gabriel Palma-Cortés
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Carlos Cabello-Gutierrez
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Renata Báez-Saldaña
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Laboratorio 12 de Enfermedades Pulmonares y Epigenómica del Cáncer, Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
34
|
Dudley JP. APOBECs: Our fickle friends? PLoS Pathog 2023; 19:e1011364. [PMID: 37200235 DOI: 10.1371/journal.ppat.1011364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Jaquelin P Dudley
- Department of Molecular Biosciences and LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
35
|
Bloom JD, Beichman AC, Neher RA, Harris K. Evolution of the SARS-CoV-2 Mutational Spectrum. Mol Biol Evol 2023; 40:msad085. [PMID: 37039557 PMCID: PMC10124870 DOI: 10.1093/molbev/msad085] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here, we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single-nucleotide mutations at 4-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly 2-fold decrease in the relative rate of G→T mutations in Omicron versus early clades, as was recently noted by Ruis et al. (2022. Mutational spectra distinguish SARS-CoV-2 replication niches. bioRxiv, doi:10.1101/2022.09.27.509649). There is also a decrease in the relative rate of C→T mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors, although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution and suggests that human SARS-CoV-2 may be trending toward a mutation spectrum more similar to that of other animal sarbecoviruses.
Collapse
Affiliation(s)
- Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
| | | | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
36
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection. Genome Biol 2023. [PMID: 36915185 PMCID: PMC10009825 DOI: 10.1186/s13059-023-02881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.
Collapse
|
38
|
Oligonucleotide usage in coronavirus genomes mimics that in exon regions in host genomes. Virol J 2023; 20:39. [PMID: 36859385 PMCID: PMC9976658 DOI: 10.1186/s12985-023-01995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/19/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Viruses use various host factors for their growth, and efficient growth requires efficient use of these factors. Our previous study revealed that the occurrence frequency of oligonucleotides in the influenza virus genome is distinctly different among derived hosts, and the frequency tends to adapt to the host cells in which they grow. We aimed to study the adaptation mechanisms of a zoonotic virus to host cells. METHODS Herein, we compared the frequency of oligonucleotides in the genome of alpha- and betacoronavirus with those in the genomes of humans and bats, which are typical hosts of the viruses. RESULTS By comparing the oligonucleotide frequency in coronaviruses and their host genomes, we found a statistically tested positive correlation between the frequency of coronaviruses and that of the exon regions of the host from which the virus is derived. To examine the characteristics of early-stage changes in the viral genome, which are assumed to accompany the host change from non-humans to humans, we compared the oligonucleotide frequency between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the beginning of the pandemic and the prevalent variants thereafter, and found changes towards the frequency of the host exon regions. CONCLUSIONS In alpha- and betacoronaviruses, the genome oligonucleotide frequency is thought to change in response to the cellular environment in which the virus is replicating, and actually the frequency has approached the frequency in exon regions in the host.
Collapse
|
39
|
Laxminarayana D. Perceptions into causes and consequences of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) variants. RHEUMATOLOGY & AUTOIMMUNITY 2023; 3:1-8. [DOI: 10.1002/rai2.12065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 01/02/2025]
Abstract
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) variants are emerging worldwide and pathogenicity varies widely from no symptoms to death. The SARS‐CoV‐2 is evolving as lineages like Alpha, Beta, Gamma, Epsilon, Iota, Delta, and Omicron in the course of time. The main reasons for such viral evolution are (a) the imperfect nature of SARS‐CoV‐2 RNA polymerase, and viral exonuclease mediated proofreading functions resulting in the generation of mutations in viral genomes; (b) fusions of the 5′ leader sequence to unexpected 3′ sites, and transcription regulatory sequences (TRSs) in subgenomic RNAs (sgRNAs), which result in the generation of structural variants and novel open reading frames; (c) these viruses are combated by the host type I interferons (IFNs). In such a process IFNs upregulate viral RNA editing APOBEC3G/F and ADAR1 genes, which induce mutations in viral genomes. These factors play important roles in causing viral evolution and the emergence of more efficient SARS‐CoV‐2 genomes, which escape the host immune defense system, and vaccine‐elicited antibodies and impede therapeutic strategies. The main challenges we now face are how to control future SARS‐CoV‐2 evolution, the elimination of their deleterious side effects, and the onset of new diseases as aftermaths of SARS‐CoV‐2 infections. Preventive measures like (a) the development of broadly neutralizing antibodies and novel vaccines, therapies based on genomics and proteomics data will help in avoiding, and/or minimizing SARS‐CoV‐2 infections; (b) targeted therapies, application of patient‐based precision medicine methodology can help in achieving the goal and avoiding unwanted deleterious side effects and the onset of SARS‐CoV‐2 infections mediated several diseases in future.
Collapse
|
40
|
Takahata N, Sugawara H. Role of error catastrophe in transmission ability of virus. Genes Genet Syst 2023; 97:237-246. [PMID: 36709980 DOI: 10.1266/ggs.22-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The role played by error catastrophe is explicitly taken into account in a mathematical formulation to analyze COVID-19 data. The idea is to combine the mathematical genetics formalism of the error catastrophe of mutations in virus gene loci with the standard model of epidemics, which lacks the explicit incorporation of the effect of mutation on the spreading of viruses. We apply this formalism to the case of SARS-CoV-2 virus. We assume the universality of the error catastrophe in the process of analyzing the data. This means that some basic parameter to describe the error catastrophe is independent of which group (country or city) we deal with. Concretely, we analyze Omicron variant data from South Africa and then analyze cases from Japan using the same value of the basic parameter derived in the South Africa analysis. The excellent fit between the two sets of data, one from South Africa and the other from Japan, using the common values of genetic parameters, justifies our assumption of the universality of these parameters.
Collapse
|
41
|
A Long-Running Arms Race between APOBEC1 Genes and Retroviruses in Tetrapods. J Virol 2023; 97:e0179522. [PMID: 36598198 PMCID: PMC9888297 DOI: 10.1128/jvi.01795-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Activation-induced cytidine deaminase/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) proteins are cytosine deaminases implicated in diverse biological functions. APOBEC1 (A1) proteins have long been thought to regulate lipid metabolism, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. Endogenous retroviruses (ERVs) document past retroviral infections and are ubiquitous within the vertebrate genomes. Here, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in ERVs, and interrogate the evolutionary arms race between A1 genes and ERVs across vertebrate species. We find that A1 genes are widely present in tetrapods, recurrently amplified and lost in certain lineages, suggesting that A1 genes might have originated during the early evolution of tetrapods. A1-mediated mutation footprints can be detected in ERVs across tetrapods. Moreover, A1 genes appear to have experienced episodic positive selection in many tetrapod lineages. Taken together, we propose that a long-running arms race between A1 genes and retroviruses might have persisted throughout the evolutionary course of tetrapods. IMPORTANCE APOBEC3 (A3) genes have been thought to function in defense against retroviruses, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. In this study, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in endogenous retroviruses (ERVs), and explore the evolutionary arms race between A1 genes and ERVs across vertebrate species. We found A1 proteins originated during the early evolution of tetrapods, and detected the footprints of A1-induced hypermutations in retroviral fossils. A1 genes appear to have experienced pervasive positive selection in tetrapods. Our study indicates a long-running arms race between A1 genes and retroviruses taking place throughout the evolutionary course of tetrapods.
Collapse
|
42
|
Atypical Mutational Spectrum of SARS-CoV-2 Replicating in the Presence of Ribavirin. Antimicrob Agents Chemother 2023; 67:e0131522. [PMID: 36602354 PMCID: PMC9872624 DOI: 10.1128/aac.01315-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.
Collapse
|
43
|
Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A. Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge. Int J Mol Sci 2023; 24:2264. [PMID: 36768588 PMCID: PMC9917121 DOI: 10.3390/ijms24032264] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
The first 2 years of the COVID-19 pandemic were mainly characterized by recurrent mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 emerging independently across different variants of concern (Alpha, Beta, Gamma, and Delta). Such homoplasy is a marker of convergent evolution. Since Spring 2022 and the third year of the pandemic, with the advent of Omicron and its sublineages, convergent evolution has led to the observation of different lineages acquiring an additional group of mutations at different amino acid residues, namely R346, K444, N450, N460, F486, F490, Q493, and S494. Mutations at these residues have become increasingly prevalent during Summer and Autumn 2022, with combinations showing increased fitness. The most likely reason for this convergence is the selective pressure exerted by previous infection- or vaccine-elicited immunity. Such accelerated evolution has caused failure of all anti-Spike monoclonal antibodies, including bebtelovimab and cilgavimab. While we are learning how fast coronaviruses can mutate and recombine, we should reconsider opportunities for economically sustainable escape-proof combination therapies, and refocus antibody-mediated therapeutic efforts on polyclonal preparations that are less likely to allow for viral immune escape.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Rodrigo Quiroga
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordova 5000, Argentina
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65201, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Timmerman AL, Kaczorowska J, Deijs M, Bakker M, van der Hoek L. Control of Human Anelloviruses by Cytosine to Uracil Genome Editing. mSphere 2022; 7:e0050622. [PMID: 36374042 PMCID: PMC9769745 DOI: 10.1128/msphere.00506-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Anelloviruses are the most common viruses infecting humans. Every human carries a nonpathogenic personal anellovirus virome (anellome), yet it is unknown which mechanisms contribute to its stability. Here, we assessed the dynamics and impact of a host antiviral defense mechanism-cytidine deaminase activity leading to C to U editing in anelloviruses-on the stability of the anellome. We investigated anellome sequence data obtained from serum samples collected every 6 months from two healthy subjects followed for more than 30 years. The subjects were infected by a total of 64 anellovirus lineages. Minus-stranded C to U editing was observed in lineages belonging to the Alpha-, Beta-, and Gammatorquevirus genera. The edited genomes were present within virus particles, therefore editing must have occurred at the late stages of the virus life cycle. Editing was favored by 5'-TC contexts in the virus genome, indicating that apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like, catalytic subunit 3 or A3 (APOBEC3) proteins are involved. Within a lineage, mutational dynamics varied over time and few fixations of mutations were detected, indicating that C to U editing is a dead end for a virus genome. We detected an editing coldspot in the GC-rich regions, suggesting that the GC-rich region is crucial for genome packaging, since only packaged virus particles were included in the analysis. Finally, we noticed a lineage-specific reduced concentration after an editing event, yet no clearance. In conclusion, cytidine deaminase activity does not clear anelloviruses, nor does it play a major role in virus evolution, but it does contribute to the stability of the anellome. IMPORTANCE Despite significant attention on anellovirus research, the interaction between the anellovirus virome and the human host remains unknown. We show the dynamics of APOBEC3-mediated cytidine deaminase activity on anelloviruses during a 30-year period of chronic infection and postulate that this antiviral mechanism controls anelloviruses. These results expand our knowledge of anellovirus-host interactions, which may be important for the design of gene therapies.
Collapse
Affiliation(s)
- Anne L. Timmerman
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Joanna Kaczorowska
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Margreet Bakker
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lia van der Hoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Aroldi A, Angaroni F, D’Aliberti D, Spinelli S, Crespiatico I, Crippa V, Piazza R, Graudenzi A, Ramazzotti D. Characterization of SARS-CoV-2 Mutational Signatures from 1.5+ Million Raw Sequencing Samples. Viruses 2022; 15:7. [PMID: 36680048 PMCID: PMC9864147 DOI: 10.3390/v15010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
We present a large-scale analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) substitutions, considering 1,585,456 high-quality raw sequencing samples, aimed at investigating the existence and quantifying the effect of mutational processes causing mutations in SARS-CoV-2 genomes when interacting with the human host. As a result, we confirmed the presence of three well-differentiated mutational processes likely ruled by reactive oxygen species (ROS), apolipoprotein B editing complex (APOBEC), and adenosine deaminase acting on RNA (ADAR). We then evaluated the activity of these mutational processes in different continental groups, showing that some samples from Africa present a significantly higher number of substitutions, most likely due to higher APOBEC activity. We finally analyzed the activity of mutational processes across different SARS-CoV-2 variants, and we found a significantly lower number of mutations attributable to APOBEC activity in samples assigned to the Omicron variant.
Collapse
Affiliation(s)
- Andrea Aroldi
- Hematology and Clinical Research Unit, San Gerardo Hospital, Via G. B. Pergolesi 33, 20900 Monza, Italy
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Fabrizio Angaroni
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Viale Sarca 336, 20100 Milano, Italy
- Computational Biology Research Centre, Human Technopole, Viale Rita Levi Montalcini 1, 20157 Milano, Italy
| | - Deborah D’Aliberti
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Silvia Spinelli
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Ilaria Crespiatico
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Valentina Crippa
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Center—B4, Via Follereau 3, 20854 Vedano al Lambro, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca, Viale Sarca 336, 20100 Milano, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Center—B4, Via Follereau 3, 20854 Vedano al Lambro, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
46
|
Laxminarayana D. Molecular insights into onset of autoimmunity in SARS-CoV-2 infected patients. RHEUMATOLOGY & AUTOIMMUNITY 2022; 2:198-202. [PMID: 36714799 PMCID: PMC9874720 DOI: 10.1002/rai2.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Some of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients are facing long-term devastating effects like induction of autoimmune diseases. Here, I discuss molecular mechanisms and risk factors involved in the induction of autoimmune diseases after SARS-CoV-2 infections. Transcript editing genes were upregulated during SARS-CoV-2 infections, which might have edited host gene transcripts and paved the way for autoantigens generation and presented as nonself to generate autoantibodies followed by auto immunogenicity after SARS-CoV-2 infections. Therefore, some SARS-CoV-2 patients acquire autoimmunity. The transient and/or innocuous autoimmune response in some SARS-CoV-2 infected patients may be due to a lack of repeated production of autoantibodies to host autoantigens and/or viral antigens, which are needed to boost autoimmune response. In the future, SARS-CoV-2 mediated autoimmune disease onset will be a challenging task. Therefore, possible preventive measures and strategies to minimize and/or preclude such SARS-CoV-2 mediated autoimmune diseases have been presented in this commentary.
Collapse
|
47
|
Cellular miR-6741-5p as a Prognostic Biomarker Predicting Length of Hospital Stay among COVID-19 Patients. Viruses 2022; 14:v14122681. [PMID: 36560686 PMCID: PMC9781286 DOI: 10.3390/v14122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Wide variability exists with host response to SARS-CoV-2 infection among individuals. Circulatory micro RNAs (miRNAs) are being recognized as promising biomarkers for complex traits, including viral pathogenesis. We hypothesized that circulatory miRNAs at 48 h post hospitalization may predict the length of stay (LOS) and prognosis of COVID-19 patients. Plasma miRNA levels were compared between three groups: (i) healthy volunteers (C); (ii) COVID-19 patients treated with remdesivir (an antiviral) plus dexamethasone (a glucocorticoid) (with or without baricitinib, a Janus kinase inhibitor) on the day of hospitalization (I); and COVID-19 patients at 48 h post treatment (T). Results showed that circulatory miR-6741-5p expression levels were significantly different between groups C and I (p < 0.0000001); I and T (p < 0.0000001); and C and T (p = 0.001). Our ANOVA model estimated that all patients with less than 12.42 Log2 CPM had a short LOS, or a good prognosis, whereas all patients with over 12.42 Log2 CPM had a long LOS, or a poor prognosis. In sum, we show that circulatory miR-6741-5p may serve as a prognostic biomarker effectively predicting mortality risk and LOS of hospitalized COVID-19 patients.
Collapse
|
48
|
Zhao L, Hall M, de Cesare M, MacIntyre-Cockett G, Lythgoe K, Fraser C, Bonsall D, Golubchik T, Ferretti L. The mutational spectrum of SARS-CoV-2 genomic and antigenomic RNA. Proc Biol Sci 2022; 289:20221747. [PMID: 36382519 PMCID: PMC9667359 DOI: 10.1098/rspb.2022.1747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The raw material for viral evolution is provided by intra-host mutations occurring during replication, transcription or post-transcription. Replication and transcription of Coronaviridae proceed through the synthesis of negative-sense 'antigenomes' acting as templates for positive-sense genomic and subgenomic RNA. Hence, mutations in the genomes of SARS-CoV-2 and other coronaviruses can occur during (and after) the synthesis of either negative-sense or positive-sense RNA, with potentially distinct patterns and consequences. We explored for the first time the mutational spectrum of SARS-CoV-2 (sub)genomic and anti(sub)genomic RNA. We use a high-quality deep sequencing dataset produced using a quantitative strand-aware sequencing method, controlled for artefacts and sequencing errors, and scrutinized for accurate detection of within-host diversity. The nucleotide differences between negative- and positive-sense strand consensus vary between patients and do not show dependence on age or sex. Similarities and differences in mutational patterns between within-host minor variants on the two RNA strands suggested strand-specific mutations or editing by host deaminases and oxidative damage. We observe generally neutral and slight negative selection on the negative strand, contrasting with purifying selection in ORF1a, ORF1b and S genes of the positive strand of the genome.
Collapse
Affiliation(s)
- Lele Zhao
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | | | | | - Katrina Lythgoe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Christophe Fraser
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - David Bonsall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tanya Golubchik
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK,Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, University of Sydney, Sydney NSW 2006, Australia
| | | | - Luca Ferretti
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
49
|
Modenini G, Abondio P, Boattini A. The coevolution between APOBEC3 and retrotransposons in primates. Mob DNA 2022; 13:27. [PMID: 36443831 PMCID: PMC9706992 DOI: 10.1186/s13100-022-00283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2022] Open
Abstract
Retrotransposons are genetic elements with the ability to replicate in the genome using reverse transcriptase: they have been associated with the development of different biological structures, such as the Central Nervous System (CNS), and their high mutagenic potential has been linked to various diseases, including cancer and neurological disorders. Throughout evolution and over time, Primates and Homo had to cope with infections from viruses and bacteria, and also with endogenous retroelements. Therefore, host genomes have evolved numerous methods to counteract the activity of endogenous and exogenous pathogens, and the APOBEC3 family of mutators is a prime example of a defensive mechanism in this context.In most Primates, there are seven members of the APOBEC3 family of deaminase proteins: among their functions, there is the ability to inhibit the mobilization of retrotransposons and the functionality of viruses. The evolution of the APOBEC3 proteins found in Primates is correlated with the expansion of two major families of retrotransposons, i.e. ERV and LINE-1.In this review, we will discuss how the rapid expansion of the APOBEC3 family is linked to the evolution of retrotransposons, highlighting the strong evolutionary arms race that characterized the history of APOBEC3s and endogenous retroelements in Primates. Moreover, the possible role of this relationship will be assessed in the context of embryonic development and brain-associated diseases.
Collapse
Affiliation(s)
- Giorgia Modenini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paolo Abondio
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alessio Boattini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Saldivar-Espinoza B, Macip G, Garcia-Segura P, Mestres-Truyol J, Puigbò P, Cereto-Massagué A, Pujadas G, Garcia-Vallve S. Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks. Int J Mol Sci 2022; 23:ijms232314683. [PMID: 36499005 PMCID: PMC9736107 DOI: 10.3390/ijms232314683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Predicting SARS-CoV-2 mutations is difficult, but predicting recurrent mutations driven by the host, such as those caused by host deaminases, is feasible. We used machine learning to predict which positions from the SARS-CoV-2 genome will hold a recurrent mutation and which mutations will be the most recurrent. We used data from April 2021 that we separated into three sets: a training set, a validation set, and an independent test set. For the test set, we obtained a specificity value of 0.69, a sensitivity value of 0.79, and an Area Under the Curve (AUC) of 0.8, showing that the prediction of recurrent SARS-CoV-2 mutations is feasible. Subsequently, we compared our predictions with updated data from January 2022, showing that some of the false positives in our prediction model become true positives later on. The most important variables detected by the model's Shapley Additive exPlanation (SHAP) are the nucleotide that mutates and RNA reactivity. This is consistent with the SARS-CoV-2 mutational bias pattern and the preference of some host deaminases for specific sequences and RNA secondary structures. We extend our investigation by analyzing the mutations from the variants of concern Alpha, Beta, Delta, Gamma, and Omicron. Finally, we analyzed amino acid changes by looking at the predicted recurrent mutations in the M-pro and spike proteins.
Collapse
Affiliation(s)
- Bryan Saldivar-Espinoza
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Guillem Macip
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Garcia-Segura
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Júlia Mestres-Truyol
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pere Puigbò
- Department of Biology, University of Turku, 20500 Turku, Finland
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43007 Tarragona, Spain
- Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, 43204 Reus, Spain
| | - Adrià Cereto-Massagué
- EURECAT Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), 43204 Reus, Spain
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallve
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence:
| |
Collapse
|