1
|
Llamas-González YY, Campos D, Pascale JM, Arbiza J, González-Santamaría J. A Functional Ubiquitin-Proteasome System is Required for Efficient Replication of New World Mayaro and Una Alphaviruses. Viruses 2019; 11:v11040370. [PMID: 31018496 PMCID: PMC6520948 DOI: 10.3390/v11040370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mayaro (MAYV) and Una (UNAV) are emerging arboviruses belonging to the Alphavirus genus of the Togaviridae family. These viruses can produce febrile disease with symptoms such as fever, headache, myalgia, skin rash and incapacitating poly-arthralgia. Serological studies indicate that both viruses are circulating in different countries in Latin America. Viruses need the host cell machinery and resources to replicate effectively. One strategy to find new antivirals consists of identifying key cellular pathways or factors that are essential for virus replication. In this study, we analyzed the role of the ubiquitin-proteasome system (UPS) in MAYV and UNAV replication. Vero-E6 or HeLa cells were treated with the proteasome inhibitors MG132 or Lactacystin, and viral progeny production was quantified using a plaque assay method. In addition, the synthesis of viral proteins was analyzed by Western blot and confocal microscopy. Our results indicate that treatment with proteasome inhibitors decreases MAYV and UNAV protein synthesis, and also causes a significant dose-dependent decrease in MAYV and UNAV replication. Proteasome activity seems to be important at the early stages of MAYV replication. These findings suggest that the ubiquitin-proteasome system is a possible pharmacological target to inhibit these neglected alphaviruses.
Collapse
Affiliation(s)
- Yessica Y Llamas-González
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Panama.
- Programa de Doctorado en Ciencias Biologicas, Universidad de la República, Montevideo 11200, Uruguay.
| | - Dalkiria Campos
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Panama.
| | - Juan M Pascale
- Dirección de Investigación y Desarrollo Tecnológico, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Panama.
- Escuela de Medicina, Universidad de Panamá, Panamá, Panama.
| | - Juan Arbiza
- Seccción de Virología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá 0816-02593, Panama.
- Dirección de Investigación, Universidad Interamericana de Panamá, Panamá 9865, Panama.
| |
Collapse
|
2
|
Barrado-Gil L, Galindo I, Martínez-Alonso D, Viedma S, Alonso C. The ubiquitin-proteasome system is required for African swine fever replication. PLoS One 2017; 12:e0189741. [PMID: 29244872 PMCID: PMC5731689 DOI: 10.1371/journal.pone.0189741] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 01/28/2023] Open
Abstract
Several viruses manipulate the ubiquitin-proteasome system (UPS) to initiate a productive infection. Determined viral proteins are able to change the host’s ubiquitin machinery and some viruses even encode their own ubiquitinating or deubiquitinating enzymes. African swine fever virus (ASFV) encodes a gene homologous to the E2 ubiquitin conjugating (UBC) enzyme. The viral ubiquitin-conjugating enzyme (UBCv1) is expressed throughout ASFV infection and accumulates at late times post infection. UBCv is also present in the viral particle suggesting that the ubiquitin-proteasome pathway could play an important role at early ASFV infection. We determined that inhibition of the final stage of the ubiquitin-proteasome pathway blocked a post-internalization step in ASFV replication in Vero cells. Under proteasome inhibition, ASF viral genome replication, late gene expression and viral production were severely reduced. Also, ASFV enhanced proteasome activity at late times and the accumulation of polyubiquitinated proteins surrounding viral factories. Core-associated and/or viral proteins involved in DNA replication may be targets for the ubiquitin-proteasome pathway that could possibly assist virus uncoating at final core breakdown and viral DNA release. At later steps, polyubiquitinated proteins at viral factories could exert regulatory roles in cell signaling.
Collapse
Affiliation(s)
- Lucía Barrado-Gil
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Inmaculada Galindo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Diego Martínez-Alonso
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Sergio Viedma
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Covadonga Alonso
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
3
|
Ward C, Maselko M, Lupfer C, Prescott M, Pastey MK. Interaction of the Human Respiratory Syncytial Virus matrix protein with cellular adaptor protein complex 3 plays a critical role in trafficking. PLoS One 2017; 12:e0184629. [PMID: 29028839 PMCID: PMC5640227 DOI: 10.1371/journal.pone.0184629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023] Open
Abstract
Human Respiratory Syncytial Virus (HRSV) is a leading cause of bronchopneumonia in infants and the elderly. To date, knowledge of viral and host protein interactions within HRSV is limited and are critical areas of research. Here, we show that HRSV Matrix (M) protein interacts with the cellular adaptor protein complex 3 specifically via its medium subunit (AP-3Mu3A). This novel protein-protein interaction was first detected via yeast-two hybrid screen and was further confirmed in a mammalian system by immunofluorescence colocalization and co-immunoprecipitation. This novel interaction is further substantiated by the presence of a known tyrosine-based adaptor protein MU subunit sorting signal sequence, YXXФ: where Ф is a bulky hydrophobic residue, which is conserved across the related RSV M proteins. Analysis of point-mutated HRSV M derivatives indicated that AP-3Mu3A- mediated trafficking is contingent on the presence of the tyrosine residue within the YXXL sorting sequence at amino acids 197–200 of the M protein. AP-3Mu3A is up regulated at 24 hours post-infection in infected cells versus mock-infected HEp2 cells. Together, our data suggests that the AP-3 complex plays a critical role in the trafficking of HRSV proteins specifically matrix in epithelial cells. The results of this study add new insights and targets that may lead to the development of potential antivirals and attenuating mutations suitable for candidate vaccines in the future.
Collapse
Affiliation(s)
- Casey Ward
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Maciej Maselko
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher Lupfer
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Meagan Prescott
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Manoj K. Pastey
- Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
4
|
Troupin A, Londono-Renteria B, Conway MJ, Cloherty E, Jameson S, Higgs S, Vanlandingham DL, Fikrig E, Colpitts TM. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochim Biophys Acta Gen Subj 2016; 1860:1898-909. [PMID: 27241849 PMCID: PMC4949077 DOI: 10.1016/j.bbagen.2016.05.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
Abstract
Background Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. Methods We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. Results The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. Conclusions We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. General significance Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector. A novel mosquito ubiquitin, Ub3881, is identified in Aedes aegypti. Ub3881 is shown to have antiviral functions during dengue virus infection of the mosquito. Ub3881 targets a dengue viral protein for degradation during infection. Future dengue virus prevention strategies could incorporate Ub3881 as a target to prevent mosquito infection.
Collapse
Affiliation(s)
- Andrea Troupin
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, United States
| | - Erin Cloherty
- Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, LA 70112, United States
| | - Samuel Jameson
- Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, LA 70112, United States
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, United States; Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Dana L Vanlandingham
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, United States; Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, United States
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - Tonya M Colpitts
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
5
|
Paradkar PN, Duchemin JB, Rodriguez-Andres J, Trinidad L, Walker PJ. Cullin4 Is Pro-Viral during West Nile Virus Infection of Culex Mosquitoes. PLoS Pathog 2015; 11:e1005143. [PMID: 26325027 PMCID: PMC4556628 DOI: 10.1371/journal.ppat.1005143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/12/2015] [Indexed: 01/01/2023] Open
Abstract
Although mosquitoes serve as vectors of many pathogens of public health importance, their response to viral infection is poorly understood. It also remains to be investigated whether viruses deploy some mechanism to be able to overcome this immune response. Here, we have used an RNA-Seq approach to identify differentially regulated genes in Culex quinquefasciatus cells following West Nile virus (WNV) infection, identifying 265 transcripts from various cellular pathways that were either upregulated or downregulated. Ubiquitin-proteasomal pathway genes, comprising 12% of total differentially regulated genes, were selected for further validation by real time RT-qPCR and functional analysis. It was found that treatment of infected cells with proteasomal inhibitor, MG-132, decreased WNV titers, indicating importance of this pathway during infection process. In infection models, the Culex ortholog of mammalian Cul4A/B (cullin RING ubiquitin ligase) was found to be upregulated in vitro as well as in vivo, especially in midguts of mosquitoes. Gene knockdown using dsRNA and overexpression studies indicated that Culex Cul4 acts as a pro-viral protein by degradation of CxSTAT via ubiquitin-proteasomal pathway. We also show that gene knockdown of Culex Cul4 leads to activation of the Jak-STAT pathway in mosquitoes leading to decrease viral replication in the body as well as saliva. Our results suggest a novel mechanism adopted by WNV to overcome mosquito immune response and increase viral replication. Mosquitoes are responsible for transmitting a large number of human and livestock viruses, like West Nile, dengue and Japanese encephalitis viruses. Infection of female mosquitoes with these viruses during blood feeding elicits an immune response. It is not known how the viruses manage to replicate in spite of this antiviral response. We used an unbiased transcriptome sequencing approach to identify genes differentially regulated after WNV infection resulting in 265 transcripts from various cellular pathways. Ubiquitin-proteasomal pathway, responsible for protein degradation, was found to be important during viral infection in mosquito cells. Using in vitro and in vivo infection models, we identified Culex Cul4 to be acting as pro-viral protein, increasing viral titers. Knockdown of Cul4 in Culex mosquitoes decreased viral titers in mosquito saliva. Identification of this novel immune evasion mechanism adopted by WNV provides new insights into transmission of arbovirus and interaction of WNV with its mosquito vector.
Collapse
Affiliation(s)
- Prasad N. Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail:
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Julio Rodriguez-Andres
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Lee Trinidad
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Peter J. Walker
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Zhu JD, Meng W, Wang XJ, Wang HCR. Broad-spectrum antiviral agents. Front Microbiol 2015; 6:517. [PMID: 26052325 PMCID: PMC4440912 DOI: 10.3389/fmicb.2015.00517] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/09/2015] [Indexed: 12/24/2022] Open
Abstract
Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Jun-Da Zhu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Wen Meng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Hwa-Chain R Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville TN, USA
| |
Collapse
|
7
|
Calistri A, Munegato D, Carli I, Parolin C, Palù G. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells 2014; 3:386-417. [PMID: 24805990 PMCID: PMC4092849 DOI: 10.3390/cells3020386] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| |
Collapse
|
8
|
Obata K, Kojima T, Masaki T, Okabayashi T, Yokota S, Hirakawa S, Nomura K, Takasawa A, Murata M, Tanaka S, Fuchimoto J, Fujii N, Tsutsumi H, Himi T, Sawada N. Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS One 2013; 8:e70225. [PMID: 24058438 PMCID: PMC3776807 DOI: 10.1371/journal.pone.0070225] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 06/18/2013] [Indexed: 12/24/2022] Open
Abstract
The human nasal epithelium is the first line of defense during respiratory virus infection. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma and severe lower respiratory tract disease in infants and young children. We previously reported in human nasal epithelial cells (HNECs), the replication and budding of RSV and the epithelial responses, including release of proinflammatory cytokines and enhancement of the tight junctions, are in part regulated via an NF-κB pathway. In this study, we investigated the effects of the NF-κB in HNECs infected with RSV. Curcumin prevented the replication and budding of RSV and the epithelial responses to it without cytotoxicity. Furthermore, the upregulation of the epithelial barrier function caused by infection with RSV was enhanced by curcumin. Curcumin also has wide pharmacokinetic effects as an inhibitor of NF-κB, eIF-2α dephosphorylation, proteasome and COX2. RSV-infected HNECs were treated with the eIF-2α dephosphorylation blocker salubrinal and the proteasome inhibitor MG132, and inhibitors of COX1 and COX2. Treatment with salubrinal, MG132 and COX2 inhibitor, like curcumin, prevented the replication of RSV and the epithelial responses, and treatment with salubrinal and MG132 enhanced the upregulation of tight junction molecules induced by infection with RSV. These results suggest that curcumin can prevent the replication of RSV and the epithelial responses to it without cytotoxicity and may act as therapy for severe lower respiratory tract disease in infants and young children caused by RSV infection.
Collapse
Affiliation(s)
- Kazufumi Obata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- * E-mail:
| | - Tomoyuki Masaki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamaki Okabayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shinichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Hirakawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuaki Nomura
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jun Fuchimoto
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobuhiro Fujii
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
9
|
van Knippenberg I, Fragkoudis R, Elliott RM. The transient nature of Bunyamwera orthobunyavirus NSs protein expression: effects of increased stability of NSs protein on virus replication. PLoS One 2013; 8:e64137. [PMID: 23667701 PMCID: PMC3648540 DOI: 10.1371/journal.pone.0064137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The NSs proteins of bunyaviruses are the viral interferon antagonists, counteracting the host's antiviral response to infection. During high-multiplicity infection of cultured mammalian cells with Bunyamwera orthobunyavirus (BUNV), NSs is rapidly degraded after reaching peak levels of expression at 12hpi. Through the use of inhibitors this was shown to be the result of proteasomal degradation. A recombinant virus (rBUN4KR), in which all four lysine residues in NSs were replaced by arginine residues, expresses an NSs protein (NSs4KR) that is resistant to degradation, confirming that degradation is lysine-dependent. However, despite repeated attempts, no direct ubiquitylation of NSs in infected cells could be demonstrated. This suggests that degradation of NSs, although lysine-dependent, may be achieved through an indirect mechanism. Infection of cultured mammalian cells or mice indicated no disadvantage for the virus in having a non-degradable NSs protein: in fact rBUN4KR had a slight growth advantage over wtBUNV in interferon-competent cells, presumably due to the increased and prolonged presence of NSs. In cultured mosquito cells there was no difference in growth between wild-type BUNV and rBUN4KR, but surprisingly NSs4KR was not stabilised compared to the wild-type NSs protein.
Collapse
Affiliation(s)
- Ingeborg van Knippenberg
- Biomedical Sciences Research Centre, University of St. Andrews, St. Andrews, Fife, Scotland, United Kingdom
| | - Rennos Fragkoudis
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Richard M. Elliott
- Biomedical Sciences Research Centre, University of St. Andrews, St. Andrews, Fife, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
López T, Silva-Ayala D, López S, Arias CF. Replication of the rotavirus genome requires an active ubiquitin-proteasome system. J Virol 2011; 85:11964-71. [PMID: 21900156 PMCID: PMC3209302 DOI: 10.1128/jvi.05286-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/31/2011] [Indexed: 01/13/2023] Open
Abstract
Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication.
Collapse
Affiliation(s)
- Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico.
| | | | | | | |
Collapse
|
11
|
Gustin JK, Moses AV, Früh K, Douglas JL. Viral takeover of the host ubiquitin system. Front Microbiol 2011; 2:161. [PMID: 21847386 PMCID: PMC3147166 DOI: 10.3389/fmicb.2011.00161] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/14/2011] [Indexed: 01/29/2023] Open
Abstract
Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage.
Collapse
Affiliation(s)
- Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University Beaverton, OR, USA
| | | | | | | |
Collapse
|
12
|
Harcourt JL, Caidi H, Anderson LJ, Haynes LM. Evaluation of the Calu-3 cell line as a model of in vitro respiratory syncytial virus infection. J Virol Methods 2011; 174:144-9. [PMID: 21458491 PMCID: PMC7112923 DOI: 10.1016/j.jviromet.2011.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/18/2011] [Accepted: 03/24/2011] [Indexed: 12/23/2022]
Abstract
Respiratory syncytial virus (RSV) replication is primarily limited to the upper respiratory tract epithelium and primary, differentiated normal human bronchial epithelial cells (NHBE) have, therefore, been considered a good system for in vitro analysis of lung tissue response to respiratory virus infection and virus–host interactions. However, NHBE cells are expensive, difficult to culture, and vary with the source patient. An alternate approach is to use a continuous cell line that has features of bronchial epithelial cells such as Calu-3, an epithelial cell line derived from human lung adenocarcinoma, as an in vitro model of respiratory virus infection. The results show that Calu-3 fully polarize when grown on permeable supports as liquid-covered cultures. Polarized Calu-3 are susceptible to RSV infection and release infectious virus primarily from the apical surface, consistent with studies in NHBE cells. The data demonstrate that polarized Calu-3 may serve as a useful in vitro model to study host responses to RSV infection.
Collapse
Affiliation(s)
- Jennifer L Harcourt
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Gastroenteritis and Respiratory Virus Lab Branch, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
13
|
Barry M, van Buuren N, Burles K, Mottet K, Wang Q, Teale A. Poxvirus exploitation of the ubiquitin-proteasome system. Viruses 2010; 2:2356-2380. [PMID: 21994622 PMCID: PMC3185573 DOI: 10.3390/v2102356] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination plays a critical role in many cellular processes. A growing number of viruses have evolved strategies to exploit the ubiquitin-proteasome system, including members of the Poxviridae family. Members of the poxvirus family have recently been shown to encode BTB/kelch and ankyrin/F-box proteins that interact with cullin-3 and cullin-1 based ubiquitin ligases, respectively. Multiple members of the poxvirus family also encode ubiquitin ligases with intrinsic activity. This review describes the numerous mechanisms that poxviruses employ to manipulate the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Michele Barry
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +1 780 492-0702; Fax: +1 780 492-7521
| | | | | | | | | | | |
Collapse
|
14
|
Viral hijacking of the host ubiquitin system to evade interferon responses. Curr Opin Microbiol 2010; 13:517-23. [PMID: 20699190 PMCID: PMC2939720 DOI: 10.1016/j.mib.2010.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/22/2010] [Accepted: 05/26/2010] [Indexed: 01/28/2023]
Abstract
The post-translational attachment of ubiquitin or ubiquitin-like modifiers (ULMs) to proteins regulates many cellular processes including the generation of innate and adaptive immune responses to pathogens. Vice versa, pathogens counteract immune defense by inhibiting or redirecting the ubiquitination machinery of the host. A common immune evasion strategy is for viruses to target host immunoproteins for proteasomal or lysosomal degradation by employing viral or host ubiquitin ligases. By degrading key host adaptor and signaling molecules, viruses thus disable multiple immune response pathways including the production of and response to interferons as well as other innate host defense mechanisms. Recent work further revealed that viruses inhibit the ligation of ubiquitin or ULMs or remove ubiquitin from host cell proteins. Thus, viruses succeed in either stabilizing negative regulators of innate immune signaling or thwart host cell proteins that are activated by ubiquitin or ULM-modification.
Collapse
|