1
|
Jia WF, Wang AP, Wu Z, Lei XN, Cheng YT, Zhu SY. Current status of recombinant duck enteritis virus vector vaccine research. Front Vet Sci 2025; 12:1453150. [PMID: 39974164 PMCID: PMC11836020 DOI: 10.3389/fvets.2025.1453150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Duck enteritis virus (DEV), the pathogen of duck viral enteritis, belongs to the α-herpesvirus subfamily. Like other herpesviruses, it has a large genome with multiple non-coding and non-essential regions for viral replication. It is suitable as a live virus vector for inserting and expressing antigenic genes from other pathogens to develop multivalent vaccines. With the advancement of molecular biology research and experimental technology, genetic modification of the DEV genome has matured, leading to the successful construction of recombinant DEV live vector vaccines. These vaccines have demonstrated the ability to resist DEV and other pathogens, showing potential as recombinant viral vaccine vectors and playing a crucial role in the development of new avian vaccines. This article provides an overview of the progress of research on recombinant vaccines using DEV as the vector. It includes the biological characteristics of DEV and its advantages and limitations as a vaccine vector, methods for constructing recombinant DEV, the technical platform for efficiently building recombinant DEV, factors affecting the immune protection efficacy of recombinant DEV, and the application of recombinant DEV in vaccine development. Aiming to provide a reference for the development of duck enteritis virus vector-based vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Shan-Yuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| |
Collapse
|
2
|
Huo SX, Zhu YC, Chen L, Yun T, Ye WC, Hua JG, Ni Z, Xiang SR, Ding FZ, Gao X, Liu HB, Bao ED, Zhang C. Complete Genome Sequence and Construction of an Infectious Bacterial Artificial Chromosome Clone of a Virulent Duck Enteritis Virus Strain XJ. Transbound Emerg Dis 2024; 2024:1746963. [PMID: 40303036 PMCID: PMC12016869 DOI: 10.1155/2024/1746963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/02/2025]
Abstract
In 2021, a highly virulent strain of duck enteritis virus (DEV), designated as DEV XJ, was isolated from Zhejiang, China, and its complete genome, spanning 162,234 bp with 78 predicted open reading frames (ORFs), was sequenced. While showing relative homology to the DEV CV strain, DEV XJ exhibited distinctions in 38 ORFs, including various immunogenic and virulence-related genes. Amino acid variation analysis, focusing on UL6 and LORF3, indicated a high degree of homology between DEV XJ and the 2085 strain from Europe, as well as the DEV DP-AS-Km-19 strain from India. Subsequently, a full-length infectious bacterial artificial chromosome clone (BAC) of DEV XJ was successfully constructed to delve into the pathogenic mechanisms of this virulent strain. XJ BAC demonstrated substantial similarity to the parental DEV XJ in both in vitro growth properties and the induction of typical pathogenic symptoms in sheldrakes. Furthermore, the US3, LORF3, UL21, and UL36 genes were individually deleted using a two-step RED recombination approach based on the infectious BAC clone. Our findings revealed that the UL21 and UL36 genes play crucial roles in viral proliferation. Although the US3 and LORF3 genes were dispensable for viral replication and cell-to-cell transmission in vitro, they attenuated the replication and transmission efficiency of DEV compared to the WT. In summary, this study accomplished the whole-genome sequencing of a clinically virulent DEV strain and the successful construction of an infectious DEV XJ clone. Moreover, the functional roles of the above-mentioned mutant genes were preliminarily explored through the analysis of their in vitro biological characteristics.
Collapse
Affiliation(s)
- Su-xin Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yin-chu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei-cheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiong-gang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sheng-rui Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science and Technology, Zhejiang A&F University, Zhejiang 311300, China
| | - Fang-zhou Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Animal Science and Technology, Zhejiang A&F University, Zhejiang 311300, China
| | - Xu Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Han-bin Liu
- Guangdong Zhongkeda Biotechnology Services Co., Ltd., Shenzhen 518000, China
| | - En-dong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Establishment and application of a PCR assay for the identification of virulent and attenuated duck plague virus DNA in cotton swabs. Poult Sci 2023; 102:102555. [PMID: 36907124 PMCID: PMC10024229 DOI: 10.1016/j.psj.2023.102555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Duck plague is an acute, febrile, and septic infectious disease caused by duck plague virus (DPV), which causes serious harm to the duck industry in China. Ducks latently infected with DPV display a clinically healthy state, which is one of the epidemiological characteristics of duck plague. In the present study, to rapidly distinguish vaccine-immunized ducks from wild virus-infected ducks during production, a PCR assay based on the newly identified LORF5 fragment was developed to effectively and accurately identify viral DNA in cotton swab samples and was used to assess artificial infection models and clinical samples. The results showed that the established PCR method had good specificity and that only the virulent and attenuated DNA of duck plague virus was specifically amplified, as the results for the detection of common duck pathogens (duck hepatitis B virus, duck Tembusu virus, duck hepatitis A virus type 1, novel duck reovirus, Riemerella anatipestifer, Pasteurella multocida, and Salmonella) were negative. The amplified fragments of virulent and attenuated strains were 2,454 bp and 525 bp, and their minimum detection amounts were 0.46 pg and 46 pg, respectively. The detection rate of the virulent and attenuated DPV strains in duck oral and cloacal swabs was lower than that of the gold standard PCR method (GB-PCR, which is unable to distinguish virulent and attenuated strains), and cloacal swabs from clinically healthy ducks were more suitable for detection than oral swabs. In conclusion, the PCR assay established in the present study can be used as a simple and effective method for the clinical screening of ducks that are latently infected with virulent strains of DPV and shedding virus, which can provide technical support for the elimination of duck plague from duck farms.
Collapse
|
4
|
Liang Z, Guo J, Yuan S, Cheng Q, Zhang X, Liu Z, Wang C, Li Z, Hou B, Huang S, Wen F. Pathological and Molecular Characterization of a Duck Plague Outbreak in Southern China in 2021. Animals (Basel) 2022; 12:ani12243523. [PMID: 36552444 PMCID: PMC9774102 DOI: 10.3390/ani12243523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Duck plague (DP) is a highly contagious viral disease in ducks caused by the duck plague virus (DPV). The DPV, a member of Herpesviridae, poses a severe threat to the waterfowl farming industry worldwide. In this study, we reported a recent outbreak of DPV in domestic laying ducks at 310 days of age from southern China in December 2021. The gross lesion, histopathologic examination, molecular detection, and genetic characterization studies of DPV are described here. As a result, gross lesions such as an enlarged congestive spleen and liver were observed. Liver with vacuolar degeneration and small vacuoles and spleen with hemosiderosis were remarkable microscopic findings. Our results suggested that the liver had the highest viral load, followed by the trachea, pancreas, kidney, brain, spleen, and heart. In addition, DPV was successfully isolated in chicken embryo fibroblast cell culture and designated as DP-GD-305-21. The UL2, UL12, UL41, UL47, and LORF11 genes of DP-GD-305-21 shared a high nucleotide homology with the Chinese virulent (CHv) strain and the Chinese variant (CV) strain. In conclusion, this study reports the isolation and molecular characterization of DPV from a recent outbreak in southern China. Our results contributed to the understanding of the pathological and molecular characterization of currently circulating DPV in China.
Collapse
Affiliation(s)
- Zhipeng Liang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- Correspondence: (J.G.); (F.W.)
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Qing Cheng
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xinyu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhun Liu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Congying Wang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Animal Disease Control Technology Development Center, Fuzhou 350013, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, 528231, China
- Correspondence: (J.G.); (F.W.)
| |
Collapse
|
5
|
Ruan P, Feng X, Cheng A, Wang M, Zhang W, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhu D, Jia R, Chen S, Liu M, Zhao XX, Huang J, Gao Q, Yu Y, Zhang L, Pan L. Evaluation of safety and immunogenicity of duck-plague virus gC/gE double gene deletion. Front Immunol 2022; 13:963009. [PMID: 36059553 PMCID: PMC9433869 DOI: 10.3389/fimmu.2022.963009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Duck plague caused by duck plague virus (DPV) is a highly contagious disease that can cause serious morbidity and death in waterfowl such as ducks and geese, and bring huge economic losses to the duck industry. In this study, on the basis of the duck plague virus gC gene deletion strain CHv-ΔgC, based on the duck plague virus bacterial artificial chromosome (BAC) platform in our laboratory, the gE gene was knocked out using the traceless deletion technology to obtain gC/gE double gene deletion candidate vaccine strain CHv-ΔgC/gE. The double gene deletion strain (CHv-ΔgC/gE) constructed in this study has greatly weakened virulence, no pathogenicity to ducks, and stable genetic characteristics in vitro and in vivo. Ducks immunized with CHv-ΔgC/gE can produce neutralizing antibodies and ELISA antibody levels comparable to those of commercial duck plague attenuated vaccine immunization, and can resist 100 LD50 CHv challenge of ducks, with good immune protection effect. It has the potential to be further developed into duck plague gC/gE double gene deletion, marked attenuated vaccine.
Collapse
Affiliation(s)
- Peilin Ruan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Feng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Mingshu Wang,
| | - Wei Zhang
- R & D Department, Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Kumar J, Dandapat S, Panickan S, Kumar A, Singh M, Bindu S, Dhama K. Expression profiles of toll like receptors, MHC and cytokine genes along with viral load in organs of ducklings infected with an Indian isolate of duck enteritis virus. Microb Pathog 2022; 165:105502. [PMID: 35339656 DOI: 10.1016/j.micpath.2022.105502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
A comprehensive study on the pathogenicity and host immune response was conducted in White Pekin ducklings after experimental infection with an Indian isolate of duck enteritis virus (DEV). The virus was found to be highly pathogenic and pantropic, which rapidly multiplied in various organs, mainly in the spleen and liver showing higher viral load with severe pathological lesions and caused 100% mortality. Expression profiles of immune gene transcripts in tissues (liver, spleen, brain) revealed upregulation of proinflammatory cytokines IFN-α, IFN- β, IL-1β, IL-6 and also iNOS with stimulation of TLRs (TLR-2, 3, 21). IFN-α was robustly upregulated (p < 0.05) especially in liver, might be playing role in antiviral innate immunity. Further, massive upregulation of MHC class-I (p < 0.01), expression of Th1 cytokines (IFN-γ & IL-2) and certain Th2 cytokines (IL-4 & IL-10) suggests stimulation of cell mediated as well as humoral immunity. To our knowledge, we are reporting first time about the robust upregulation of MHC class-I in spleen, liver and brain along with expression of certain cytokines in the peripheral blood mononuclear cells (PBMCs) during experimental DEV infection.
Collapse
Affiliation(s)
- Jyoti Kumar
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India; ICAR Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Satyabrata Dandapat
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India.
| | - Sivasankar Panickan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Ajay Kumar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Mithilesh Singh
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Suresh Bindu
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhou T, Fan D, Wang M, Cheng A, Wu Y, Yang Q, Tian B, Jia R, Ou X, Mao S, Sun D, Zhang S, Zhu D, Chen S, Liu M, Zhao XX, Huang J, Gao Q, Yu Y, Zhang L. Duck Plague Virus pUL48 Protein Activates the Immediate-Early Gene to Initiate the Transcription of the Virus Gene. Front Microbiol 2021; 12:795730. [PMID: 35003026 PMCID: PMC8733724 DOI: 10.3389/fmicb.2021.795730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Duck plague caused by the duck plague virus (DPV) is an infectious disease that seriously harms the waterfowl breeding industry. The VP16 protein of α herpesvirus can bind to specific cis-acting elements upstream of the promoter of the immediate-early (IE, α) gene to promote the transcription of the IE gene, so it is also called the trans-inducer of IE gene (α-TIF). However, no studies on DPV α-TIF have been reported. This study investigated the DPV pUL48, a homolog of HSV-1 VP16, transcriptional activation region, target sequence, and viral protein affecting its transcriptional activation using a dual-luciferase reporter gene detection system, and pUL48 was identified as the α-TIF of DPV. (1) The regulation of pUL48 on DPV different gene promoters showed that pUL48 could activate all the promoters of IE genes (ICP4, ICP22, and ICP27) but not the promoters of early and late genes. (2) The activity of pUL48 to ICP4 and ICP22 promoters with different upstream lengths showed that pUL48 activated ICP4 and ICP22 promoters by acting on TAATGA (T) TAT element upstream of ICP4 promoter and TAATTATAT element upstream of ICP22 promoter, respectively. (3) Transcriptional activation of IE gene by truncated proteins of different lengths at the N-terminal of pUL48 was detected. The results showed that the transcriptional activation domain of pUL48 was amino acids 1–60 at the N-terminal, and amino acids 1–20 was its core region. In addition, it was found that pUL14, pUL46, and pUL47 significantly promoted the transcriptional activation of pUL48. The effects of loss of pUL47 and its nuclear localization signal on the nuclear entry and transcriptional activation function of pUL48 were further examined. The results showed that pUL47 could promote the nuclear entry of pUL48 through its nuclear localization signal at positions 40–50 and 768–777 amino acids, thus, enhancing the transcriptional activation function of pUL48 and synergistic promotion of viral gene transcription.
Collapse
Affiliation(s)
- Tong Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dengjian Fan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Aasdev A, Pawar SD, Mishra A, Dubey CK, Patil SS, Gogoi SM, Bora DP, Barman NN, Raut AA. First complete genome characterization of duck plague virus from India. Virusdisease 2021; 32:789-796. [PMID: 34901326 DOI: 10.1007/s13337-021-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022] Open
Abstract
In this study, we report the complete genome sequencing of the Duck plague virus from India for the first time. The sequencing was done on the MinION nanopore sequencer from Oxford Nanopore Technologies. The closest relative is the European strain 2085v, with 99.98 and 99.8% identity at the amino acid and nucleotide level respectively. Moreover, 72 out of 77 ORFs are completely conserved between the 2 strains. The high similarity with the European strain over the only three other pathogenic strains reported from China points to the circulation of European strain in India. The fly pathways of migratory birds and co-habitation with native species being a probable reason. More complete genome data from diverse sampling locations are needed to characterize the genomic features, develop diagnostics, vaccines, and understand the evolution of the virus.
Collapse
Affiliation(s)
- Ashutosh Aasdev
- Pathogenomics Lab, ICAR - National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh 462022 India
| | - Satyam D Pawar
- Pathogenomics Lab, ICAR - National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh 462022 India.,Department of Botany, Agricultural Development Trust's Shardabai Pawar Mahila Arts, Commerce and Science College, Baramati, Maharashtra 413115 India
| | - Anamika Mishra
- Pathogenomics Lab, ICAR - National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh 462022 India
| | - Chandan K Dubey
- Pathogenomics Lab, ICAR - National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh 462022 India
| | - Sharan S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka India
| | - Sophia M Gogoi
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam 781022 India
| | - Durlav P Bora
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam 781022 India
| | - Nagendra N Barman
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam 781022 India
| | - Ashwin A Raut
- Pathogenomics Lab, ICAR - National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh 462022 India.,Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh 462020 India
| |
Collapse
|
9
|
Niu Y, Su S, Chen X, Zhao L, Chen H. Biological characteristic and cytokines response of passages duck plague virus in ducks. Virus Res 2021; 295:198320. [PMID: 33549641 DOI: 10.1016/j.virusres.2021.198320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
To better understand the pathogenicity of duck plague virus (DPV). The DPV Chinese standard challenge strain (DPV CSC) was continuously passaged 20 times in duck embryo fibroblasts (DEFs). DPV F1 was lethal for 2-week-ducks, but DPV F10 and F20 were not lethal for 2-week ducks, the 528 bp in UL2 region of DPV F1-F20 was deleted, which suggested that the deletion in UL2 region was not related with the virulence of DPV. Compared with DPV F20 infected ducks, IL-8 in DPV F1 infected ducks was significantly upregulated, but IL-1, IL-2,IFNγ and MHC-II were significantly downregulated. ISKNV copies in DPV F10 and F20 infected ducks were lower than the DPV F1 infected ducks. These results showed that massive viruses replication, upregulation of IL-8 expresssion, repression of IL-1, IL-2, IFNγ and MHC-II expression resulted in serious lesions and high mortality. This study provided a in-depth understanding of the immune-related genes expression in the different virulence of DPV.
Collapse
Affiliation(s)
- Yinjie Niu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou, 510380, China
| | - Shibo Su
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, China
| | - Xiaohan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|
10
|
Khan KA, Islam MA, Sabuj AAM, Bashar MA, Islam MS, Hossain MG, Hossain MT, Saha S. Molecular characterization of duck plague virus from selected Haor areas of Bangladesh. Open Vet J 2021; 11:42-51. [PMID: 33898283 PMCID: PMC8057227 DOI: 10.4314/ovj.v11i1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Duck viral enteritis, commonly known as duck plague (DP), is an acute and contagious fatal disease in ducks, geese, and swans caused by the DP virus (DPV). It poses a serious threat to the growth of duck farming in the Haor (wetland) areas of Bangladesh. Aim: This study aimed to detect the circulating DPV by molecular characterization, followed by phylogenetic analysis, targeting the UL30 gene in infected ducks from five Haor districts in Bangladesh and to observe the variation in the genome sequence between the field virus and vaccine strain of DPV. Methods: A total of 150 samples (liver, 50; intestine, 50; and oropharyngeal tissue, 50) were collected from DP-suspected sick/dead ducks from 50 affected farms in Kishoreganj, Netrokona, B. Baria, Habiganj, and Sunamganj districts in Bangladesh. For the identification of DPV in collected samples, polymerase chain reaction (PCR) was utilized. Nucleotide sequences of the amplified UL30 gene were compared with those of other DPV strains available in GenBank. Results: Of the 150 samples, 90 (60%) were found to be positive for DPV, as confirmed by PCR. Organ-wise prevalence was higher in the liver (72%), followed by the intestine (64%) and oropharyngeal tissue (44%). Regarding areas, the highest and lowest prevalence in the liver and intestine was observed in Habiganj and B. Baria, respectively, whereas the highest and lowest prevalence in the oropharyngeal tissue was observed in B. Baria and Habiganj, respectively. Two isolates, BAU/KA/DPV(B1)/2014 from Kishoreganj and BAU/KA/DPV(B4)/2014 from Sunamganj were sequenced, and phylogenetic analysis revealed that these isolates are evolutionarily closely related to Chinese isolates of DPV. Additionally, the isolates of DPV BAU/KA/DPV(B1)/2014 and BAU/KA/DPV(B4)/2014 showed the highest (98%) similarity to each other. The nucleotide sequence of the isolate BAU/KA/DPV(B1)/2014 exhibited higher nucleotide variability (246 nucleotides) than that of the vaccine strain (accession no. EU082088), which may affect protein function and additional drug sensitivity. Conclusion: Based on the findings of the molecular study, it can be assumed that the Bangladeshi isolates and all Chinese isolates of DPV may have a common ancestry.
Collapse
Affiliation(s)
- Kamrul Ahmed Khan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Livestock Services, Ministry of Fisheries and Livestock, Dhaka, Bangladesh
| | - Md Alimul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abdullah Al Momen Sabuj
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Abul Bashar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
11
|
Sarmah H, Shah M, Pathak M, Barman NN, Koul M, Gupta A, Sahariah PJ, Neher S, Das SK, Gogoi SM, Kumar S. Pathodynamics of Circulating Strains of Duck Enteritis Virus: A Step Forward to Understand Its Pathogenesis. Avian Dis 2020; 64:166-173. [PMID: 32550617 DOI: 10.1637/0005-2086-64.2.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/22/2020] [Indexed: 11/05/2022]
Abstract
Duck enteritis virus (DEV) causes an acute and contagious infection in duck. The present study was carried out to evaluate the pathogenicity and pathodynamics of DEV isolates from different natural outbreaks in the Assam Province of India. A total of six wild-type isolates of DEV were revived in ducklings to determine its biologic characterization. Postmortem examination of infected ducklings revealed DEV-specific gross lesions in different organs. The presence of DEV was confirmed by its genome amplification and the presence of viral antigens from collected tissue samples by indirect fluorescent antibody test. All the isolates revived in ducklings were further propagated in duck embryo fibroblast cells. Highly virulent and low virulent isolates of DEV were selected for further study based on median duck infectivity dose (DID50) and median tissue culture infectivity dose (TCID50). The highly virulent isolate of DEV had values of 102 DID50/ml and 106.33 TCID50/ml, whereas the low virulent strain had titers of 10 DID50/ml and 104.83 TCID50/ml in the cell culture. Our results showed replication of DEV in ducks with the highest and lowest viral titers in the thymus and bursa of Fabricius, respectively. In addition, microscopic analysis revealed necrosis and degeneration of submucosal esophageal glands and glandular epithelium. The study will be useful to understand the organ tropism and pathologic alteration among the virulent DEV isolates.
Collapse
Affiliation(s)
- Hiramoni Sarmah
- Department of Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, India 781022
| | - Manisha Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Mamta Pathak
- Department of Pathology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, India 781022
| | - Nagendra N Barman
- Department of Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, India 781022
| | - Monika Koul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Parag Jyoti Sahariah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Samsun Neher
- Department of Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, India 781022
| | - S K Das
- Department of Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, India 781022
| | - Sophia M Gogoi
- Department of Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, India 781022
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039,
| |
Collapse
|
12
|
Zhang B, Huang X, Yang Y, Zhang M, Song Y, Yang C. Complete genome sequence of an isolate of duck enteritis virus from China. Arch Virol 2020; 165:1687-1689. [PMID: 32382850 DOI: 10.1007/s00705-020-04594-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/18/2020] [Indexed: 11/29/2022]
Abstract
Here, we present the complete genomic sequence of duck enteritis virus (DEV) strain SD, isolated in China in 2012. The virus was virulent in experimentally infected 2-month-old ducks. The DEV SD genome is 160,945 base pairs (bp) in length. The viral genome sequence, when compared to that of strain DEV CSC, which was isolated in 1962, showed three discontinuous deletions of 101 bp, 48 bp and 417 bp within the inverted repeats. A comparison of the amino acid (aa) sequences of all ORFs of the CSC and SD isolates demonstrated an11-aa deletion, two single-aa deletions, and one single-aa deletion in LORF3, UL47, UL4, respectively. Moreover, 38 single aa variations were also detected in 24 different ORFs. These results will further advance our understanding of the genetic variations involved in evolution.
Collapse
Affiliation(s)
- Bing Zhang
- China Institute of Veterinary Drug Control, 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaojie Huang
- China Institute of Veterinary Drug Control, 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Yaxi Yang
- China Institute of Veterinary Drug Control, 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Min Zhang
- China Institute of Veterinary Drug Control, 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Yafen Song
- China Institute of Veterinary Drug Control, 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
13
|
Wu X, Jia R, Wang M, Chen S, Liu M, Zhu D, Zhao X, Yang Q, Wu Y, Yin Z, Zhang S, Huang J, Zhang L, Liu Y, Yu Y, Pan L, Tian B, Rehman MU, Chen X, Cheng A. Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating Beclin-1-mediated autophagy. Virol J 2019; 16:144. [PMID: 31771604 PMCID: PMC6880601 DOI: 10.1186/s12985-019-1250-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) is increasingly recognized as an important element in regulating virus-host interactions. Our previous results showed that cellular miR-30a-5p was significantly downregulated after duck enteritis virus (DEV) infection cell. However, whehter or not the miR-30a-5p is involved in DEV infection has not been known. METHODS Quantitative reverse-transcription PCR (qRT-PCR) was used to measure the expression levels of miRNAs(miR-30a-5p) and Beclin-1 mRNA. The miR-30a-5p - Beclin-1 target interactions were determined by Dual luciferase reporter assay (DLRA). Western blotting was utilized to analyze Beclin-1-mediated duck embryo fibroblast (DEF) cells autophagy activity. DEV titers were estimated by the median tissue culture infective dose (TCID50). RESULTS The miR-30a-5p was significantly downregulated and the Beclin-1 mRNA was significantly upregulated in DEV-infected DEF cells. DLRA confirmed that miR-30a-5p directly targeted the 3'- UTR of the Beclin-1 gene. Overexpression of miR-30a-5p significantly reduced the expression level of Beclin-1protein (p < 0.05), leading to the decrease of Beclin-1-mediated autophagy activity, which ultimately suppressed DEV replication (P < 0.05). Whereas transfection of miR-30a-5p inhibitor increased Beclin-1-mediated autophagy and triggered DEV replication during the whole process of DEV infection (P < 0.01). CONCLUSIONS This study shows that miR-30a-5p can inhibit DEV replication through reducing autophagy by targeting Beclin-1. These findings suggest a new insight into virus-host interaction during DEV infection and provide a potential new antiviral therapeutic strategy against DEV infection.
Collapse
Affiliation(s)
- Xianglong Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
14
|
Ma Y, Zeng Q, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Zhao XX, Liu M, Zhu D, Chen S, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. US10 Protein Is Crucial but not Indispensable for Duck Enteritis Virus Infection in Vitro. Sci Rep 2018; 8:16510. [PMID: 30405139 PMCID: PMC6220328 DOI: 10.1038/s41598-018-34503-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
To investigate the function of the duck enteritis virus (DEV) tegument protein US10, we generated US10 deletion and revertant mutants (ΔUS10 and US10FRT) via two-step RED recombination based on an infectious BAC clone of DEV CHv-BAC-G (BAC-G). In multistep growth kinetic analyses, ΔUS10 showed an approximately 100-fold reduction in viral titer, while the genome copies decreased only 4-fold compared to those of BAC-G. In one-step growth kinetic analyses, there were no significant differences in genome copies among BAC-G, ΔUS10 and US10FRT, but ΔUS10 still showed a 5- to 20-fold reduction in viral titer, and the replication defect of ΔUS10 was partially reversed by infection of US10-expressing cells. The transcription levels of Mx, OASL, IL-4, IL-6 and IL-10 in ΔUS10-infected duck embryo fibroblasts (DEFs) were significantly upregulated, while TLR3 was downregulated compared with those in BAC-G-infected DEFs. Taken together, these data indicated that US10 is vital for DEV replication and is associated with transcription of some immunity genes.
Collapse
Affiliation(s)
- Yunchao Ma
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qiurui Zeng
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
15
|
Wu X, Jia R, Zhou J, Wang M, Chen S, Liu M, Zhu D, Zhao X, Sun K, Yang Q, Wu Y, Yin Z, Chen X, Wang J, Cheng A. Virulent duck enteritis virus infected DEF cells generate a unique pattern of viral microRNAs and a novel set of host microRNAs. BMC Vet Res 2018; 14:144. [PMID: 29704894 PMCID: PMC5923184 DOI: 10.1186/s12917-018-1468-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Duck enteritis virus (DEV) belongs to the family Herpesviridae and is an important epornitic agent that causes economic losses in the waterfowl industry. The Chinese virulent (CHv) and attenuate vaccines (VAC) are two different pathogenic DEV strains. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression in viral infection. Nonetheless, there is little information on virulent duck enteritis virus (DEV)-encoded miRNAs. Results Using high-throughput sequencing, we identified 39 mature viral miRNAs from CHv-infected duck embryo fibroblasts cells. Compared with the reported 33 VAC-encoded miRNAs, only 13 miRNA sequences and 22 “seed sequences” of miRNA were identical, and 8 novel viral miRNAs were detected and confirmed by stem-loop RT-qPCR in this study. Using RNAhybrid and PITA software, 38 CHv-encoded miRNAs were predicted to target 41 viral genes and formed a complex regulatory network. Dual luciferase reporter assay (DLRA) confirmed that viral dev-miR-D8-3p can directly target the 3’-UTR of CHv US1 gene (p < 0.05). Gene Ontology analysis on host target genes of viral miRNAs were mainly involved in biological regulation, cellular and metabolic processes. In addition, 598 novel duck-encoded miRNAs were detected in this study. Thirty-eight host miRNAs showed significant differential expression after CHv infection: 13 miRNAs were up-regulated, and 25 miRNAs were down-regulated, which may affect viral replication in the host cell. Conclusions These data suggested that CHv encoded a different set of microRNAs and formed a unique regulatory network compared with VAC. This is the first report of DEF miRNAs expression profile and an analysis of these miRNAs regulatory mechanisms during DEV infection. These data provide a basis for further exploring miRNA regulatory roles in the pathogenesis of DEV infection and contribute to the understanding of the CHv-host interaction at the miRNA level. Electronic supplementary material The online version of this article (10.1186/s12917-018-1468-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianglong Wu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Kunfeng Sun
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China
| | - Jue Wang
- BGI Genomics Co,shenzhen Ltd, Shenzhen, 518083, Guangdong Province, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary, Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan Province, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
16
|
Zhang D, Lai M, Cheng A, Wang M, Wu Y, Yang Q, Liu M, Zhu D, Jia R, Chen S, Sun K, Zhao X, Chen X. Molecular characterization of the duck enteritis virus US10 protein. Virol J 2017; 14:183. [PMID: 28931412 PMCID: PMC5607491 DOI: 10.1186/s12985-017-0841-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is little information regarding the duck enteritis virus (DEV) US10 gene and its molecular characterization. METHODS Duck enteritis virus US10 was amplified and cloned into the recombinant vector pET32a(+). The recombinant US10 protein was expressed in Escherichia coli BL21 cells and used to immunize rabbits for the preparation of polyclonal antibodies. The harvested rabbit antiserum against DEV US10 was detected and analyzed by agar immunodiffusion. Using this antibody, western blotting and indirect immunofluorescence analysis were used to analyze the expression level and subcellular localization of US10 in infected cells at different time points. Quantitative reverse-transcription PCR (qRT-PCR) and pharmacological inhibition tests were used to ascertain the kinetic class of the US10 gene. A mass spectrometry-based strategy was used to identify US10 in purified DEV virions and quantify its abundance. RESULTS The recombinant pET32a(+)/US10 protein was expressed as inclusion bodies, purified by gradient urea washing, and used to prepare specific antibodies. The results of qRT-PCR, western blotting, and pharmacological inhibition tests revealed that US10 is mainly transcribed in the late stage of viral replication. However, the presence of the DNA polymerase inhibitor ganciclovir and the protein synthesis inhibitor cycloheximide blocked transcription. Therefore, US10 is a γ2 (true late) gene. Indirect immunofluorescence analysis showed that US10 proteins were initially diffusely distributed throughout the cytoplasm, but with the passage of time, they gradually relocated to a perinuclear region. The US10 protein was detected in purified DEV virions by mass spectrometry, but was not detected by western blotting, indicating that DEV US10 is a minor virion protein. CONCLUSIONS The DEV US10 gene is a γ2 gene and the US10 protein is localized in the perinuclear region. DEV US10 is a virion component.
Collapse
Affiliation(s)
- Daixi Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Maoyin Lai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130 People’s Republic of China
| |
Collapse
|
17
|
Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Kumar MA, Palanivelu M, Shabbir MZ, Malik YS, Singh RK. Duck virus enteritis (duck plague) - a comprehensive update. Vet Q 2017; 37:57-80. [PMID: 28320263 DOI: 10.1080/01652176.2017.1298885] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duck virus enteritis (DVE), also called duck plague, is one of the major contagious and fatal diseases of ducks, geese and swan. It is caused by duck enteritis virus (DEV)/Anatid herpesvirus-1 of the genus Mardivirus, family Herpesviridae, and subfamily Alpha-herpesvirinae. Of note, DVE has worldwide distribution, wherein migratory waterfowl plays a crucial role in its transmission within and between continents. Furthermore, horizontal and/ or vertical transmission plays a significant role in disease spread through oral-fecal discharges. Either of sexes from varying age groups of ducks is vulnerable to DVE. The disease is characterized by sudden death, vascular damage and subsequent internal hemorrhage, lesions in lymphoid organs, digestive mucosal eruptions, severe diarrhea and degenerative lesions in parenchymatous organs. Huge economic losses are connected with acute nature of the disease, increased morbidity and mortality (5%-100%), condemnations of carcasses, decreased egg production and hatchability. Although clinical manifestations and histopathology can provide preliminary diagnosis, the confirmatory diagnosis involves virus isolation and detection using serological and molecular tests. For prophylaxis, both live-attenuated and killed vaccines are being used in broiler and breeder ducks above 2 weeks of age. Since DEV is capable of becoming latent as well as shed intermittently, recombinant subunit and DNA vaccines either alone or in combination (polyvalent) are being targeted for its benign prevention. This review describes DEV, epidemiology, transmission, the disease (DVE), pathogenesis, and advances in diagnosis, vaccination and antiviral agents/therapies along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Naveen Kumar
- b National Center for Veterinary Type Cultures, ICAR-National Research Center on Equines , Hisar , India
| | - Mani Saminathan
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Kumaragurubaran Karthik
- d Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - M Asok Kumar
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - M Palanivelu
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Muhammad Zubair Shabbir
- e Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Yashpal Singh Malik
- f Division of Biological Standardization , ICAR - Indian Veterinary Research Institute , Bareilly , India
| | - Raj Kumar Singh
- g ICAR - Indian Veterinary Research Institute , Izatnagar , India
| |
Collapse
|
18
|
Xie L, Xie Z, Huang L, Wang S, Huang J, Zhang Y, Zeng T, Luo S. A polymerase chain reaction assay for detection of virulent and attenuated strains of duck plague virus. J Virol Methods 2017; 249:66-68. [PMID: 28860100 DOI: 10.1016/j.jviromet.2017.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 11/26/2022]
Abstract
Sequence analysis of duck plague virus (DPV) revealed that there was a 528bp (B fragment) deletion within the UL2 gene of DPV attenuated vaccine strain in comparison with field virulent strains. The finding of gene deletion provides a potential differentiation test between DPV virulent strain and attenuated strain based on their UL2 gene sizes. Thus we developed a polymerase chain reaction (PCR) assay targeting to the DPV UL2 gene for simultaneous detection of DPV virulent strain and attenuated strain, 827bp for virulent strain and 299bp for attenuated strain. This newly developed PCR for DPV was highly sensitive and specific. It detected as low as 100fg of DNA on both DPV virulent and attenuated strains, no same size bands were amplified from other duck viruses including duck paramyxovirus, duck tembusu virus, duck circovirus, Muscovy duck parvovirus, duck hepatitis virus type I, avian influenza virus and gosling plague virus. Therefore, this PCR assay can be used for the rapid, sensitive and specific detection of DPV virulent and attenuated strains affecting ducks.
Collapse
Affiliation(s)
- Liji Xie
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning 530001, PR China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning 530001, PR China.
| | - Li Huang
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning 530001, PR China
| | - Sheng Wang
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning 530001, PR China
| | - Jiaoling Huang
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning 530001, PR China
| | - Yanfang Zhang
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning 530001, PR China
| | - Tingting Zeng
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning 530001, PR China
| | - Sisi Luo
- Department of Biotechnology, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, 51 Youai North Road, Nanning 530001, PR China
| |
Collapse
|
19
|
Gao X, Jia R, Wang M, Yang Q, Chen S, Liu M, Yin Z, Cheng A. Duck enteritis virus (DEV) UL54 protein, a novel partner, interacts with DEV UL24 protein. Virol J 2017; 14:166. [PMID: 28851454 PMCID: PMC5575879 DOI: 10.1186/s12985-017-0830-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/14/2017] [Indexed: 11/10/2022] Open
Abstract
Background UL24 is a multifunctional protein that is conserved among alphaherpesviruses and is believed to play an important role in viral infection and replication. Results In this paper, to investigate putative UL24-binding proteins and to explore the functional mechanisms of DEV UL24, yeast two-hybrid (Y2H) was carried out, and further verified the interaction between UL24 and partners by co-immunoprecipitation and fluorescence microscopy experiments. Interaction partners of UL24 protein were screened by yeast two-hybrid (Y2H) with the cDNA library of DEV-CHv strain post-infection DEF cells. A novel partner, DEV UL54 protein, was discovered by Y2H screening and bioinformatic. Co-immunoprecipitation experiments suggested that DEV UL24 interacted with UL54 proteins. And distribution of a part of UL54 protein was changed from nucleus to cytoplasm in DF-1 cells of co-subcellular localization experiments which also showed that DEV UL24 interacted with UL54 proteins. Conclusions The interaction between the DEV UL24 and UL54 proteins was discovered for the first time. Thus, DEV UL54 protein as a novel partner interacted with DEV UL24 protein. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0830-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinghong Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Infectious Disease & Bio-safety, Provincial Department of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, People's Republic of China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
20
|
Xie L, Huang L, Xie Z, Wang S, Huang J, Zhang Y, Zhong C. An attempt to develop a detection method specific for virulent duck plague virus strains based on the UL2 gene B fragment. Avian Pathol 2017; 46:652-657. [PMID: 28609137 DOI: 10.1080/03079457.2017.1341622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A comparison of the unique long region 2 (UL2) gene sequences between 10 virulent and 11 attenuated duck plague virus (DPV) strains (including all DPV UL2 gene sequences registered in GenBank) showed that the UL2 genes in the attenuated DPV strains had a 528 bp deletion in the B fragment. Primers were designed based on the B fragment sequence of the UL2 gene in an attempt to establish a fluorescence quantitative polymerase chain reaction (PCR) and a conventional PCR detection method that could specifically detect virulent DPV strains (i.e. positive detection for virulent DPV strains and negative detection for attenuated DPV strains). Additionally, PCR products were cloned for sequence analysis. These two methods detected five attenuated DPV strains in addition to the virulent DPV strains. Sequence analysis of the PCR products showed that the amplified products were the B fragments of the UL2 gene. These results indicated that detection methods specific for virulent DPV strains could not be established using primers designed based on the UL2 gene B fragment.
Collapse
Affiliation(s)
- Liji Xie
- a Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology , Nanning , People's Republic of China
| | - Li Huang
- a Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology , Nanning , People's Republic of China
| | - Zhixun Xie
- a Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology , Nanning , People's Republic of China
| | - Sheng Wang
- a Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology , Nanning , People's Republic of China
| | - Jiaoling Huang
- a Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology , Nanning , People's Republic of China
| | - Yanfang Zhang
- a Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology , Nanning , People's Republic of China
| | - Chuande Zhong
- b Yulin Center for Animal Disease Control and Prevention , Yulin , People's Republic of China
| |
Collapse
|
21
|
Liu C, Cheng A, Wang M, Chen S, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Zhao X, Chen X. Regulation of viral gene expression by duck enteritis virus UL54. Sci Rep 2017; 7:1076. [PMID: 28432334 PMCID: PMC5430722 DOI: 10.1038/s41598-017-01161-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/27/2017] [Indexed: 11/10/2022] Open
Abstract
Duck enteritis virus (DEV) UL54 is a homologue of human herpes simplex virus-1 (HSV-1) ICP27, which plays essential regulatory roles during infection. Our previous studies indicated that DEV UL54 is an immediate-early protein that can shuttle between the nucleus and the cytoplasm. In the present study, we found that UL54-deleted DEV (DEV-ΔUL54) exhibits growth kinetics, a plaque size and a viral DNA copy number that are significantly different from those of its parent wild-type virus (DEV-LoxP) and the revertant (DEV-ΔUL54 (Revertant)). Relative viral mRNA levels, reflecting gene expression, the transcription phase and the translation stage, are also significantly different between DEV-ΔUL54-infected cells and DEV-LoxP/DEV-ΔUL54 (Revertant)-infected cells. However, the localization pattern of UL30 mRNA is obviously changed in DEV-ΔUL54-infected cells. These findings suggest that DEV UL54 is important for virus growth and may regulate viral gene expression during transcription, mRNA export and translation.
Collapse
Affiliation(s)
- Chaoyue Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Kunfeng Sun
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xinxin Zhao
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
22
|
Guo Y, Li S, Sun X, He Y, Zhao H, Wang Y, Zhao P, Xing M. Complete genome sequence and evolution analysis of a columbid herpesvirus type 1 from feral pigeon in China. Arch Virol 2017; 162:2131-2133. [PMID: 28316016 DOI: 10.1007/s00705-017-3329-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/10/2017] [Indexed: 10/19/2022]
Abstract
Here, we report the genome sequence of a feral pigeon alphaherpesvirus (columbid herpesvirus type 1, CoHV-1), strain HLJ, and compare it with other avian alphaherpesviruses. The CoHV-1 strain HLJ genome is 204,237 bp in length and encodes approximately 130 putative protein-coding genes. Phylogenetically, CoHV-1 complete genome resides in a monophyletic group with the falconid herpesvirus type 1 (FaHV-1) genome, distant from other alphaherpesviruses. Interestingly, the evolutionary analysis of partial genes of CoHV-1 isolated from different organisms and areas (currently accessible on GenBank) indicates that the CoHV-1 HLJ strain isolated from pigeon (Columba livia) is closely related to the strains isolated from peregrine falcon (Falco peregrinus) in Poland and owl (Bubo virginianus) in USA. These results may suggest possible transmission of the virus between different organisms and different geographic areas.
Collapse
Affiliation(s)
- Ying Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Siwen Li
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Xiao Sun
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Ying He
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Panpan Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
23
|
Zhao X, Xu J, Song X, Jia R, Yin Z, Cheng A, Jia R, Zou Y, Li L, Yin L, Yue G, Lv C, Jing B. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus. Antiviral Res 2016; 130:93-100. [DOI: 10.1016/j.antiviral.2016.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022]
|
24
|
Liu C, Cheng A, Wang M, Chen S, Jia R, Zhu D, Liu M, Sun K, Yang Q, Chen X. Characterization of nucleocytoplasmic shuttling and intracellular localization signals in Duck Enteritis Virus UL54. Biochimie 2016; 127:86-94. [PMID: 27157269 DOI: 10.1016/j.biochi.2016.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Duck Enteritis virus (DEV) UL54 is a homolog of herpes simplex virus-1 (HSV-1) trafficking protein ICP27, which plays an essential role in infection. In this study, DEV UL54 shuttling between the nucleus and cytoplasm was verified with a heterokaryon assay. One predicted nuclear export sequence (NES) (339-348 aa) was shown to be functional and chromosomal region maintenance 1 (CRM1)-dependent; however, the insensitivity of UL54 to Leptomycin B (LMB) and NES mutation suggests that other mechanisms are responsible for the observed nuclear export. Next, three non-classical nuclear localization sequences (NLSs), referred to as NLS1 (105-122 aa), NLS2 (169-192 aa) and NLS3 (257-274 aa), were identified. Furthermore, a recombinant DEV with the UL54 NLSs deleted (DEV- UL54 mNLSs) was constructed and showed that UL54 NLSs moderately affected DEV growth.
Collapse
Affiliation(s)
- Chaoyue Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China.
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China.
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Dekang Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Kunfeng Sun
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| | - Xiaoyue Chen
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Wenjiang, Chengdu City, Sichuan, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, PR China
| |
Collapse
|
25
|
Wang J, Ge A, Xu M, Wang Z, Qiao Y, Gu Y, Liu C, Liu Y, Hou J. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens. Virol J 2015; 12:126. [PMID: 26263920 PMCID: PMC4533785 DOI: 10.1186/s12985-015-0354-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
Background Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. Methods To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEVC-KCE). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. Results The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 106 TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 107 TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 106 TCID50 DEV-vectored vaccine. Conclusions We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEVC-KCE. (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEVC-KCE affects neither the growth kinetics of the virus nor its protection against DEV. (iii) DEV-H5(UL55) can generate a strong humoral immune response in 3-week-old chickens, despite the virulence of this virus observed in 1-week-old chickens. (iv) DEV-H5(UL55) induces a weak HI titer in ducks. An increase in the HI titers induced by DEV-vectored HA(H5) will be required prior to its wide application.
Collapse
Affiliation(s)
- Jichun Wang
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Aimin Ge
- Shandong Vocational Animal Science and Veterinary College, Weifang, 261061, China.
| | - Mengwei Xu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Zhisheng Wang
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Yongfeng Qiao
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Yiqi Gu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chang Liu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China. .,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yamei Liu
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| | - Jibo Hou
- Jiangsu Academy of Agricultural Sciences/National Research Center of Veterinary Biologicals Engineering and Technology, Nanjing, 210014, China.
| |
Collapse
|
26
|
Zou Z, Hu Y, Liu Z, Zhong W, Cao H, Chen H, Jin M. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Vet Res 2015; 46:42. [PMID: 25889564 PMCID: PMC4397706 DOI: 10.1186/s13567-015-0174-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/23/2015] [Indexed: 01/01/2023] Open
Abstract
Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.
Collapse
Affiliation(s)
- Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, China.
| | - Zhigang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Life Sciences, AnQing Normal University, AnQing, 246011, China.
| | - Wei Zhong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hangzhou Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Yang C, Li J, Li Q, Li L, Sun M, Li H, Xia Y, Yang H, Yu K. Biological properties of a duck enteritis virus attenuated via serial passaging in chick embryo fibroblasts. Arch Virol 2014; 160:267-74. [DOI: 10.1007/s00705-014-2275-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/30/2014] [Indexed: 11/27/2022]
|
28
|
Spatz SJ, Volkening JD, Ross TA. Molecular characterization of the complete genome of falconid herpesvirus strain S-18. Virus Res 2014; 188:109-21. [PMID: 24685675 DOI: 10.1016/j.virusres.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Falconid herpesvirus type 1 (FaHV-1) is the causative agent of falcon inclusion body disease, an acute, highly contagious disease of raptors. The complete nucleotide sequence of the genome of FaHV-1 has been determined using Illumina MiSeq sequencing. The genome is 204,054 nucleotides in length and has a class E organization. The genome encodes approximately 130 putative protein-coding genes, of which 70 are orthologs of conserved alphaherpesvirus and Mardivirus proteins. Three FaHV-1 genes (UL3.5, UL44.5 and CIRC) were identified that encode protein homologues unique to Mardivirus and Varicellovirus. The genome also encodes homologues to the Mardivirus genes LORF2, LORF3, LORF4, LORF5, SORF3 and SORF4. An opal mutation resulting in premature termination was identified in the FaHV-1 UL43 gene. Phylogenetically, FaHV-1 resides in a monophyletic group with the other Mardiviruses but, along with anatid herpesvirus 1, represents a more distant divergence from the rest of the Mardivirus genus.
Collapse
Affiliation(s)
- Stephen J Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | | | - Teresa A Ross
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
29
|
Morrison EA, Garner S, Echaubard P, Lesbarrères D, Kyle CJ, Brunetti CR. Complete genome analysis of a frog virus 3 (FV3) isolate and sequence comparison with isolates of differing levels of virulence. Virol J 2014; 11:46. [PMID: 24620832 PMCID: PMC3995667 DOI: 10.1186/1743-422x-11-46] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/06/2014] [Indexed: 01/05/2023] Open
Abstract
Background Frog virus 3 (FV3) is the type species of the genus Ranavirus, and in the past few decades, FV3 infections have resulted in considerable morbidity and mortality in a range of wild and cultivated amphibian species in the Americas, Europe, and Asia. The reasons for the pathogenicity of FV3 are not well understood. Findings We investigated three FV3 isolates designated SSME, wt-FV3, and aza-Cr, and reported that our wt-FV3 and aza-Cr strains showed similar levels of virulence, while SSME was the least virulent in an in vivo study with Lithiobates pipiens tadpoles. Using 454 GS-FLX sequencing technology, we sequenced SSME and compared it to the published wt-FV3 genome. SSME had multiple amino acid deletions in ORFs 49/50L, 65L, 66L, and 87L, which may explain its reduced virulence. We also investigated repeat regions and found that repeat copy number differed between isolates, with only one group of 3 isolates and 1 pair of isolates being identical at all 3 locations. Conclusions In this study we have shown that genetic variability is present between closely related FV3 isolates, both in terms of deletions/insertions, and even more so at select repeat locations. These genomic areas with deletions/insertions may represent regions that affect virulence, and therefore require investigation. Furthermore, we have identified repeat regions that may prove useful in future phylogeographical tracking and identification of ranaviral strains across different environmental regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Craig R Brunetti
- Department of Biology, Trent University, 1600 East Bank Dr,, Peterborough, Ontario K9J 7B8, Canada.
| |
Collapse
|
30
|
Gao X, Jia R, Wang M, Zhu D, Chen S, Lin M, Yin Z, Wang Y, Chen X, Cheng A. Construction and identification of a cDNA library for use in the yeast two-hybrid system from duck embryonic fibroblast cells post-infected with duck enteritis virus. Mol Biol Rep 2013; 41:467-75. [PMID: 24293127 DOI: 10.1007/s11033-013-2881-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022]
Abstract
To explore and isolate genes related to duck embryonic fibroblast cells (DEFs) post-infected with duck enteritis virus (DEV), a cDNA library was established using SMART (Switching Mechanism At 5' end of the RNA Transcript) technique coupling with a homologous recombination method. The cells were harvested and total RNA was extracted at 48 h post infection. Then the mRNAs were purified and reverse transcribed to first-strand cDNAs using oligo (dT) primers (CDS III). Subsequently, long distance-PCR was performed, the double-stranded cDNAs were purified, and a transformation assay was carried out in that order. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about 2.33 × 10(6) transformants/4.34 μg pGADT7-Rec (>1.0 × 10(6)). The cell density of the library was 1.75 × 10(9) cells/mL (>2 × 10(7) cells/mL). The titer of the primary cDNA library and amplified cDNA library was 6.75 × 10(5) and 2.33 × 10(7) CFU/mL respectively. The numbers for the primary cDNA library and amplified cDNA library were 1.01 × 10(7) and 1.14 × 10(9), respectively, and the recombinant rate was 97.14 %. The sequence results of 27 randomly picked independent clones revealed the insert ranged from 0.323 to 2.017 kb with an average insert size of 0.807 kb. Full-length transcripts of DEV-CHv LORF3, UL26 and UL35 genes were acquired through sequence similarity analysis from the non-redundant nucleic acid or protein database. Five polyA sites were identified in the DEV-CHv genome. Also, a new transcript of 668 bp was found between the IRS gene and US1 gene of the DEV-CHv genome. Thus, we concluded that the constructed cDNA library will be a useful tool in proteomic analysis of interactions between the DEV and host DEFs, and discovery of biomarkers studies on the mechanism of DEV and subsequently exploitation original vaccines and antiviral drugs to prevent or cure diseases.
Collapse
Affiliation(s)
- Xinghong Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang C, Li Q, Li J, Zhang G, Li H, Xia Y, Yang H, Yu K. Comparative genomic sequence analysis between a standard challenge strain and a vaccine strain of duck enteritis virus in China. Virus Genes 2013; 48:296-303. [PMID: 24287923 DOI: 10.1007/s11262-013-1009-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
Here, we present the complete genomic sequence of the Chinese standard challenge strain (CSC) of duck enteritis virus (DEV), which was isolated in China in 1962. The DEV CSC genome is 162,131 bp long and contains 78 predicted open reading frames (ORFs). Comparison of the genomic sequences of DEV CSC and DEV live vaccine strain K at passage 63 (DEV K p63) revealed that the DEV CSC genome is 4,040 bp longer than the DEV K p63 genome, mainly because of 3,513-bp and 528-bp insertions at the 5' and 3' ends of the unique long segment, respectively. At the nucleotide level, 63 of the 76 ORFs in the DEV CSC genome were 100 % identical to the ORFs in the DEV K p63 genome. Two ORFs (UL56 and US10) had frameshift mutations in the C-terminal regions, while LORF5 was unique to the DEV K p63 genome. It is difficult to assign attenuated virulence to changes in specific genes. However, the complete DEV CSC genome will further advance our understanding of the genes involved in virulence and evolution. The DEV CSC genome sequence has been deposited in GenBank under accession number JQ673560.
Collapse
Affiliation(s)
- Chenghuai Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, Haidian, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen L, Yu B, Hua J, Ye W, Ni Z, Yun T, Deng X, Zhang C. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain. Virol J 2013; 10:328. [PMID: 24195756 PMCID: PMC3827880 DOI: 10.1186/1743-422x-10-328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/04/2013] [Indexed: 12/30/2022] Open
Abstract
Background Duck enteritis virus (DEV) is the causative agent of duck viral enteritis, which causes an acute, contagious and lethal disease of many species of waterfowl within the order Anseriformes. In recent years, two laboratories have reported on the successful construction of DEV infectious clones in viral vectors to express exogenous genes. The clones obtained were either created with deletion of viral genes and based on highly virulent strains or were constructed using a traditional overlapping fosmid DNA system. Here, we report the construction of a full-length infectious clone of DEV vaccine strain that was cloned into a bacterial artificial chromosome (BAC). Methods A mini-F vector as a BAC that allows the maintenance of large circular DNA in E. coli was introduced into the intergenic region between UL15B and UL18 of a DEV vaccine strain by homologous recombination in chicken embryoblasts (CEFs). Then, the full-length DEV clone pDEV-vac was obtained by electroporating circular viral replication intermediates containing the mini-F sequence into E. coli DH10B and identified by enzyme digestion and sequencing. The infectivity of the pDEV-vac was validated by DEV reconstitution from CEFs transfected with pDEV-vac. The reconstructed virus without mini-F vector sequence was also rescued by co-transfecting the Cre recombinase expression plasmid pCAGGS-NLS/Cre and pDEV-vac into CEF cultures. Finally, the in vitro growth properties and immunoprotection capacity in ducks of the reconstructed viruses were also determined and compared with the parental virus. Results The full genome of the DEV vaccine strain was successfully cloned into the BAC, and this BAC clone was infectious. The in vitro growth properties of these reconstructions were very similar to parental DEV, and ducks immunized with these viruses acquired protection against virulent DEV challenge. Conclusions DEV vaccine virus was cloned as an infectious bacterial artificial chromosome maintaining full-length genome without any deletions or destruction of the viral coding sequence, and the viruses rescued from the DEV-BAC clone exhibited wild-type phenotypes both in vitro and in vivo. The generated infectious clone will greatly facilitate studies on the individual genes of DEV and applications in gene deletion or live vector vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
33
|
Complete genome sequence of an attenuated duck enteritis virus obtained by in vitro serial passage. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00685-13. [PMID: 24009119 PMCID: PMC3764414 DOI: 10.1128/genomea.00685-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Here, we present the complete genome sequence of an attenuated duck enteritis virus (DEV) obtained by serial chicken embryo passage. Compared with a virulent DEV, there is a serial deletion in unique long open reading frame 11 (LORF11) and unique long region 2 (UL2). This study will aid in further exploration of the molecular pathogenesis of DEV.
Collapse
|
34
|
Kong C, Zhao Y, Cui X, Zhang X, Cui H, Xue M, Wang Y. Complete genome sequence of the first Chinese virulent infectious laryngotracheitis virus. PLoS One 2013; 8:e70154. [PMID: 23922947 PMCID: PMC3726392 DOI: 10.1371/journal.pone.0070154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/16/2013] [Indexed: 01/22/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an acute respiratory disease caused by infectious laryngotracheitis virus (ILTV). The complete genome sequences of five attenuated ILTV vaccine strains and six virulent ILTV strains as well as two Australian ILTV field strains have been published in Australia and the USA so far. To provide the complete genome sequence information of ILTVs from different geographic regions, the whole genome of ILTV LJS09 isolated in China was sequenced. The genome of ILTV LJS09 was 153,201 bp in length, and contained 79 ORFs. Most of the ORFs had high sequence identity with homologous ORFs of reference strains. There was a large fragment deletion within the noncoding region of unique long region (UL) of ILTV LJS09 compared with SA2 and A20 strains. Though the origin binding protein of ILTV LJS09 existed, there was no AT-rich region in strain LJS09. Alignments of the amino acid sequences revealed seven mutations at amino acids 71 (Arg → Lys), 116 (Ala → Val), 207 (Thr → Ile) and 644 (Thr → Ile) on glycoprotein B, 155 (Phe → Ser) and 376 (Arg → His) on glycoprotein D and 8 (Gln→Pro) on glycoprotein L of ILTV LJS09 compared to those of virulent strain (USDA) as ILTV LJS09 did not grow on chicken embryo fibroblasts, suggesting the role of the key seven amino acids in determination of the cell tropism of ILTV LJS09. This is the first complete genome sequence of the virulent strain of ILTV in Asia using the conventional PCR method, which will help to facilitate the future molecular biological research of ILTVs.
Collapse
Affiliation(s)
- Congcong Kong
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Xianlan Cui
- Animal Health Laboratory, Department of Primary Industries, Parks, Water and Environment, Prospect, Tasmania, Australia
| | - Xiaomin Zhang
- Institute of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Mei Xue
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| | - Yunfeng Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- National Engineering Research Center of Veterinary Biologics, Harbin, China
| |
Collapse
|
35
|
Xu J, Yin Z, Li L, Cheng A, Jia R, Song X, Lu H, Dai S, Lv C, Liang X, He C, Zhao L, Su G, Ye G, Shi F. Inhibitory effect of resveratrol against duck enteritis virus in vitro. PLoS One 2013; 8:e65213. [PMID: 23776451 PMCID: PMC3679110 DOI: 10.1371/journal.pone.0065213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022] Open
Abstract
Duck viral enteritis (DVE) is an acute, contagious herpesvirus infection of ducks, geese, and swans of all ages and species. This disease has been responsible for significant economic losses in domestic and wild waterfowl as a result of mortality, and decreased egg production. Resveratrol is a naturally occurring phytoalexin in specific plants and exhibits inhibitory activity against many kinds of virus. In this paper, resveratrol was found to inhibit duck enteritis virus (DEV) replication in a dose-dependent manner, with a 50% inhibition concentration of 3.85 μg/mL. The inhibition in virus multiplication in the presence of resveratrol was not attributed to direct inactivation or inhibition of virus attachment to the host cells, but to the inhibition of viral multiplication in host cells. The assay of the time of addition limited the drug effect during the first 8 h of infection. This conclusion was supported by the ultrastructure images of the early stage of DEV infection, which showed that the replication of virus nucleic acid and the formation of the capsid in the cell nucleus were suppressed. In the indirect immunofluorescence assay, proteins expression in DEV infected duck embryo fibroblasts (DEFs) within 24 h post-infection (p.i.) was also effectively suppressed by resveratrol. In summary, the resveratrol has a good activity against DEV infection in vitro, which could be attributed to that fact that several essential immediate early viral proteins for virus replication were impacted by resveratrol.
Collapse
Affiliation(s)
- Jiao Xu
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricutural University, Chengdu, China
| | - Li Li
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricutural University, Chengdu, China
| | - Renyong Jia
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricutural University, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Hongke Lu
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Shujun Dai
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Cheng Lv
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Gang Su
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricutural University, Ya'an, China
| |
Collapse
|
36
|
Song X, Yin Z, Li L, Cheng A, Jia R, Xu J, Wang Y, Yao X, Lv C, Zhao X. Antiviral activity of sulfated Chuanminshen violaceum polysaccharide against duck enteritis virus in vitro. Antiviral Res 2013; 98:344-51. [DOI: 10.1016/j.antiviral.2013.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 12/31/2022]
|
37
|
Yao Y, Smith LP, Petherbridge L, Watson M, Nair V. Novel microRNAs encoded by duck enteritis virus. J Gen Virol 2012; 93:1530-1536. [PMID: 22492913 DOI: 10.1099/vir.0.040634-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Duck enteritis virus (DEV) is an important herpesvirus pathogen associated with acute, highly contagious lethal disease in waterfowls. Using a deep sequencing approach on RNA from infected chicken embryo fibroblast cultures, we identified several novel DEV-encoded micro (mi)RNAs. Unlike most mardivirus-encoded miRNAs, DEV-encoded miRNAs mapped mostly to the unique long region of the genome. The precursors of DEV miR-D18 and miR-D19 overlapped with each other, suggesting similarities to miRNA-offset RNAs, although only the DEV-miR-D18-3p was functional in reporter assays. Identification of these novel miRNAs will add to the growing list of virus-encoded miRNAs enabling the exploration of their roles in pathogenesis.
Collapse
Affiliation(s)
- Yongxiu Yao
- Viral Oncogenesis Group, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Lorraine P Smith
- Viral Oncogenesis Group, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Lawrence Petherbridge
- Viral Oncogenesis Group, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Mick Watson
- Ark-Genomics, The Roslin Institute, R(D)SVS, University of Edinburgh, Division of Genetics and Genomics, Easter Bush, Midlothian EH25 9RG, UK
| | - Venugopal Nair
- Viral Oncogenesis Group, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|