1
|
Baker HJ, Martin DR, Gross AL, Chamorro MF, Naskou MC, Johnson AK, Brock KV, Van Kampen KR, Willoughby RE. Rabies: who should care? J Am Vet Med Assoc 2022; 261:592-596. [PMID: 36476414 DOI: 10.2460/javma.22.09.0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rabies is the deadliest viral infection known, with no reliable treatment, and although it is entirely preventable, rabies continues to kill more than 60,000 people every year, mostly children in countries where dog rabies is endemic. America is only 1 generation away from the time when rabies killed more than 10,000 animals and 50 Americans every year, but 3 to 5 Americans continue to die annually from rabies. Distressingly, > 50,000 Americans undergo rabies prevention therapy every year after exposure to potentially rabid animals. While enormous progress has been made, more must be done to defeat this ancient but persistent, fatal zoonosis. In the US, lack of public awareness and ambivalence are the greatest dangers imposed by rabies, resulting in unnecessary exposures, anxiety, and risk. Veterinarians have a special role in informing and reassuring the public about prevention and protection from rabies. This summary of current facts and future advances about rabies will assist veterinarians in informing their clients about the disease.
Collapse
Affiliation(s)
- Henry J Baker
- 1Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL
- 2Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL
| | - Douglas R Martin
- 1Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL
- 3Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL
| | - Amanda L Gross
- 1Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL
| | - Manuel F Chamorro
- 4Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL
| | - Maria C Naskou
- 1Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL
- 2Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL
| | - Aime K Johnson
- 1Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL
- 4Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL
| | - Kenny V Brock
- 5Edward Via College of Osteopathic Medicine, Auburn, AL
| | | | - Rodney E Willoughby
- 7Medical College of Wisconsin and Milwaukee Children's Hospital, Milwaukee, WI
| |
Collapse
|
2
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
3
|
Synthesis of Some Novel Fluorinated/Nonfluorinated α-Amino Acids, Bearing 3-Thioxo-5-oxo-1,2,4-triazin-6-yl and Steroidal Moieties, and Evaluation of Their Amylolytic Effects against Some Fungi, Part-II. HETEROATOM CHEMISTRY 2020. [DOI: 10.1155/2020/9645949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some new fluorinated/nonfluorinated α-amino acids bearing 3-thioxo-5-oxo-1,2,4-triazin-6-yl and steroidal moieties have been obtained from condensation of the corresponding amino-triazinones with the steroid (Epiandrosterone). This was followed by the addition of HCN and, finally, acidic hydrolysis. The structure of the targets was established from their elemental analysis and spectral data. The amylolytic activity of the new products was evaluated against some fungi.
Collapse
|
4
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
5
|
Chen WC, Hu Y, Liu L, Shen YF, Wang GX, Zhu B. Synthesis and in vitro activities evaluation of arctigenin derivatives against spring viraemia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:17-26. [PMID: 30077800 DOI: 10.1016/j.fsi.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Spring viraemia of carp virus (SVCV) is a viral fish pathogen causing high mortality in several carp species and other cultivated fish. However, robust anti-SVCV drugs currently are extremely scarce. For the purpose of seeking out anti-SVCV drugs, here a total of 35 arctigenin derivatives were designed, synthesized and evaluated for their anti-viral activities. By comparing the inhibitory concentration at half-maximal activity (IC50) of the 15 screened candidate drugs (max inhibitory response surpassing 90%) in epithelioma papulosum cyprini (EPC) cells infected with SVCV, 2Q and 6 A were chosen for additional validation studies, with an IC50 of 0.077 μg/mL and 0.095 μg/mL, respectively. Further experiments revealed that 2Q and 6 A could significantly decrease SVCV-induced apoptosis and have a protective effect on cell morphology at 48 and 72 h post-infection. Moreover, the reactive oxygen species (ROS) induced upon SVCV infection could be obviously inhibited by 2Q and 6 A, while SVCV-infected cells were clearly observed. On account of these findings, 2Q and 6 A could have a promising application for the treatment of infection of SVCV and provide a considerable reference for novel antivirals in aquaculture.
Collapse
Affiliation(s)
- Wei-Chao Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Yang Hu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Lei Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yu-Feng Shen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Sharif Shohan MU, Paul A, Hossain M. Computational design of potential siRNA molecules for silencing nucleoprotein gene of rabies virus. Future Virol 2018. [DOI: 10.2217/fvl-2017-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aim: Rabies virus infections are a global threat to human and animal health, yet no progressive curative therapy has been developed. In this study, the nucleoprotein gene of rabies virus which is responsible for viral infection was used as a target to design our desired siRNA. Methods: The conserved regions were analyzed by doing alignment of sequences from different strains. Subsequently, different computational tools were used for designing and validation of siRNA molecules. Results: We identified four probable siRNA molecules from twelve different strains of rabies virus which may silence the nucleoprotein gene and inhibit the multiplication of the virus. Conclusion: Our study may help to take an effective therapeutic approach against rabies virus and lead to better control of rabies in humans.
Collapse
Affiliation(s)
| | - Anik Paul
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Motaher Hossain
- Department of Biochemistry & Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
7
|
Manesh A, Mani RS, Pichamuthu K, Jagannati M, Mathew V, Karthik R, Abraham OC, Chacko G, Varghese GM. Case Report: Failure of Therapeutic Coma in Rabies Encephalitis. Am J Trop Med Hyg 2018; 98:207-210. [PMID: 29141755 PMCID: PMC5928693 DOI: 10.4269/ajtmh.17-0153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
Rabies encephalitis is a fulminant, almost universally fatal infection involving the central nervous system. A unique treatment protocol, including anti-exicitotoxic therapy and induced coma was credited with the survival of a vaccinated teenager with bat rabies encephalitis in 2005. However, multiple efforts to replicate this expensive and intense protocol have not been successful. In this article, we report the failure of the protocol in Indian patients with canine-acquired rabies and elucidate the potential explanations for the failure of the protocol in our patients.
Collapse
Affiliation(s)
- Abi Manesh
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Reeta Subramaniam Mani
- Department of Neurovirology, WHO Collaborating Centre for Reference and Research on Rabies, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Kishore Pichamuthu
- Division of Critical Care, Christian Medical College, Vellore, Tamil Nadu, India
| | - Manjeera Jagannati
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vivek Mathew
- Department of Neurological Sciences, Neurology Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rajiv Karthik
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Geeta Chacko
- Section of Neuropathology, Department of Neurological Sciences & Pathology, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - George M. Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Chin WX, Ang SK, Chu JJH. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discov Today 2017; 22:17-30. [DOI: 10.1016/j.drudis.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
|
9
|
Zhu S, Guo C. Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential. Viruses 2016; 8:v8110279. [PMID: 27801824 PMCID: PMC5127009 DOI: 10.3390/v8110279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies is an acute, fatal, neurological disease that affects almost all kinds of mammals. Vaccination (using an inactivated rabies vaccine), combined with administration of rabies immune globulin, is the only approved, effective method for post-exposure prophylaxis against rabies in humans. In the search for novel rabies control and treatment strategies, live-attenuated viruses have recently emerged as a practical and promising approach for immunizing and controlling rabies. Unlike the conventional, inactivated rabies vaccine, live-attenuated viruses are genetically modified viruses that are able to replicate in an inoculated recipient without causing adverse effects, while still eliciting robust and effective immune responses against rabies virus infection. A number of viruses with an intrinsic capacity that could be used as putative candidates for live-attenuated rabies vaccine have been intensively evaluated for therapeutic purposes. Additional novel strategies, such as a monoclonal antibody-based approach, nucleic acid-based vaccines, or small interfering RNAs (siRNAs) interfering with virus replication, could further add to the arena of strategies to combat rabies. In this review, we highlight current advances in rabies therapy and discuss the role that they might have in the future of rabies treatment. Given the pronounced and complex impact of rabies on a patient, a combination of these novel modalities has the potential to achieve maximal anti-rabies efficacy, or may even have promising curative effects in the future. However, several hurdles regarding clinical safety considerations and public awareness should be overcome before these approaches can ultimately become clinically relevant therapies.
Collapse
Affiliation(s)
- Shimao Zhu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen 518107, China.
| | - Caiping Guo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen 518107, China.
| |
Collapse
|
10
|
Cao Z, Wang H, Wang L, Li L, Jin H, Xu C, Feng N, Wang J, Li Q, Zhao Y, Wang T, Gao Y, Lu Y, Yang S, Xia X. Visual Detection of West Nile Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Vertical Flow Visualization Strip. Front Microbiol 2016; 7:554. [PMID: 27148234 PMCID: PMC4837158 DOI: 10.3389/fmicb.2016.00554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023] Open
Abstract
West Nile virus (WNV) causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification method for WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF) was developed to detect the envelope (E) gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl of an WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubation of the amplification product on the visualization strip, and no cross-reaction with other closely related members of the Flavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV. The assay produced sensitivities of 101.5 TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.
Collapse
Affiliation(s)
- Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Lina Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Animal Science and Technology College, Jilin Agricultural UniversityChangchun, China
| | - Ling Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Changchun SR Biological Technology Co., Ltd., ChangchunChina
| | - Changping Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and PreventionHangzhou, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Jianzhong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Qian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Yiyu Lu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and PreventionHangzhou, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| |
Collapse
|
11
|
Liposomal Aerosols of Nitric Oxide (NO) Donor as a Long-Acting Substitute for the Ultra-Short-Acting Inhaled NO in the Treatment of PAH. Pharm Res 2016; 33:1696-710. [PMID: 27048347 DOI: 10.1007/s11095-016-1911-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/17/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE This study seeks to develop a liposomal formulation of diethylenetriamine NONOate (DN), a long acting nitric oxide (NO) donor, with a goal to replace inhaled NO (iNO) in the treatment of pulmonary arterial hypertension (PAH). METHODS Liposomal formulations were prepared by a lipid film hydration method and modified with a cell penetrating peptide, CAR. The particles were characterized for size, polydispersity index (PDI), zeta potential, entrapment efficiency, storage and nebulization stability, and in-vitro release profiles. The cellular uptake and transport were assessed in rat alveolar macrophages (NR8383) and transforming growth factor β (TGF-β) activated rat pulmonary arterial smooth muscle cells (PASMCs). The fraction of the formulation that enters the systemic circulation, after intratracheal administration, was determined in an Isolated Perfused Rat Lung (IPRL) model. The safety of the formulations were assessed using an MTT assay and by measuring injury markers in the bronchoalveolar lavage (BAL) fluid; the pharmacological efficacy was evaluated by monitoring the changes in the mean pulmonary arterial (mPAP) and systemic pressure (mSAP) in a monocrotaline (MCT) induced-PAH rat model RESULTS Liposome size, zeta potential, and entrapment efficiency were 171 ± 4 nm, -37 ± 3 mV, and 46 ± 5%, respectively. The liposomes released 70 ± 5% of the drug in 8 h and were stable when stored at 4°C. CAR-conjugated-liposomes were taken up more efficiently by PASMCs than liposomes-without-CAR; the uptake of the formulations by rat alveolar macrophages was minimal. DN-liposomes did not increase lung weight, protein quantity, and levels of injury markers in the BAL fluid. Intratracheal CAR-liposomes reduced the entry of liposomes from the lung to blood; the formulations produced a 40% reduction in mPAP for 180 minutes. CONCLUSION This study establishes the proof-of-concept that peptide modified liposomal formulations of long-acting NO donor can be an alternative to short-acting iNO.
Collapse
|
12
|
Shen H, Zhang C, Guo P, Liu Z, Zhang J. Effective inhibition of porcine epidemic diarrhea virus by RNA interference in vitro. Virus Genes 2015; 51:252-9. [PMID: 26329934 PMCID: PMC7088742 DOI: 10.1007/s11262-015-1242-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 11/25/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a member of the coronaviridae family, which can cause acute and highly contagious enteric disease of swine characterized by severe entero-pathogenic diarrhea in piglets. Currently, the vaccines of PEDV are only partially effective and there is no specific drug available for treatment of PEDV infection. To exploit the possibility of using RNA interference (RNAi) as a strategy against PEDV infection, five shRNA-expressing plasmids targeting the N, M, and S genes of PEDV were constructed and transfected into Vero cells. The cytopathic effect and MTS assays demonstrated that two shRNAs (pSilencer4.1-M1 and pSilencer4.1-N) were capable of protecting cells against PEDV invasion with very high specificity and efficiency. The two shRNA expression plasmids were also able to inhibit the PEDV replication significantly, as shown by detection of virus titers (TCID50/mL). A real-time quantitative RT-PCR further confirmed that the amounts of viral RNAs in cell cultures pre-transfected with these two plasmids were reduced by 95.0 %. Our results suggest that RNAi might be a promising new strategy against PEDV infection.
Collapse
Affiliation(s)
- Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Pengju Guo
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, Guangdong, China
| | - Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
13
|
Appolinario CM, Allendorf SD, Peres MG, Fonseca CR, Vicente AF, Antunes JMADP, Pantoja JCF, Megid J. Evaluation of short-interfering RNAs treatment in experimental rabies due to wild-type virus. Braz J Infect Dis 2015; 19:453-8. [PMID: 26254692 PMCID: PMC9427455 DOI: 10.1016/j.bjid.2015.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/11/2022] Open
Abstract
We have evaluated the efficacy of short-interfering RNAs targeting the nucleoprotein gene and also the brain immune response in treated and non-treated infected mice. Mice were inoculated with wild-type virus, classified as dog (hv2) or vampire bat (hv3) variants and both groups were treated or leaved as controls. No difference was observed in the lethality rate between treated and non-treated groups, although clinical evaluation of hv2 infected mice showed differences in the severity of clinical disease (p = 0.0006). Evaluation of brain immune response 5 days post-inoculation in treated hv2 group showed no difference among the analyzed genes, whereas after 10 days post-inoculation there was increased expression of 2′,5′-oligoadenylate synthetase 1, tumor necrosis factor alpha, interleukin 12, interferon gamma, and C-X-C motif chemokine 10 associated with higher expression of N gene in the same period (p < 0.0001). In hv2 non-treated group only higher interferon beta expression was found at day 5. The observed differences in results of the immune response genes between treated and non-treated groups is not promising as they had neither impact on mortality nor even a reduction in the expression of N gene in siRNA treated animals. This finding suggests that the use of pre-designed siRNA alone may not be useful in rabies treatment.
Collapse
Affiliation(s)
- Camila Michele Appolinario
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Susan Dora Allendorf
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Marina Gea Peres
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Clovis Reynaldo Fonseca
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Acacia Ferreira Vicente
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - João Marcelo Azevedo de Paula Antunes
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - José Carlos Figueiredo Pantoja
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Jane Megid
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia (DHVSP-FMVZ), Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil.
| |
Collapse
|
14
|
Gotesman M, Soliman H, Besch R, El-Matbouli M. Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi. JOURNAL OF FISH DISEASES 2015; 38:197-207. [PMID: 24460815 PMCID: PMC4303980 DOI: 10.1111/jfd.12227] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 05/08/2023]
Abstract
Spring viraemia of carp virus (SVCV) is an aetiological agent of a serious disease affecting carp farms in Europe and is a member of the Rhabdoviridae family of viruses. The genome of SVCV codes for five proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). RNA-mediated interference (RNAi) by small interfering RNAs (siRNAs) is a powerful tool to inhibit gene transcription and is used to study genes important for viral replication. In previous studies regarding another member of Rhabdoviridae, siRNA inhibition of the rabies virus nucleoprotein gene provided in vitro and in vivo protection against rabies. In this study, synthetic siRNA molecules were designed to target SVCV-N and SVCV-P transcripts to inhibit SVCV replication and were tested in an epithelioma papulosum cyprini (EPC) cell line. Inhibition of gene transcription was measured by real-time quantitative reverse-transcription PCR (RT-qPCR). The efficacy of using siRNA for inhibition of viral replication was analysed by RT-qPCR measurement of a reporter gene (glycoprotein) expression and by virus endpoint titration. Inhibition of nucleoprotein and phosphoprotein gene expression by siRNA reduced SVCV replication. However, use of tandem siRNAs that target phosphoprotein and nucleoprotein worked best at reducing SVCV replication.
Collapse
Affiliation(s)
- M Gotesman
- Clinical Division of Fish Medicine, University of Veterinary MedicineVienna, Austria
| | - H Soliman
- Clinical Division of Fish Medicine, University of Veterinary MedicineVienna, Austria
- Fish Medicine and Management, Faculty of Veterinary Medicine, University of AssiutAssiut, Egypt
| | - R Besch
- Clinic and Policlinic for Dermatology and Allergology, Department of Dermatology, Ludwig-Maximilian UniversityMunich, Germany
| | - M El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary MedicineVienna, Austria
- CorrespondenceM El-Matbouli, Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria (e-mail: )
| |
Collapse
|
15
|
Brunner K, Harder J, Halbach T, Willibald J, Spada F, Gnerlich F, Sparrer K, Beil A, Möckl L, Bräuchle C, Conzelmann KK, Carell T. Cell-Penetrating and Neurotargeting Dendritic siRNA Nanostructures. Angew Chem Int Ed Engl 2014; 54:1946-9. [DOI: 10.1002/anie.201409803] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/30/2014] [Indexed: 12/25/2022]
|
16
|
Brunner K, Harder J, Halbach T, Willibald J, Spada F, Gnerlich F, Sparrer K, Beil A, Möckl L, Bräuchle C, Conzelmann KK, Carell T. Dendritische Nanostrukturen zur rezeptorvermittelten Aufnahme von siRNA in neurale Zellen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Singh NK, Meshram CD, Sonwane AA, Dahiya SS, Pawar SS, Chaturvedi VK, Saini M, Singh RP, Gupta PK. Protection of mice against lethal rabies virus challenge using short interfering RNAs (siRNAs) delivered through lentiviral vector. Mol Biotechnol 2014; 56:91-101. [PMID: 23877894 PMCID: PMC7090658 DOI: 10.1007/s12033-013-9685-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The antiviral potential of small interfering RNAs (siRNAs) targeting rabies virus (RV) polymerase (L) and nucleoprotein (N) genes delivered through lentiviral vector was investigated. For in vitro evaluation, siRNAs expressing BHK-21 cell lines (BHK-L and BHK-N) were developed using transduction with Lenti-L and Lenti-N lentiviruses encoding siRNAs against RV-L and N genes, respectively. When these cell lines were challenged in vitro with RV Pasteur virus-11 (PV-11) strain, there was reduction in number of RV-specific foci and target gene transcripts indicating inhibitory effect on RV multiplication. For in vivo evaluation, mice were treated intracerebrally with lentiviruses and challenged with 20 LD50 of RV challenge virus standard-11 (CVS-11) strain by intramuscular route in masseter muscle. Five out of eight mice treated with Lenti-N survived indicating 62.5 % protection. The control and Lenti-L-treated mice died within 7–10 days indicating lethal nature of challenge virus and no protection. These results demonstrated that siRNA targeting RV-N could not only inhibit RV multiplication, but also conferred protection in mice against lethal RV challenge. These findings have implication on therapeutic use of siRNA targeting RV-N against RV infection.
Collapse
Affiliation(s)
- Niraj K Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Appolinario CM, Jackson AC. Antiviral therapy for human rabies. Antivir Ther 2014; 20:1-10. [PMID: 25156675 DOI: 10.3851/imp2851] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Human rabies is virtually always fatal despite numerous attempts at aggressive therapy. Most survivors received one or more doses of rabies vaccine prior to the onset of the disease. The Milwaukee Protocol has proved to be ineffective for rabies and should no longer be used. New approaches are needed and an improved understanding of basic mechanisms responsible for the clinical disease in rabies may prove to be useful for the development of novel therapeutic approaches. Antiviral therapy is thought to be an important component of combination therapy for the management of human rabies, and immunotherapy and neuroprotective therapy should also be strongly considered. There are many important issues for consideration regarding drug delivery to the central nervous system in rabies, which are in part related to the presence of the blood-brain barrier and also the blood-spinal cord barrier. Ribavirin and interferon-α have proved to be disappointing agents for the therapy of rabies. There is insufficient evidence to support the continued use of ketamine or amantadine for the therapy of rabies. Minocycline or corticosteroids should not be used because of concerns about aggravating the disease. A variety of new antiviral agents are under development and evaluation, including favipiravir, RNA interference (for example, small interfering [si]RNAs) and novel targeted approaches, including interference with viral capsid assembly and viral egress.
Collapse
Affiliation(s)
- Camila M Appolinario
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
19
|
Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. BIOMED RESEARCH INTERNATIONAL 2014; 2014:161794. [PMID: 25184135 PMCID: PMC4145386 DOI: 10.1155/2014/161794] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.
Collapse
|
20
|
Kandeel M, Al-Taher A, Nakashima R, Sakaguchi T, Kandeel A, Nagaya Y, Kitamura Y, Kitade Y. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain. PLoS One 2014; 9:e94538. [PMID: 24788663 PMCID: PMC4008379 DOI: 10.1371/journal.pone.0094538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/18/2014] [Indexed: 12/27/2022] Open
Abstract
Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3′-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3′-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine and Animal Resources, King Faisal University, Alhofuf, Alahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Abdullah Al-Taher
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine and Animal Resources, King Faisal University, Alhofuf, Alahsa, Saudi Arabia
| | - Remi Nakashima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Tomoya Sakaguchi
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Ali Kandeel
- Department of Biology, Faculty of Sciences and Arts, Alkamil Branch, King Abdul Aziz University, Alkamil, Saudi Arabia
- Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yuki Nagaya
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Yoshiaki Kitamura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yukio Kitade
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
21
|
Meshram CD, Singh NK, Sonwane AA, Pawar SS, Mishra BP, Chaturvedi VK, Saini M, Singh RP, Gupta PK. Evaluation of single and dual siRNAs targeting rabies virus glycoprotein and nucleoprotein genes for inhibition of virus multiplication in vitro. Arch Virol 2013; 158:2323-32. [PMID: 23754741 PMCID: PMC7086810 DOI: 10.1007/s00705-013-1738-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/16/2013] [Indexed: 11/27/2022]
Abstract
Small interfering RNAs (siRNAs) targeting rabies virus (RV) glycoprotein (G) and nucleoprotein (N) genes were evaluated as antiviral agents against rabies virus in vitro in BHK-21 cells. To select effective siRNAs targeting RV-G, a plasmid-based transient co-transfection approach was used. In this, siRNAs were expressed as short hairpin RNAs (shRNAs), and their ability to inhibit RV-G gene expression was evaluated in cells transfected with a plasmid expressing RV-G. The nine different siRNAs designed to target RV-G exhibited varying degrees of knockdown of RV-G gene expression. One siRNA (si-G7) with considerable effect in knockdown of RV-G expression also demonstrated significant inhibition of RV multiplication in BHK-21 cells after in vitro challenge with the RV Pasteur virus-11 (PV-11) strain. A decrease in the number of fluorescent foci in siRNA-treated cells and a reduction (86.8 %) in the release of RV into infected cell culture supernatant indicated the anti-rabies potential of siRNA. Similarly, treatment with one siRNA targeting RV-N resulted in a decrease in the number of fluorescent foci and a reduction (85.9 %) in the release of RV. As a dual gene silencing approach where siRNAs targeting RV-G and RV-N genes were expressed from single construct, the anti-rabies-virus effect was observed as an 87.4 % reduction in the release of RV. These results demonstrate that siRNAs targeting RV-G and N, both in single and dual form, have potential as antiviral agent against rabies.
Collapse
Affiliation(s)
- Chetan D. Meshram
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Niraj K. Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Arvind A. Sonwane
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Sachin S. Pawar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - B. P. Mishra
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - V. K. Chaturvedi
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Mohini Saini
- Centre for Wildlife, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - R. P. Singh
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Praveen K. Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| |
Collapse
|
22
|
Wu HX, Wang HL, Guo XF, Yang YJ, Ma JZ, Wang TC, Gao YW, Zhao YK, Yang ST, Xia XZ. Adeno-associated viruses serotype 2-mediated RNA interference efficiently inhibits rabies virus replication in vitro and in vivo. J Vet Med Sci 2013; 75:1355-61. [PMID: 23774028 PMCID: PMC3942934 DOI: 10.1292/jvms.13-0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the potential of adeno-associated viruses serotype 2 (AAV2)-mediated RNA interference (RNAi) as an antiviral agent against rabies, recombinant AAV2 vectors expressing siRNA targeting the nucleoprotein (N) gene of rabies virus (RABV) (rAAV-N796) were constructed and evaluated. When NA cells pretreated with rAAV-N796 were challenged with RABV, there was a 37.8 ± 3.4% to 55.1 ± 5.3% reduction in RABV virus titer. When cells pre-challenged with RABV were treated with rAAV-N796, there was a 4.4 ± 1.4 to 28.8 ± 3.2% reduction in RABV virus titer. Relative quantification of RABV transcripts using real-time PCR and Western blot revealed that the knockdown of RABV-N gene transcripts was based on the rAAV-N796 inoculation titer. When any NA cells were treated with rAAV-N796 before or after challenged with RABV, significant reduction in virus titer was observed in both administrations. Mice treated intracerebrally with rAAV-N796 exhibited 50 ± 5.3 and 62.5 ± 4.7% protection when challenged intracerebrally or intramuscally, respectively, with lethal RABV. When mice treated intramuscularly with rAAV-N796 were challenged intramuscularly with lethal RABV, they exhibited 37.5 ± 3.7% protection. When mice were intracerebrally and intramuscularly with rAAV-N796 24 hr after exposure to RABV infection, they exhibited 25 ± 4.1% protection The N gene mRNA levels in the brains of challenged mice with three different administrations were reduced (55, 68, 32 and 25%, respectively). These results indicated that AAV2 vector-mediated siRNA delivery in vitro in NA cells inhibited RABV multiplication, inhibited RABV multiplication in vivo in the mice brain and imparted partial protection against lethal rabies. So, it may have a potential to be used as an alternative antiviral approach against rabies.
Collapse
Affiliation(s)
- Hong-Xia Wu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|