1
|
Wu S, Yi R, Tao Y, Wu H, Wu L, Song J, Zhang X, Yang B, Wu X, He Y, Shu J, Feng H. PB2 and PA mutations contribute to the pathogenicity of mouse-adapted pdmH1N1-Venus reporter influenza A virus in a mammalian model. Front Microbiol 2025; 15:1532304. [PMID: 39839124 PMCID: PMC11747394 DOI: 10.3389/fmicb.2024.1532304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Influenza A viruses have been a threat to human health for the past 100 years. Understanding the dynamics and pathogenicity of the influenza viruses in vivo is of great value in controlling the influenza pandemic. Fluorescent protein-carrying recombinant influenza virus is a substantially useful tool for studying viral characteristics in vivo and high-throughput screening in vitro. In this study, we generated a recombinant pdmH1N1 CA04 influenza virus carrying a Venus reporter gene in the non-structural (NS) segment using reverse genetics. After passaging the recombinant influenza virus carrying Venus from lung to lung in mice, we found that virulence of the passaged pdmH1N1 CA04-Venus significantly increased and was lethal to the mice. We finally isolated one mouse-adapted pdmH1N1 CA04-Venus with bigger plaques expressing the amount of Venus proteins by using the ninth passage lung homogenate with plague purification. We found three different amino acids (PB2 T340K, PA I21M, and F175L) between WT-CA04-Venus and MA-CA04-Venus using whole-genome sequencing. Interestingly, the polymerase activity of MA-CA04-Venus was significantly lower than that of WT-CA04-Venus in a minigenome assay. Further investigation demonstrates that PA I21M and PA I21M + PB2 T340K significantly enhanced the polymerase activity of WT-CA04-Venus; however, PA F175L + PB2 T340K significantly decreased the polymerase activity of MA-CA04-Venus. Therefore, PA I21M mutation may determine the increased virulence in mice, and PA F175L + PB2 T340K may be involved in the stability of Venus insertion. Above all, we generated a mouse-adapted pdmH1N1 CA04-Venus virus with high virulence and stable green fluorescent Venus protein. It is a useful tool for high-throughput screening of antiviral drugs and for investigating the interaction between the influenza virus and host in vivo.
Collapse
Affiliation(s)
- Shixiang Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruonan Yi
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yingying Tao
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huimin Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiasheng Song
- Zhejiang Difference Biotechnology Co., Ltd, Hangzhou, China
| | - Xin Zhang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Beibei Yang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xing Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Hamele CE, Spurrier MA, Leonard RA, Heaton NS. Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains. Annu Rev Virol 2023; 10:261-282. [PMID: 37774125 PMCID: PMC10795101 DOI: 10.1146/annurev-virology-111821-120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.
Collapse
Affiliation(s)
- Cait E Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - M Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Zhao X, Lin X, Li P, Chen Z, Zhang C, Manicassamy B, Rong L, Cui Q, Du R. Expanding the tolerance of segmented Influenza A Virus genome using a balance compensation strategy. PLoS Pathog 2022; 18:e1010756. [PMID: 35926068 PMCID: PMC9380948 DOI: 10.1371/journal.ppat.1010756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/16/2022] [Accepted: 07/21/2022] [Indexed: 12/17/2022] Open
Abstract
Reporter viruses provide powerful tools for both basic and applied virology studies, however, the creation and exploitation of reporter influenza A viruses (IAVs) have been hindered by the limited tolerance of the segmented genome to exogenous modifications. Interestingly, our previous study has demonstrated the underlying mechanism that foreign insertions reduce the replication/transcription capacity of the modified segment, impairing the delicate balance among the multiple segments during IAV infection. In the present study, we developed a “balance compensation” strategy by incorporating additional compensatory mutations during initial construction of recombinant IAVs to expand the tolerance of IAV genome. As a proof of concept, promoter-enhancing mutations were introduced within the modified segment to rectify the segments imbalance of a reporter influenza PR8-NS-Gluc virus, while directed optimization of the recombinant IAV was successfully achieved. Further, we generated recombinant IAVs expressing a much larger firefly luciferase (Fluc) by coupling with a much stronger compensatory enhancement, and established robust Fluc-based live-imaging mouse models of IAV infection. Our strategy feasibly expands the tolerance for foreign gene insertions in the segmented IAV genome, which opens up better opportunities to develop more versatile reporter IAVs as well as live attenuated influenza virus-based vaccines for other important human pathogens.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Lin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zinuo Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengcheng Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa, United States of America
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, United States of America
- * E-mail: (LR); (QC); (RD)
| | - Qinghua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- * E-mail: (LR); (QC); (RD)
| | - Ruikun Du
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- * E-mail: (LR); (QC); (RD)
| |
Collapse
|
4
|
Cáceres CJ, Hu Y, Cárdenas-García S, Wu X, Tan H, Carnaccini S, Gay LC, Geiger G, Ma C, Zhang QY, Rajao D, Perez DR, Wang J. Rational design of a deuterium-containing M2-S31N channel blocker UAWJ280 with in vivo antiviral efficacy against both oseltamivir sensitive and -resistant influenza A viruses. Emerg Microbes Infect 2021; 10:1832-1848. [PMID: 34427541 PMCID: PMC8451667 DOI: 10.1080/22221751.2021.1972769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 10/28/2022]
Abstract
Seasonal influenza A virus (IAV) infections are among the most important global health problems. FDA-approved antiviral therapies against IAV include neuraminidase inhibitors, M2 inhibitors, and polymerase inhibitor baloxavir. Resistance against adamantanes (amantadine and rimantadine) is widespread as virtually all IAV strains currently circulating in the human population are resistant to adamantanes through the acquisition of the S31N mutation. The neuraminidase inhibitor-resistant strains also contain the M2-S31N mutant, suggesting M2-S31N is a high-profile antiviral drug target. Here we report the development of a novel deuterium-containing M2-S31N inhibitor UAWJ280. UAWJ280 had broad-spectrum antiviral activity against both oseltamivir sensitive and -resistant influenza A strains and had a synergistic antiviral effect in combination with oseltamivir in cell culture. In vivo pharmacokinetic (PK) studies demonstrated that UAWJ280 had favourable PK properties. The in vivo mouse model study showed that UAWJ280 was effective alone or in combination with oseltamivir in improving clinical signs and survival after lethal challenge with an oseltamivir sensitive IAV H1N1 strain. Furthermore, UAWJ280 was also able to ameliorate clinical signs and increase survival when mice were challenged with an oseltamivir-resistant IAV H1N1 strain. In conclusion, we show for the first time that the M2-S31N channel blocker UAWJ280 has in vivo antiviral efficacy in mice that are infected with either oseltamivir sensitive or -resistant IAVs, and it has a synergistic antiviral effect with oseltamivir.
Collapse
Affiliation(s)
- C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Stivalis Cárdenas-García
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Haozhou Tan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Silvia Carnaccini
- Tifton diagnostic laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Daniela Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Froggatt HM, Burke KN, Chaparian RR, Miranda HA, Zhu X, Chambers BS, Heaton NS. Influenza A virus segments five and six can harbor artificial introns allowing expanded coding capacity. PLoS Pathog 2021; 17:e1009951. [PMID: 34570829 PMCID: PMC8496794 DOI: 10.1371/journal.ppat.1009951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/07/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses encode their genomes across eight, negative sense RNA segments. The six largest segments produce mRNA transcripts that do not generally splice; however, the two smallest segments are actively spliced to produce the essential viral proteins NEP and M2. Thus, viral utilization of RNA splicing effectively expands the viral coding capacity without increasing the number of genomic segments. As a first step towards understanding why splicing is not more broadly utilized across genomic segments, we designed and inserted an artificial intron into the normally nonsplicing NA segment. This insertion was tolerated and, although viral mRNAs were incompletely spliced, we observed only minor effects on viral fitness. To take advantage of the unspliced viral RNAs, we encoded a reporter luciferase gene in frame with the viral ORF such that when the intron was not removed the reporter protein would be produced. This approach, which we also show can be applied to the NP encoding segment and in different viral genetic backgrounds, led to high levels of reporter protein expression with minimal effects on the kinetics of viral replication or the ability to cause disease in experimentally infected animals. These data together show that the influenza viral genome is more tolerant of splicing than previously appreciated and this knowledge can be leveraged to develop viral genetic platforms with utility for biotechnology applications. Unlike most host mRNAs, some viral mRNAs encode multiple discrete, functional proteins. One method influenza A viruses use to increase the protein products from two of their eight RNA genome segments is splicing. Splicing requires host machinery to remove part of the viral mRNA, the intron, to generate a different mRNA product. Although only certain influenza viral segments naturally splice, we were interested in whether additional segments could splice to produce multiple proteins. We inserted artificial introns harboring reporter genes into otherwise nonsplicing genomic segments of an H1N1 influenza A virus and found that this modification was well tolerated by the virus. We further demonstrated that an unrelated H3N2 influenza A virus could similarly support splicing and express a reporter protein from an artificial intron. These findings have implications for our understanding of how viruses expand their coding capacity with a limited genome. Additionally, encoding reporter proteins in spliced intronic sequences also represents a new method of generating reporter viruses requiring limited manipulation of the viral RNA.
Collapse
Affiliation(s)
- Heather M. Froggatt
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Ryan R. Chaparian
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Hector A. Miranda
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Xinyu Zhu
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Benjamin S. Chambers
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
- Duke Human Vaccine Institute Duke University School of Medicine Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Cardenas-Garcia S, Cáceres CJ, Jain A, Geiger G, Mo JS, Jasinskas A, Nakajima R, Rajao DS, Davies DH, Perez DR. FluB-RAM and FluB-RANS: Genome Rearrangement as Safe and Efficacious Live Attenuated Influenza B Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9080897. [PMID: 34452022 PMCID: PMC8402576 DOI: 10.3390/vaccines9080897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza B virus (IBV) is considered a major respiratory pathogen responsible for seasonal respiratory disease in humans, particularly severe in children and the elderly. Seasonal influenza vaccination is considered the most efficient strategy to prevent and control IBV infections. Live attenuated influenza virus vaccines (LAIVs) are thought to induce both humoral and cellular immune responses by mimicking a natural infection, but their effectiveness has recently come into question. Thus, the opportunity exists to find alternative approaches to improve overall influenza vaccine effectiveness. Two alternative IBV backbones were developed with rearranged genomes, rearranged M (FluB-RAM) and a rearranged NS (FluB-RANS). Both rearranged viruses showed temperature sensitivity in vitro compared with the WT type B/Bris strain, were genetically stable over multiple passages in embryonated chicken eggs and were attenuated in vivo in mice. In a prime-boost regime in naïve mice, both rearranged viruses induced antibodies against HA with hemagglutination inhibition titers considered of protective value. In addition, antibodies against NA and NP were readily detected with potential protective value. Upon lethal IBV challenge, mice previously vaccinated with either FluB-RAM or FluB-RANS were completely protected against clinical disease and mortality. In conclusion, genome re-arrangement renders efficacious LAIV candidates to protect mice against IBV.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Aarti Jain
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Jong-Suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Algimantas Jasinskas
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - D. Huw Davies
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
- Correspondence: ; Tel.: +1-(706)-542-5506
| |
Collapse
|
7
|
Wang L, Cui Q, Zhao X, Li P, Wang Y, Rong L, Du R. Generation of a Reassortant Influenza A Subtype H3N2 Virus Expressing Gaussia Luciferase. Viruses 2019; 11:v11070665. [PMID: 31330768 PMCID: PMC6669691 DOI: 10.3390/v11070665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022] Open
Abstract
Reporter influenza A viruses (IAVs) carrying fluorescent or luminescent genes provide a powerful tool for both basic and translational research. Most reporter IAVs are based on the backbone of either subtype H1N1 viruses, A/Puerto Rico/8/1934 (PR8) or A/WSN/1933, but no reporter subtype H3N2 virus is currently available to our knowledge. Since the IAV subtype H3N2 co-circulates with H1N1 among humans causing annual epidemics, a reporter influenza A subtype H3N2 virus would be highly valuable. In this study, the segments of A/Wyoming/3/03 (NY, H3N2) virus encoding hemagglutinin and neuraminidase, respectively, were reassorted with the six internal genes of PR8 where the NS gene was fused with a Gaussia luciferase (Gluc) gene. Using reverse genetics, NY-r19-Gluc, a replication competent reassortant influenza A subtype H3N2 virus expressing reporter Gluc was successfully generated. This reporter virus is stable during replication in Madin-Darby canine kidney (MDCK) cells, and preliminary studies demonstrated it as a useful tool to evaluate antivirals. In addition, NY-r19-Gluc virus will be a powerful tool in other studies including the application of diagnostic and therapeutic antibodies as well as the evaluation of novel vaccines.
Collapse
Affiliation(s)
- Lin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Xiujuan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| |
Collapse
|
8
|
Santner P, Martins JMDS, Laursen JS, Behrendt L, Riber L, Olsen CA, Arkin IT, Winther JR, Willemoës M, Lindorff-Larsen K. A Robust Proton Flux (pHlux) Assay for Studying the Function and Inhibition of the Influenza A M2 Proton Channel. Biochemistry 2018; 57:5949-5956. [PMID: 30230312 DOI: 10.1021/acs.biochem.8b00721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The M2 protein is an important target for drugs in the fight against the influenza virus. Because of the emergence of resistance against antivirals directed toward the M2 proton channel, the search for new drugs against resistant M2 variants is of high importance. Robust and sensitive assays for testing potential drug compounds on different M2 variants are valuable tools in this search for new inhibitors. In this work, we describe a fluorescence sensor-based assay, which we termed "pHlux", that measures proton conduction through M2 when synthesized from an expression vector in Escherichia coli. The assay was compared to a previously established bacterial potassium ion transport complementation assay, and the results were compared to simulations obtained from analysis of a computational model of M2 and its interaction with inhibitor molecules. The inhibition of M2 was measured for five different inhibitors, including Rimantadine, Amantadine, and spiro type compounds, and the drug resistance of the M2 mutant variants (swine flu, V27A, and S31N) was confirmed. We demonstrate that the pHlux assay is robust and highly sensitive and shows potential for high-throughput screening.
Collapse
Affiliation(s)
- Paul Santner
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - João Miguel da Silva Martins
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Jonas S Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Lars Behrendt
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Leise Riber
- Department of Biology, Section for Microbiology , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Christian A Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Center for Biopharmaceuticals, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Isaiah T Arkin
- Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat-Ram , Jerusalem 91904 , Israel
| | - Jakob R Winther
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Directed Evolution of an Influenza Reporter Virus To Restore Replication and Virulence and Enhance Noninvasive Bioluminescence Imaging in Mice. J Virol 2018; 92:JVI.00593-18. [PMID: 29899096 DOI: 10.1128/jvi.00593-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Reporter viruses provide a powerful tool to study infection, yet incorporating a nonessential gene often results in virus attenuation and genetic instability. Here, we used directed evolution of a luciferase-expressing pandemic H1N1 (pH1N1) 2009 influenza A virus in mice to restore replication kinetics and virulence, increase the bioluminescence signal, and maintain reporter gene expression. An unadapted pH1N1 virus with NanoLuc luciferase inserted into the 5' end of the PA gene segment grew to titers 10-fold less than those of the wild type in MDCK cells and in DBA/2 mice and was less virulent. For 12 rounds, we propagated DBA/2 lung samples with the highest bioluminescence-to-titer ratios. Every three rounds, we compared in vivo replication, weight loss, mortality, and bioluminescence. Mouse-adapted virus after 9 rounds (MA-9) had the highest relative bioluminescence signal and had wild-type-like fitness and virulence in DBA/2 mice. Using reverse genetics, we discovered fitness was restored in virus rPB2-MA9/PA-D479N by a combination of PA-D479N and PB2-E158G amino acid mutations and PB2 noncoding mutations C1161T and C1977T. rPB2-MA9/PA-D479N has increased mRNA transcription, which helps restore wild-type-like phenotypes in DBA/2 and BALB/c mice. Overall, the results demonstrate that directed evolution that maximizes foreign-gene expression while maintaining genetic stability is an effective method to restore wild-type-like in vivo fitness of a reporter virus. Virus rPB2-MA9/PA-D479N is expected to be a useful tool for noninvasive imaging of pH1N1 influenza virus infection and clearance while analyzing virus-host interactions and developing new therapeutics and vaccines.IMPORTANCE Influenza viruses contribute to 290,000 to 650,000 deaths globally each year. Infection is studied in mice to learn how the virus causes sickness and to develop new drugs and vaccines. During experiments, scientists have needed to euthanize groups of mice at different times to measure the amount of infectious virus in mouse tissues. By inserting a foreign gene that causes infected cells to light up, scientists could see infection spread in living mice. Unfortunately, adding an extra gene not needed by the virus slowed it down and made it weaker. Here, we used a new strategy to restore the fitness and lethality of an influenza reporter virus; we adapted it to mouse lungs and selected for variants that had the greatest light signal. The adapted virus can be used to study influenza virus infection, immunology, and disease in living mice. The strategy can also be used to adapt other viruses.
Collapse
|
10
|
Pan W, Dong J, Chen P, Zhang B, Li Z, Chen L. Development and application of bioluminescence imaging for the influenza A virus. J Thorac Dis 2018; 10:S2230-S2237. [PMID: 30116602 DOI: 10.21037/jtd.2018.02.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and intermittent pandemics which threaten human health. Conventional assays cannot meet the demands for rapid and sensitive detection of viral spread and pathogenesis in real time cannot be used for high-throughput screens of novel antivirals. Bioluminescence imaging (BLI) has emerged as a powerful tool in the study of infectious diseases in animal models. The advent of influenza reverse genetics has enabled the incorporation of bioluminescent reporter proteins into replication-competent IAVs. This review briefly describes the current development and applications of bioluminescence in the study of viral infections and antiviral therapeutics for IAVs. BLI is expected to substantially accelerate the basic and applied research of IAV both in vitro and in vivo.
Collapse
Affiliation(s)
- Weiqi Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
| | - Ji Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China
| | - Peihai Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute of Health Sciences, Anhui University, Hefei 230601, China
| | - Beiwu Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhixia Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
11
|
A Simple and Robust Approach for Evaluation of Antivirals Using a Recombinant Influenza Virus Expressing Gaussia Luciferase. Viruses 2018; 10:v10060325. [PMID: 29899269 PMCID: PMC6024319 DOI: 10.3390/v10060325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 01/21/2023] Open
Abstract
Influenza A virus (IAV) causes seasonal epidemics and occasional but devastating pandemics, which are major public health concerns. Because the effectiveness of seasonal vaccines is highly variable and the currently available drugs are limited in their efficacy because of the emergence of drug resistance, there is an urgent need to develop novel antivirals. In this study, we characterized a recombinant IAV-carrying Gaussia luciferase (Gluc) gene and determined its potential as a tool for evaluating therapeutics. We demonstrated that this recombinant IAV is replication-competent in tissue culture and pathogenic in mice, although it is slightly attenuated compared to the parental virus. Luciferase expression correlated well with virus propagation both in vitro and in vivo, providing a simple measure for viral replication in tissue culture and in mouse lungs. To demonstrate the utility of this virus, ribavirin and oseltamivir phosphate were used to treat the IAV-infected cells and mice, and we observed the dose-dependent inhibition of viral replication by a luciferase assay. Moreover, the decreased luciferase expression in the infected lungs could predict the protective efficacy of antiviral interventions as early as day 2 post virus challenge. In summary, this study provides a new and quantitative approach to evaluate antivirals against IAV.
Collapse
|
12
|
Generation and application of replication-competent Venus-expressing H5N1, H7N9, and H9N2 influenza A viruses. Sci Bull (Beijing) 2018; 63:176-186. [PMID: 36659003 DOI: 10.1016/j.scib.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023]
Abstract
The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new countermeasures to combat the threat of influenza. Here, replication-competent IAVs with a neuraminidase (NA) segment harboring a fluorescent reporter protein, Venus, were generated in the background of H5N1, H7N9, and H9N2 influenza viruses, the three subtypes of viruses with imminent pandemic potential. All three reporter viruses maintained virion morphology, replicated with similar or slightly reduced titers relative to their parental viruses, and stably expressed the fluorescent signal for at least two passages in embryonated chicken eggs. As a proof of concept, we demonstrated that these reporter viruses, used in combination with a high-content imaging system, can serve as a convenient and rapid tool for the screening of antivirals and host factors involved in the virus life cycle. Moreover, the reporter viruses demonstrated similar growth properties and tissue tropism as their parental viruses in mice, among which the H7N9 NA-Venus virus could potentially be used in ex vivo studies to better understand H7N9 pathogenesis or to develop novel therapeutics.
Collapse
|
13
|
Abstract
Immunization is the cornerstone of seasonal influenza control and represents an important component of pandemic preparedness strategies. Using a bioluminescent reporter virus, we demonstrate the application of noninvasive in vivo imaging system (IVIS) technology to evaluate the preclinical efficacy of candidate vaccines and immunotherapy in a mouse model of influenza. Sequential imaging revealed distinct spatiotemporal kinetics of bioluminescence in groups of mice passively or actively immunized by various strategies that accelerated the clearance of the challenge virus at different rates and by distinct mechanisms. Imaging findings were consistent with conclusions derived from virus titers in the lungs and, notably, were more informative than conventional efficacy endpoints in some cases. Our findings demonstrate the reliability of IVIS as a qualitative approach to support preclinical evaluation of candidate medical countermeasures for influenza in mice. Influenza A viruses remain a persistent threat to public health. Vaccination and immunotherapy are effective countermeasures for the control of influenza but must contend with antigenic drift and the risk of resistance to antivirals. Traditional preclinical efficacy studies for novel vaccine and pharmaceutical candidates can be time-consuming and expensive and are inherently limited in scope. In vivo imaging approaches offer the potential to noninvasively track virus replication in real time in animal models. In this study, we demonstrate the utility of bioluminescent imaging for tracking influenza virus replication in the lungs of immunized mice and also identify important factors that may influence the accurate interpretation of imaging results. Our findings support the potential of IVIS approaches to enhance traditional preclinical efficacy evaluation of candidate vaccines and human monoclonal antibodies for the prevention and treatment of influenza.
Collapse
|
14
|
Fluorescent and Bioluminescent Reporter Myxoviruses. Viruses 2016; 8:v8080214. [PMID: 27527209 PMCID: PMC4997576 DOI: 10.3390/v8080214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022] Open
Abstract
The advent of virus reverse genetics has enabled the incorporation of genetically encoded reporter proteins into replication-competent viruses. These reporters include fluorescent proteins which have intrinsic chromophores that absorb light and re-emit it at lower wavelengths, and bioluminescent proteins which are luciferase enzymes that react with substrates to produce visible light. The incorporation of these reporters into replication-competent viruses has revolutionized our understanding of molecular virology and aspects of viral tropism and transmission. Reporter viruses have also enabled the development of high-throughput assays to screen antiviral compounds and antibodies and to perform neutralization assays. However, there remain technical challenges with the design of replication-competent reporter viruses, and each reporter has unique advantages and disadvantages for specific applications. This review describes currently available reporters, design strategies for incorporating reporters into replication-competent paramyxoviruses and orthomyxoviruses, and the variety of applications for which these tools can be utilized both in vitro and in vivo.
Collapse
|
15
|
Breen M, Nogales A, Baker SF, Martínez-Sobrido L. Replication-Competent Influenza A Viruses Expressing Reporter Genes. Viruses 2016; 8:v8070179. [PMID: 27347991 PMCID: PMC4974514 DOI: 10.3390/v8070179] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.
Collapse
Affiliation(s)
- Michael Breen
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
16
|
Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies. PLoS One 2016; 11:e0147723. [PMID: 26809059 PMCID: PMC4725730 DOI: 10.1371/journal.pone.0147723] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer’s spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.
Collapse
|
17
|
Development of a reverse genetic system for infectious salmon anemia virus: rescue of recombinant fluorescent virus by using salmon internal transcribed spacer region 1 as a novel promoter. Appl Environ Microbiol 2016; 81:1210-24. [PMID: 25480750 DOI: 10.1128/aem.03153-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Infectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genus Isavirus, family Orthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV(901_09) and rISAVr(S6-NotI-HPR) containing a NotI restriction site and rISAV(S6/EGFP-HPR) harboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5105 PFU/ml,similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry.
Collapse
|
18
|
Tran V, Poole DS, Jeffery JJ, Sheahan TP, Creech D, Yevtodiyenko A, Peat AJ, Francis KP, You S, Mehle A. Multi-Modal Imaging with a Toolbox of Influenza A Reporter Viruses. Viruses 2015; 7:5319-27. [PMID: 26473913 PMCID: PMC4632381 DOI: 10.3390/v7102873] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
Reporter viruses are useful probes for studying multiple stages of the viral life cycle. Here we describe an expanded toolbox of fluorescent and bioluminescent influenza A reporter viruses. The enhanced utility of these tools enabled kinetic studies of viral attachment, infection, and co-infection. Multi-modal bioluminescence and positron emission tomography–computed tomography (PET/CT) imaging of infected animals revealed that antiviral treatment reduced viral load, dissemination, and inflammation. These new technologies and applications will dramatically accelerate in vitro and in vivo influenza virus studies.
Collapse
Affiliation(s)
- Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI 53706, USA.
- Microbiology Doctoral Training Program, University of Wisconsin Madison, Madison, WI 53706, USA.
| | - Daniel S Poole
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI 53706, USA.
| | - Justin J Jeffery
- Carbone Cancer Center, University of Wisconsin Madison, Madison, WI 53706, USA.
| | - Timothy P Sheahan
- GlaxoSmithKline, Antiviral Discovery Performance Unit, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| | - Donald Creech
- GlaxoSmithKline, Antiviral Discovery Performance Unit, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| | | | - Andrew J Peat
- GlaxoSmithKline, Antiviral Discovery Performance Unit, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| | | | - Shihyun You
- GlaxoSmithKline, Antiviral Discovery Performance Unit, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Replication-Competent Influenza B Reporter Viruses as Tools for Screening Antivirals and Antibodies. J Virol 2015; 89:12226-31. [PMID: 26401044 DOI: 10.1128/jvi.02164-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022] Open
Abstract
Influenza B virus is a human pathogen responsible for significant health and economic burden. Research into this pathogen has been limited by the lack of reporter viruses. Here we describe the development of both a replication-competent fluorescent influenza B reporter virus and bioluminescent influenza B reporter virus. Furthermore, we demonstrate these reporter viruses can be used to quickly monitor viral growth and permit the rapid screening of antiviral compounds and neutralizing antibodies.
Collapse
|
20
|
Spronken MI, Short KR, Herfst S, Bestebroer TM, Vaes VP, van der Hoeven B, Koster AJ, Kremers GJ, Scott DP, Gultyaev AP, Sorell EM, de Graaf M, Bárcena M, Rimmelzwaan GF, Fouchier RA. Optimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications. PLoS One 2015; 10:e0133888. [PMID: 26241861 PMCID: PMC4524686 DOI: 10.1371/journal.pone.0133888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/15/2023] Open
Abstract
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses.
Collapse
Affiliation(s)
- Monique I. Spronken
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Kirsty R. Short
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Vincent P. Vaes
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Barbara van der Hoeven
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Abraham J. Koster
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
| | - Erin M. Sorell
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Milken Institute School of Public Health, Department of Health Policy and Management, George Washington University, Washington, DC, United States of America
| | - Miranda de Graaf
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Montserrat Bárcena
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Guus F. Rimmelzwaan
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ron A. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
21
|
Generation of a variety of stable Influenza A reporter viruses by genetic engineering of the NS gene segment. Sci Rep 2015; 5:11346. [PMID: 26068081 PMCID: PMC4464305 DOI: 10.1038/srep11346] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/21/2015] [Indexed: 11/08/2022] Open
Abstract
Influenza A viruses (IAV) pose a constant threat to the human population and therefore a better understanding of their fundamental biology and identification of novel therapeutics is of upmost importance. Various reporter-encoding IAV were generated to achieve these goals, however, one recurring difficulty was the genetic instability especially of larger reporter genes. We employed the viral NS segment coding for the non-structural protein 1 (NS1) and nuclear export protein (NEP) for stable expression of diverse reporter proteins. This was achieved by converting the NS segment into a single open reading frame (ORF) coding for NS1, the respective reporter and NEP. To allow expression of individual proteins, the reporter genes were flanked by two porcine Teschovirus-1 2A peptide (PTV-1 2A)-coding sequences. The resulting viruses encoding luciferases, fluorescent proteins or a Cre recombinase are characterized by a high genetic stability in vitro and in mice and can be readily employed for antiviral compound screenings, visualization of infected cells or cells that survived acute infection.
Collapse
|
22
|
Investigating influenza A virus infection: tools to track infection and limit tropism. J Virol 2015; 89:6167-70. [PMID: 25855737 DOI: 10.1128/jvi.00462-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Influenza A viruses display a broad cellular tropism within the respiratory tracts of mammalian hosts. Uncovering the relationship between tropism and virus immunity, pathogenesis, and transmission will be critical for the development of therapeutic interventions. Here we discuss recent developments of several recombinant strains of influenza A virus. These viruses have inserted reporters to track tropism, microRNA target sites to restrict tropism, or barcodes to assess transmission dynamics, expanding our understanding of pathogen-host interactions.
Collapse
|
23
|
Herfst S, Fouchier R. Epidemiological and genetic investigations of human-to-human transmission of zoonotic influenza viruses. ACTA ACUST UNITED AC 2014; 19. [PMID: 24993553 DOI: 10.2807/1560-7917.es2014.19.25.20840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- S Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|