1
|
Ryu HJ, Kim SE, Kim KH, Park JH, Jeong H, Shaleh I, Park TS. Signaling pathways of duck RIG-I in gene-edited DF1 chicken cells. Poult Sci 2025; 104:104739. [PMID: 39733732 PMCID: PMC11743317 DOI: 10.1016/j.psj.2024.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024] Open
Abstract
Retinoic acid inducible gene I (RIG-I) is an innate immune RNA sensor which can detect viral infection such as influenza viruses. Duck but not chicken has an RIG-I gene. However, the immune responses could be induced in chicken cells by transferring the duck RIG-I transgene. However, effects of other pathogen-recognition receptor (PRR) genes such as Toll-like receptor 3 (TLR3) and melanoma differentiation-associated protein 5 (MDA5) could not be ruled out. In this study, we knocked out TLR3 and MDA5 genes using gene-editing protocol, and stably transferred the duck RIG-I transgene into TLR3/MDA5 double knockout (KO) chicken DF1 cells. We investigated the antiviral responses induced by duck RIG-I in chicken cells. Duck RIG-I induced the expression of interferon-stimulated genes (ISGs) and inflammatory cytokines such as interferon regulatory factor 7 (IRF7), interferon β (IFNβ), Mx1, and protein kinase R1 (PKR1) after treatment with polyinosinic: polycytidylic acid (poly I:C) in TLR3/MDA5 double KO DF1 cells. Additionally, to examine the duck RIG-I signaling cascade, we knocked out mitochondrial antiviral-signaling protein (MAVS), which encodes an antiviral signaling factor in innate immunity. Duck RIG-I in TLR3/MDA5/MAVS triple KO DF1 cells did not activate downstream expression of ISGs. Finally, to analyze the global signaling pathways of duck RIG-I in chicken cells, next-generation sequencing of total mRNAs with and without poly I:C treatment was conducted. In conclusion, duck RIG-I mediated antiviral signaling independently of TLR3 and MDA5, and MAVS induced and stimulated ISGs by duck RIG-I in chicken cells.
Collapse
Affiliation(s)
- Hyeong Ju Ryu
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea.
| | - Si Eun Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea.
| | - Ki Hyun Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea.
| | - Ji Hoon Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea.
| | - Heesu Jeong
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea.
| | - Ismail Shaleh
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea; Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia.
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea; Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, South Korea.
| |
Collapse
|
2
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Fan L, Ren J, Wang Y, Chen Y, Chen Y, Chen L, Lin Q, Liao M, Ding C, Xiang B, Ren T. Circular RNAs are associated with the resistance to Newcastle disease virus infection in duck cells. Front Vet Sci 2023; 10:1181916. [PMID: 37841466 PMCID: PMC10570413 DOI: 10.3389/fvets.2023.1181916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Newcastle disease virus (NDV) is prevalent worldwide with an extensive host range. Among birds infected with velogenic NDV strains, chickens experience high pathogenicity and mortality, whereas ducks mostly experience mild symptoms or are asymptomatic. Ducks have a unique, innate immune system hypothesized to induce antiviral responses. Circular RNAs (circRNAs) are among the most abundant and conserved eukaryotic transcripts. These participate in innate immunity and host antiviral response progression. Methods In this study, circRNA expression profile differences post-NDV infection in duck embryo fibroblast (DEF) cells were analyzed using circRNA transcriptome sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal significant enrichment of differentially expressed (DE) circRNAs. The circRNA-miRNA-mRNA interaction networks were used to predict the related functions of circRNAs. Moreover, circ-FBXW7 was selected to determine its effect on NDV infection in DEFs. Results NDV infection altered circRNA expression profiles in DEF cells, and 57 significantly differentially expressed circRNAs were identified post-NDV infection. DEF responded to NDV by forming circRNAs to regulate apoptosis-, cell growth-, and protein degradation-related pathways via GO and KEGG enrichment analyses. circRNA-miRNA-mRNA interaction networks demonstrated that DEF cells combat NDV infection by regulating cellular pathways or apoptosis through circRNA-targeted mRNAs and miRNAs. circ-FBXW7 overexpression and knockdown inhibited and promoted viral replication, respectively. DEF cells mainly regulated cell cycle alterations or altered cellular sensing to combat NDV infection. Conclusion These results demonstrate that DEF cells exert antiviral responses by forming circRNAs, providing novel insights into waterfowl antiviral responses.
Collapse
Affiliation(s)
- Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yinchu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yiyi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yichun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
4
|
Li W, Wang H, Zheng SJ. Roles of RNA Sensors in Host Innate Response to Influenza Virus and Coronavirus Infections. Int J Mol Sci 2022; 23:8285. [PMID: 35955436 PMCID: PMC9368391 DOI: 10.3390/ijms23158285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus and coronavirus are two important respiratory viruses, which often cause serious respiratory diseases in humans and animals after infection. In recent years, highly pathogenic avian influenza virus (HPAIV) and SARS-CoV-2 have become major pathogens causing respiratory diseases in humans. Thus, an in-depth understanding of the relationship between viral infection and host innate immunity is particularly important to the stipulation of effective control strategies. As the first line of defense against pathogens infection, innate immunity not only acts as a natural physiological barrier, but also eliminates pathogens through the production of interferon (IFN), the formation of inflammasomes, and the production of pro-inflammatory cytokines. In this process, the recognition of viral pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) is the initiation and the most important part of the innate immune response. In this review, we summarize the roles of RNA sensors in the host innate immune response to influenza virus and coronavirus infections in different species, with a particular focus on innate immune recognition of viral nucleic acids in host cells, which will help to develop an effective strategy for the control of respiratory infectious diseases.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Escalante-Sansores AR, Absalón AE, Cortés-Espinosa DV. Improving immunogenicity of poultry vaccines by use of molecular adjuvants. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Angel E. Absalón
- Vaxbiotek SC Departamento de Investigación y Desarrollo, Cuautlancingo, Puebla, Mexico
| | - Diana V. Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicadla, Tlaxcala, Mexico
| |
Collapse
|
6
|
Kim G, Shin HM, Kim HR, Kim Y. Effects of Host and Pathogenicity on Mutation Rates in Avian Influenza A Viruses. Virus Evol 2022; 8:veac013. [PMID: 35295747 PMCID: PMC8922178 DOI: 10.1093/ve/veac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mutation is the primary determinant of genetic diversity in influenza viruses. The rate of mutation, measured in an absolute time-scale, is likely to be dependent on the rate of errors in copying RNA sequences per replication and the number of replications per unit time. Conditions for viral replication are probably different among host taxa, potentially generating the host-specificity of the viral mutation rate, and possibly between highly and low pathogenic viruses. This study investigated whether mutation rates per year in avian influenza A viruses depend on host taxa and pathogenicity. We inferred mutation rates from the rates of synonymous substitutions, which are assumed to be neutral and thus equal to mutation rates, at four segments that code internal viral proteins (PB2, PB1, PA, NP). On the phylogeny of all avian viral sequences for each segment, multiple distinct subtrees (clades) were identified that represent viral subpopulations, which are likely to have evolved within particular host taxa. Using simple regression analysis, we found that mutation rates were significantly higher in viruses infecting chickens than domestic ducks, and in those infecting wild shorebirds than wild ducks. Host-dependency of the substitution rate was also confirmed by Bayesian phylogenetic analysis. However, we did not find evidence that the mutation rate is higher in highly pathogenic than in low pathogenic viruses. We discuss these results considering viral replication rate as the major determinant of mutation rate per unit time.
Collapse
Affiliation(s)
- Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Yuseob Kim
- Division of EcoScience and Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
7
|
Xu W, Hu S. Administration of infectious bursal disease vaccine in Houhai acupoint promotes robust immune responses in chickens. Res Vet Sci 2021; 142:149-153. [PMID: 34990886 DOI: 10.1016/j.rvsc.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
The present study aimed to investigate Houhai acupoint (HA) administration of infectious bursal disease (IBD) vaccine in chickens and explore the underlying mechanisms. Chickens were randomly divided into 3 groups on average. Chickens in group 1 (Nape group) and group 2 (HA group) were immunized with IBD vaccine via subcutaneous injection in the nape and HA injection individually. Chickens without immunization in group 3 (Control group) served as controls. The levels of serum IgG and cytokines (IFN-γ and IL-4) were determined by ELISA methods. Spleens of the chickens were separated for RNA-Seq analysis. Our results showed that immunization of IBD vaccine in HA induced significantly higher productions of IgG, IFN-γ and IL-4 than that in the nape. RNA-Seq analysis identified 444 differentially expressed genes (DEGs) and 3 canonical signaling pathways including ECM-receptor interaction, NOD-like and RIG-I like receptor signaling pathways in HA vs Control, which was different from that in Nape vs Control. Therefore, the different levels of the immune responses to IBD vaccine might be resulted from the activated molecules and pathways affected by the administration route. These findings might offer supports for the use of Houhai acupoint as an alternative administration route of vaccines in poultry.
Collapse
Affiliation(s)
- Wei Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.
| | - Songhua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Huang X, Xu Y, Lin Q, Guo W, Zhao D, Wang C, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Li Y, Ma G, Tang L. Determination of antiviral action of long non-coding RNA loc107051710 during infectious bursal disease virus infection due to enhancement of interferon production. Virulence 2021; 11:68-79. [PMID: 31865850 PMCID: PMC6961729 DOI: 10.1080/21505594.2019.1707957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The functions and profiles of lncRNAs during infectious bursal disease virus (IBDV) infection have not been determined, yet. The objectives of this study were to determine the antiviral action of loc107051710 lncRNA during IBDV infection by investigating the relationship between loc107051710 and IRF8, Type I IFN, STATs, and ISGs. DF-1 cells were either left untreated as non-infected controls (n = 1) or infected with IBDV (n = 3). RNA sequencing was applied for analysis of mRNAs and lncRNAs expression. Differentially expressed genes were verified by RT-qPCR. Then identification, of 230 significantly different expressed genes (182 mRNAs and 48 lncRNA) by pairwise comparison of the infected and control groups, was carried out. The functions of differentially expressed lncRNAs were investigated by selection of lncRNAs and mRNAs significantly enriched in the aforementioned biological processes and signaling pathways for construction of lncRNA-mRNA co-expression networks. The techniques of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways were applied. It was suggested that these differentially expressed genes were involved in the interaction between the host and IBDV. Loc107051710 was found to have potential antiviral effects. RT-qPCR and western blot were applied and revealed that loc107051710 was required for induction of IRF8, type I IFN, STAT, and ISG expression, and its knockdown promoted IBDV replication. By fluorescence in situ hybridization, it was found that loc107051710 was translocated from the nucleus to the cytoplasm after infection with IBDV. Overall, loc107051710 promoted the production of IFN-α and IFN-β by regulating IRF8, thereby promoting the antiviral activity of ISGs.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qingyu Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Weilong Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Chunmei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Guangpeng Ma
- Agricultural High Technology Department, China Rural Technology Development Center, Beijing China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
9
|
Expression, distribution and regulation of RIG-1 in duck bursa of Fabricius during innate immune development. Gene 2020; 771:145342. [PMID: 33340563 DOI: 10.1016/j.gene.2020.145342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/21/2022]
|
10
|
Anjum FR, Rahman SU, Aslam MA, Qureshi AS. Comprehensive network map of transcriptional activation of chicken type I IFNs and IFN-stimulated genes. Comp Immunol Microbiol Infect Dis 2019; 68:101407. [PMID: 31877494 DOI: 10.1016/j.cimid.2019.101407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Chicken type I interferons (type I IFNs) are key antiviral players of the chicken immune system and mediate the first line of defense against viral pathogens infecting the avian species. Recognition of viral pathogens by specific pattern recognition receptors (PRRs) induce chicken type I IFNs expression followed by their subsequent interaction to IFN receptors and induction of a variety of IFN stimulated antiviral proteins. These antiviral effectors establish the antiviral state in neighboring cells and thus protect the host from infection. Three subtypes of chicken type I IFNs; chIFN-α, chIFN-β, and a recently discovered chIFN-κ have been identified and characterized in chicken. Chicken type I IFNs are activated by various host cell pathways and constitute a major antiviral innate defense in chicken. This review will help to understand the chicken type 1 IFNs, host cellular pathways that are involved in activation of chicken type I IFNs and IFN stimulated antiviral effectors along with the gaps in knowledge which will be important for future investigation. These findings will help us to comprehend the role of chicken type I IFNs and to develop different strategies for controlling viral infection in poultry.
Collapse
Affiliation(s)
| | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anas Sarwar Qureshi
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
11
|
Li G, Tian Y, Chen L, Shen J, Tao Z, Zeng T, Xu J, Lu L. Cloning, expression, and bioinformatics analysis of a putative pigeon retinoid acid-inducible gene-I. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoid acid-inducible gene-I (RIG-I) is a major cytoplasmic RNA sensor, playing an essential role in detecting viral RNA and triggering antiviral innate immune responses. The objective of the present study was to characterize the structure and expression of the RIG-I gene in pigeons. The pigeon RIG-I (piRIG-I) was cloned from splenic lymphocytes of pigeons using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The cDNA of piRIG-I contains a 147 bp 5′-untranslated regions (UTRs), a 2787 bp open reading frame, and 2962 bp 3′-UTRs. Based on this sequence, the encoded piRIG-I protein is predicted to consist of 928 amino acids, and it has conserved domains typical of RIG-I-like receptors (RLRs) including two tandem arranged N-terminal caspase recruitment domains, a domain with the signature of DExD/H box helicase (helicase domain), and a C-terminal repression domain similar to finch RIG-I, duck RIG-I, goose RIG-I, human RIG-I, and mouse RIG-I. The piRIG-I shows 82.1%, 78.6%, and 78.2% amino acid sequence identity with previously described finch RIG-I, duck RIG-I, and goose RIG-I, respectively, and 49.7%–53.8% sequence identity with mammalian homologs. Quantitative RT-PCR (qRT-PCR) analysis indicated that the piRIG-I mRNA is scarcely detected in healthy tissues, and it is strongly expressed in the thymus gland, kidney, spleen, and bursa of Fabricius. These findings lay the foundation for further research on the function and mechanism of avian RIG-I in innate immune response related to vaccinations and infectious diseases in the pigeon.
Collapse
Affiliation(s)
- Guoqin Li
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
| | - Yong Tian
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
| | - Li Chen
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
| | - Junda Shen
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
| | - Zhengrong Tao
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
| | - Tao Zeng
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
| | - Jian Xu
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
| | - Lizhi Lu
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
- Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou 310021, People’s Republic of China
| |
Collapse
|
12
|
Xiang B, You R, Kang Y, Xie P, Zhu W, Sun M, Gao P, Li Y, Ren T. Host immune responses of pigeons infected with Newcastle disease viruses isolated from pigeons. Microb Pathog 2018; 127:131-137. [PMID: 30508624 DOI: 10.1016/j.micpath.2018.11.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/05/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Newcastle disease (ND), affecting over 250 bird species, is caused by the Newcastle disease virus (NDV). ND is one of the leading causes of morbidity and mortality in pigeons. Most studies investigating NDV in pigeons have focused on the epidemiology and pathogenicity of the virus. However, the host immune responses in pigeons infected with NDVs remains largely unclear. In this study, we investigated the host immune responses in pigeons infected with two NDV stains, a pigeon paramyxovirus type 1(PPMV-1) strain, GZH14, and a genotype II virus, KP08. Although no mortality was observed upon infection with either virus, obvious neurological effects were observed in the GZH14-infected pigeons but not in the KP08-infected pigeons. Both viruses could replicate in the examined tissues, namely brain, lung, spleen, trachea, kidney, and bursa of Fabricius. The expression level of RIG-I, IL-6, IL-1β, CCL5, and IL-8 were up-regulated by both viruses in the brain, lung and spleen at 3 and 7 days post-infection. Notably, these proinflammatory cytokines and chemokines showed more intense expression in the brain, when induced by the GZH14 strain than with the KP08 strain. These results indicate that the intense inflammatory responses induced by PPMV-1 in the brain may be a critical determinant of neurological symptoms in pigeons infected with PPMV-1. Our study provides new insight into the pathogenicity of PPMV-1 in pigeons attributable to the host immune responses.
Collapse
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Renrong You
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Yinfeng Kang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Peng Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Wenxian Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Minhua Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Pei Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Yaling Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China.
| |
Collapse
|
13
|
Sid H, Schusser B. Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Front Genet 2018; 9:456. [PMID: 30356667 PMCID: PMC6189320 DOI: 10.3389/fgene.2018.00456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
The chicken represents a valuable model for research in the area of immunology, infectious diseases as well as developmental biology. Although it was the first livestock species to have its genome sequenced, there was no reverse genetic technology available to help understanding specific gene functions. Recently, homologous recombination was used to knockout the chicken immunoglobulin genes. Subsequent studies using immunoglobulin knockout birds helped to understand different aspects related to B cell development and antibody production. Furthermore, the latest advances in the field of genome editing including the CRISPR/Cas9 system allowed the introduction of site specific gene modifications in various animal species. Thus, it may provide a powerful tool for the generation of genetically modified chickens carrying resistance for certain pathogens. This was previously demonstrated by targeting the Trp38 region which was shown to be effective in the control of avian leukosis virus in chicken DF-1 cells. Herein we review the current and future prospects of gene editing and how it possibly contributes to the development of resistant chickens against infectious diseases.
Collapse
Affiliation(s)
| | - Benjamin Schusser
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| |
Collapse
|
14
|
Zheng W, Satta Y. Functional Evolution of Avian RIG-I-Like Receptors. Genes (Basel) 2018; 9:genes9090456. [PMID: 30213147 PMCID: PMC6162795 DOI: 10.3390/genes9090456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
RIG-I-like receptors (retinoic acid-inducible gene-I-like receptors, or RLRs) are family of pattern-recognition receptors for RNA viruses, consisting of three members: retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). To understand the role of RLRs in bird evolution, we performed molecular evolutionary analyses on the coding genes of avian RLRs using filtered predicted coding sequences from 62 bird species. Among the three RLRs, conservation score and dN/dS (ratio of nonsynonymous substitution rate over synonymous substitution rate) analyses indicate that avian MDA5 has the highest conservation level in the helicase domain but a lower level in the caspase recruitment domains (CARDs) region, which differs from mammals; LGP2, as a whole gene, has a lower conservation level than RIG-I or MDA5. We found evidence of positive selection across all bird lineages in RIG-I and MDA5 but only on the stem lineage of Galliformes in LGP2, which could be related to the loss of RIG-I in Galliformes. Analyses also suggest that selection relaxation may have occurred in LGP2 during the middle of bird evolution and the CARDs region of MDA5 contains many positively selected sites, which might explain its conservation level. Spearman’s correlation test indicates that species-to-ancestor dN/dS of RIG-I shows a negative correlation with endogenous retroviral abundance in bird genomes, suggesting the possibility of interaction between immunity and endogenous retroviruses during bird evolution.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan.
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan.
| |
Collapse
|
15
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
16
|
Immunomodulatory and Anti-IBDV Activities of the Polysaccharide AEX from Coccomyxa gloeobotrydiformis. Mar Drugs 2017; 15:md15020036. [PMID: 28208594 PMCID: PMC5334616 DOI: 10.3390/md15020036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/25/2017] [Accepted: 02/03/2017] [Indexed: 12/29/2022] Open
Abstract
A number of polysaccharides have been reported to show immunomodulatory and antiviral activities against various animal viruses. AEX is a polysaccharide extracted from the green algae, Coccomyxa gloeobotrydiformis. The aim of this study was to examine the function of AEX in regulating the immune response in chickens and its capacity to inhibit the infectious bursal disease virus (IBDV), to gain an understanding of its immunomodulatory and antiviral ability. Here, preliminary immunological tests in vitro showed that the polysaccharide AEX can activate the chicken peripheral blood molecular cells’ (PBMCs) response by inducing the production of cytokines and NO, promote extracellular antigen presentation but negatively regulate intracellular antigen presentation in chicken splenic lymphocytes, and promote the proliferation of splenic lymphocytes and DT40 cells. An antiviral analysis showed that AEX repressed IBDV replication by the deactivation of viral particles or by interfering with adsorption in vitro and reduced the IBDV viral titer in the chicken bursa of Fabricius. Finally, in this study, when AEX was used as an adjuvant for the IBDV vaccine, specific anti-IBDV antibody (IgY, IgM, and IgA) titers were significantly decreased. These results indicate that the polysaccharide AEX may be a potential alternative approach for anti-IBDV therapy and an immunomodulator for the poultry industry. However, more experimentation is needed to find suitable conditions for it to be used as an adjuvant for the IBDV vaccine.
Collapse
|
17
|
Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. Avian Interferons and Their Antiviral Effectors. Front Immunol 2017; 8:49. [PMID: 28197148 PMCID: PMC5281639 DOI: 10.3389/fimmu.2017.00049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.
Collapse
Affiliation(s)
| | - Dennis Rubbenstroth
- Institute for Virology, Faculty of Medicine, University Medical Center, University of Freiburg , Freiburg , Germany
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | | |
Collapse
|
18
|
Chen Y, Xu Q, Li Y, Liu R, Huang Z, Wang B, Chen G. Gene expression profile after activation of RIG-I in 5'ppp-dsRNA challenged DF1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:191-200. [PMID: 27450445 DOI: 10.1016/j.dci.2016.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Retinoic acid inducible gene I (RIG-I) can recognize influenza viruses and evoke the innate immune response. RIG-I is absent in the chicken genome, but is conserved in the genome of ducks. Lack of RIG-I renders chickens more susceptible to avian influenza infection, and the clinical symptoms are more prominent than in other poultry. It is unknown whether introduction of duck RIG-I into chicken cells can establish the immunity as is seen in ducks and the role of RIG-I in established immunity is unknown. In this study, a chicken cell strain with stable expression of duRIG-I was established by lentiviral infection, giving DF1/LV5-RIG-I, and a control strain DF1/LV5 was established in parallel. To verify stable, high level expression of duRIG-I in DF1 cells, the levels of duRIG-I mRNA and protein were determined by real-time RT-PCR and Western blot, respectively. Further, 5'triphosphate double stranded RNA (5'ppp-dsRNA) was used to mimic an RNA virus infection and the infected DF1/LV5-RIG-I and DF1/LV5 cells were subjected to high-throughput RNA-sequencing, which yielded 193.46 M reads and 39.07 G bases. A total of 278 differentially expressed genes (DEGs), i.e., duRIG-I-mediated responsive genes, were identified by RNA-seq. Among the 278 genes, 120 DEGs are annotated in the KEGG database, and the most reliable KEGG pathways are likely to be the signaling pathways of RIG-I like receptors. Functional analysis by Gene ontology (GO) indicates that the functions of these DEGs are primarily related to Type I interferon (IFN) signaling, IFN-β-mediated cellular responses and up-regulation of the RIG-I signaling pathway. Based on the shared genes among different pathways, a network representing crosstalk between RIG-I and other signaling pathways was constructed using Cytoscape software. The network suggests that RIG-mediated pathway may crosstalk with the Jak-STAT signaling pathway, Toll-like receptor signaling pathway, Wnt signaling pathway, ubiquitin-mediated proteolysis and MAPK signaling pathway during the transduction of antiviral signals. After screening, a group of key responsive genes in RIG-I-mediated signaling pathways, such as ISG12-2, Mx1, IFIT5, TRIM25, USP18, STAT1, STAT2, IRF1, IRF7 and IRF8, were tested for differential expression by real-time RT-PCR. In summary, by combining our results and the current literature, we propose a RIG-I-mediated signaling network in chickens.
Collapse
Affiliation(s)
- Yang Chen
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Qi Xu
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Li
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Ran Liu
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Zhengyang Huang
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Bin Wang
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Guohong Chen
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
19
|
Zhang M, Zhang X, Xu K, Teng Q, Liu Q, Li X, Yang J, Xu J, Chen H, Zhang X, Li Z. Characterization of the Pathogenesis of H10N3, H10N7, and H10N8 Subtype Avian Influenza Viruses Circulating in Ducks. Sci Rep 2016; 6:34489. [PMID: 27678170 PMCID: PMC5039634 DOI: 10.1038/srep34489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/14/2016] [Indexed: 01/13/2023] Open
Abstract
Three H10 subtype avian influenza viruses were isolated from domestic ducks in China, designated as SH602/H10N8, FJ1761/H10N3 and SX3180/H10N7, with an intravenous pathogenicity index (IVPI) of 0.39, 1.60, and 1.27, respectively. These H10 viruses showed a complex pathology pattern in different species, although full genome characterizations of the viruses could not identify any molecular determinant underlying the observed phenotypes. Our findings describe the pathobiology of the three H10 subtype AIVs in chickens, ducks, and mice. FJ1761/H10N3 evolved E627K and Q591K substitutions in the gene encoding the PB2 protein in infected mice with severe lung damage, suggesting that H10 subtype avian influenza viruses are a potential threat to mammals.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China.,Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Xingxing Zhang
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Kaidi Xu
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| |
Collapse
|
20
|
Abstract
Retinoic acid-inducible gene I (RIG-I), a cytosolic pattern recognition receptor (PRR), can sense various RNA viruses, including the avian influenza virus (AIV) and infectious bursal disease virus (IBDV), and trigger the innate immune response. Previous studies have shown that mammalian RIG-I (human and mice) and waterfowl RIG-I (ducks and geese) are essential for type I interferon (IFN) synthesis during AIV infection. Like ducks, pigeons are also susceptible to infection but are ineffective propagators and disseminators of AIVs, i.e., “dead end” hosts for AIVs and even highly pathogenic avian influenza (HPAI). Consequently, we sought to identify pigeon RIG-I and investigate its roles in the detection of A/Chicken/Shandong/ZB/2007 (H9N2) (ZB07), Gansu/Tianshui (IBDV TS) and Beijing/CJ/1980 (IBDV CJ-801) strains in chicken DF-1 fibroblasts or human 293T cells. Pigeon mRNA encoding the putative pigeon RIG-I analogs was identified. The exogenous expression of enhanced green fluorescence protein (EGFP)-tagged pigeon RIG-I and caspase activation and recruitment domains (CARDs), strongly induced antiviral gene (IFN-β, Mx, and PKR) mRNA synthesis, decreased viral gene (M gene and VP2) mRNA expression, and reduced the viral titers of ZB07 and IBDV TS/CJ-801 virus strains in chicken DF-1 cells, but not in 293T cells. We also compared the antiviral abilities of RIG-I proteins from waterfowl (duck and goose) and pigeon. Our data indicated that waterfowl RIG-I are more effective in the induction of antiviral genes and the repression of ZB07 and IBDV TS/CJ-801 strain replication than pigeon RIG-I. Furthermore, chicken melanoma differentiation associated gene 5(MDA5)/ mitochondrial antiviral signaling (MAVS) silencing combined with RIG-I transfection suggested that pigeon RIG-I can restore the antiviral response in MDA5-silenced DF-1 cells but not in MAVS-silenced DF-1 cells. In conclusion, these results demonstrated that pigeon RIG-I and CARDs have a strong antiviral ability against AIV H9N2 and IBDV in chicken DF-1 cells but not in human 293T cells.
Collapse
Affiliation(s)
- Wenping Xu
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qiang Shao
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yunlong Zang
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qiang Guo
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Yongchao Zhang
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zandong Li
- State key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Wang J, Tang C, Wang Q, Li R, Chen Z, Han X, Wang J, Xu X. Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus. Vet Microbiol 2015; 177:302-14. [DOI: 10.1016/j.vetmic.2015.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 03/31/2015] [Accepted: 04/04/2015] [Indexed: 02/04/2023]
|