1
|
Ozketen AC, Kazan HH, Özverel CS, Şanlıdağ T. In Silico Assessment for Risk of Possible Human Transmission of FCoV-23. Transbound Emerg Dis 2024; 2024:8398470. [PMID: 40303145 PMCID: PMC12017019 DOI: 10.1155/2024/8398470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/10/2024] [Indexed: 05/02/2025]
Abstract
Since the pandemic in 2019, coronaviruses (CoVs) have been a great concern for public health burden. The fact that CoVs can infect all animals including domestic ones and livestock points to a future pandemic even though interaction between human and wildlife animals is restricted. Moreover, interspecies transmission abilities of CoVs by mutations make them drastically risky not only for humans but also for animal health. Recently, a new CoV outbreak in cats in Cyprus, the so-called FCoV-23, has been realized. In addition to worries over animal health, any possible transmission to humans is now controversial. However, there have been limited characterization studies on FCoV-23. Thus, we aimed to assess the possible transmission of FCoV-23 to humans using in silico prediction tools. Accordingly, we first checked the binding affinities of receptor binding domain (RBD) of FCoV-23 against feline target protein and its human homolog. Next, we randomly and rationally created mutations on the RBD sequence and evaluated the binding affinities using protein docking tools. Our results underlined that multiple mutations at the same time were needed for increased binding affinity towards human target protein, demonstrating that the probability of transmission to humans was extremely low when mutation rates were regarded. Still, further molecular studies are required to comprehensively conclude the possible transmission risk.
Collapse
Affiliation(s)
| | - Hasan Huseyin Kazan
- DESAM Research InstituteNear East University, Nicosia, Cyprus
- Department of Medical GeneticsFaculty of MedicineNear East University, Nicosia, Cyprus
- Genetics and Cancer Diagnosis-Research CenterNear East University, Nicosia, Cyprus
| | | | - Tamer Şanlıdağ
- DESAM Research InstituteNear East University, Nicosia, Cyprus
| |
Collapse
|
2
|
Daniels A, Padariya M, Fletcher S, Ball K, Singh A, Carragher N, Hupp T, Tait-Burkard C, Kalathiya U. Molecules targeting a novel homotrimer cavity of Spike protein attenuate replication of SARS-CoV-2. Antiviral Res 2024; 228:105949. [PMID: 38942150 DOI: 10.1016/j.antiviral.2024.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The SARS-CoV-2 Spike glycoprotein (S) utilizes a unique trimeric conformation to interact with the ACE2 receptor on host cells, making it a prime target for inhibitors that block viral entry. We have previously identified a novel proteinaceous cavity within the Spike protein homotrimer that could serve as a binding site for small molecules. However, it is not known whether these molecules would inhibit, stimulate, or have no effect on viral replication. To address this, we employed structural-based screening to identify small molecules that dock into the trimer cavity and assessed their impact on viral replication. Our findings show that a cohort of identified small molecules binding to the Spike trimer cavity effectively reduces the replication of various SARS-CoV-2 variants. These molecules exhibited inhibitory effects on B.1 (European original, D614G, EDB2) and B.1.617.2 (δ) variants, while showing moderate activity against the B.1.1.7 (α) variant. We further categorized these molecules into distinct groups based on their structural similarities. Our experiments demonstrated a dose-dependent viral replication inhibitory activity of these compounds, with some, like BCC0040453 exhibiting no adverse effects on cell viability even at high concentrations. Further investigation revealed that pre-incubating virions with compounds like BCC0031216 at different temperatures significantly inhibited viral replication, suggesting their specificity towards the S protein. Overall, our study highlights the inhibitory impact of a diverse set of chemical molecules on the biological activity of the Spike protein. These findings provide valuable insights into the role of the trimer cavity in the viral replication cycle and aid drug discovery programs aimed at targeting the coronavirus family.
Collapse
Affiliation(s)
- Alison Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdańsk, Poland
| | - Sarah Fletcher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Kathryn Ball
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Ashita Singh
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Neil Carragher
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdańsk, Poland; University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Christine Tait-Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdańsk, Poland.
| |
Collapse
|
3
|
Casasnovas JM. Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells. Subcell Biochem 2024; 105:533-566. [PMID: 39738957 DOI: 10.1007/978-3-031-65187-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The virus particles described in the previous chapters of this book are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cell cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles of animal viruses or bacteriophages attach initially to specific receptors on the host cell surface. These viral receptors thus mediate penetration of the viral genome inside the cell, where the intracellular infective cycle starts. The presence of these receptors on the cell surface is a principal determinant of virus-host tropism. Viruses can use diverse types of molecules to attach to and enter into cells. In addition, virus-receptor recognition can evolve over the course of an infection, and viral variants with distinct receptor-binding specificities and tropism can appear. The identification of viral receptors and the characterization of virus-receptor interactions have been major research goals in virology. In this chapter, we will describe, from a structural perspective, several virus-receptor interactions and the active role of receptor molecules in virus cell entry.
Collapse
Affiliation(s)
- José M Casasnovas
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Wang H, Yi W, Qin H, Wang Q, Guo R, Pan Z. A Genetically Engineered Bivalent Vaccine Coexpressing a Molecular Adjuvant against Classical Swine Fever and Porcine Epidemic Diarrhea. Int J Mol Sci 2023; 24:11954. [PMID: 37569329 PMCID: PMC10419043 DOI: 10.3390/ijms241511954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Classical swine fever (CSF) and porcine epidemic diarrhea (PED) are highly contagious viral diseases that pose a significant threat to piglets and cause substantial economic losses in the global swine industry. Therefore, the development of a bivalent vaccine capable of targeting both CSF and PED simultaneously is crucial. In this study, we genetically engineered a recombinant classical swine fever virus (rCSFV) expressing the antigenic domains of the porcine epidemic diarrhea virus (PEDV) based on the modified infectious cDNA clone of the vaccine strain C-strain. The S1N and COE domains of PEDV were inserted into C-strain cDNA clone harboring the mutated 136th residue of Npro and substituted 3'UTR to generate the recombinant chimeric virus vC/SM3'UTRN-S1NCOE. To improve the efficacy of the vaccine, we introduced the tissue plasminogen activator signal (tPAs) and CARD domain of the signaling molecule VISA into vC/SM3'UTRN-S1NCOE to obtain vC/SM3'UTRN-tPAsS1NCOE and vC/SM3'UTRN-CARD/tPAsS1NCOE, respectively. We characterized three vaccine candidates in vitro and investigated their immune responses in rabbits and pigs. The NproD136N mutant exhibited normal autoprotease activity and mitigated the inhibition of IFN-β induction. The introduction of tPAs and the CARD domain led to the secretory expression of the S1NCOE protein and upregulated IFN-β induction in infected cells. Immunization with recombinant CSFVs expressing secretory S1NCOE resulted in a significantly increased in PEDV-specific antibody production, and coexpression of the CARD domain of VISA upregulated the PEDV-specific IFN-γ level in the serum of vaccinated animals. Notably, vaccination with vC/SM3'UTRN-CARD/tPAsS1NCOE conferred protection against virulent CSFV and PEDV challenge in pigs. Collectively, these findings demonstrate that the engineered vC/SM3'UTRN-CARD/tPAsS1NCOE is a promising bivalent vaccine candidate against both CSFV and PEDV infections.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.W.); (W.Y.); (H.Q.)
| | - Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.W.); (W.Y.); (H.Q.)
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.W.); (W.Y.); (H.Q.)
| | - Qin Wang
- World Organization for Animal Health Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.W.); (W.Y.); (H.Q.)
| |
Collapse
|
5
|
Fan B, Zhou J, Zhao Y, Zhu X, Zhu M, Peng Q, Li J, Chang X, Shi D, Yin J, Guo R, Li Y, He K, Fan H, Li B. Identification of Cell Types and Transcriptome Landscapes of Porcine Epidemic Diarrhea Virus-Infected Porcine Small Intestine Using Single-Cell RNA Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:271-282. [PMID: 36548460 DOI: 10.4049/jimmunol.2101216] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Swine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11. Excepting enterocyte cells, the goblet and tuft cells confirmed susceptibility to PEDV. Enrichment analyses showed that PEDV infection resulted in upregulation of cell apoptosis, junctions, and the MAPK signaling pathway and downregulation of oxidative phosphorylation in intestinal epithelial cell types. The T cell differentiation and IgA production were decreased in T and B cells, respectively. Cytokine gene analyses revealed that PEDV infection downregulated CXCL8, CXCL16, and IL34 in tuft cells and upregulated IL22 in Th17 cells. Further studies found that infection of goblet cells with PEDV decreased the expression of MUC2, as well as other mucin components. Moreover, the antimicrobial peptide REG3G was obviously upregulated through the IL33-STAT3 signaling pathway in enterocyte cells in the PEDV-infected group, and REG3G inhibited the PEDV replication. Finally, enterocyte cells expressed almost all coronavirus entry factors, and PEDV infection caused significant upregulation of the coronavirus receptor ACE2 in enterocyte cells. In summary, this study systematically investigated the responses of different cell types in the jejunum of piglets after PEDV infection, which deepened the understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Mingjun Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Danyi Shi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Jie Yin
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; and
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
DNAJA3 Interacts with PEDV S1 Protein and Inhibits Virus Replication by Affecting Virus Adsorption to Host Cells. Viruses 2022; 14:v14112413. [PMID: 36366511 PMCID: PMC9696540 DOI: 10.3390/v14112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts with PEDV. We found that DNAJA3 interacted with PEDV S1, initially with yeast two-hybrid screening and later with Co-IP, GST pull-down, and confocal imaging. Further experiments showed the functional relationship between DNAJA3 and PEDV in the infected IPEC-J2 cells. DNAJA3 overexpression significantly inhibited PEDV replication while its knockdown had the opposite effect, suggesting that it is a negative regulator of PEDV replication. In addition, DNAJA3 expression could be downregulated by PEDV infection possibly as the viral strategy to evade the suppressive role of DNAJA3. By gene silencing and overexpression, we were able to show that DNAJA3 inhibited PEDV adsorption to IPEC-J2 cells but did not affect virus invasion. In conclusion, our study provides clear evidence that DNAJA3 mediates PEDV adsorption to host cells and plays an antiviral role in IPEC-J2 cells.
Collapse
|
7
|
Senehi NL, Ykema MR, Sun R, Verduzco R, Stadler LB, Tao YJ, Alvarez PJJ. Protein-imprinted particles for coronavirus capture from solution. J Sep Sci 2022; 45:4318-4326. [PMID: 36168868 PMCID: PMC9538460 DOI: 10.1002/jssc.202200543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 12/13/2022]
Abstract
Molecular imprinting is a promising strategy to selectively adsorb viruses, but it requires discerning and validating epitopes that serve as effective imprinting templates. In this work, glycoprotein-imprinted particles were synthesized for coronavirus capture. Adsorption was maximized at pH 6 (the glycoprotein isoelectric point) where the glycoprotein-imprinted particles outperformed non-imprinted particles, adsorbing 4.96 × 106 ± 3.33 × 103 versus 3.54 × 106 ± 1.39 × 106 median tissue culture infectious dose/mg of the target coronavirus, human coronavirus - organ culture 43, within the first 30 min (p = 0.012). During competitive adsorption, with pH adjustment (pH 6), the glycoprotein-imprinted particles adsorbed more target virus than non-target coronavirus (human coronavirus - Netherland 63) with 2.34 versus 1.94 log removal in 90 min (p < 0.01). In contrast, the non-imprinted particles showed no significant difference in target versus non-target virus removal. Electrostatic potential calculation shows that the human coronavirus - organ culture 43 glycoprotein has positively charged pockets at pH 6, which may facilitate adsorption at lower pH values. Therefore, tuning the target virus glycoprotein charge via pH adjustment enhanced adsorption by minimizing repulsive electrostatic interactions with the particles. Overall, these results highlight the effective use of glycoprotein-imprinted particles for coronavirus capture and discern the merits and limitations of glycoprotein imprinting for the capture of enveloped viruses.
Collapse
Affiliation(s)
- Naomi L. Senehi
- Department of Civil and Environmental EngineeringRice UniversityHoustonTexasUSA
| | | | - Ruonan Sun
- Department of Civil and Environmental EngineeringRice UniversityHoustonTexasUSA
| | - Rafael Verduzco
- Department of Chemical and Biomolecular EngineeringRice UniversityHoustonTexasUSA
| | - Lauren B. Stadler
- Department of Civil and Environmental EngineeringRice UniversityHoustonTexasUSA
| | - Yizhi J. Tao
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental EngineeringRice UniversityHoustonTexasUSA
| |
Collapse
|
8
|
Han J, Lee SL, Kim J, Seo G, Lee YW. SARS-CoV-2 spike protein detection using slightly tapered no-core fiber-based optical transducer. Mikrochim Acta 2022; 189:321. [PMID: 35932379 PMCID: PMC9362518 DOI: 10.1007/s00604-022-05413-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/08/2022] [Indexed: 12/01/2022]
Abstract
The label-free detection of SARS-CoV-2 spike protein is demonstrated by using slightly tapered no-core fiber (ST-NCF) functionalized with ACE2. In the fabricated sensor head, abrupt changes in the mode-field diameter at the interfaces between single-mode fiber and no-core fiber excite multi-guided modes and facilitate multi-mode interference (MMI). Its slightly tapered region causes the MMI to be more sensitive to the refractive index (RI) modulation of the surrounding medium. The transmission minimum of the MMI spectrum was selected as a sensor indicator. The sensor surface was functionalized with ACE2 bioreceptors through the pretreatment process. The ACE2-immobilized ST-NCF sensor head was exposed to the samples of SARS-CoV-2 spike protein with concentrations ranging from 1 to 104 ng/mL. With increasing sample concentration, we observed that the indicator dip moved towards a longer wavelength region. The observed spectral shifts are attributed to localized RI modulations at the sensor surface, which are induced by selective bioaffinity binding between ACE2 and SARS-CoV-2 spike protein. Also, we confirmed the capability of the sensor head as an effective and simple optical probe for detecting antigen protein samples by applying saliva solution used as a measurement buffer. Moreover, we compared its detection sensitivity to SARS-CoV-2 and MERS-CoV spike protein to examine its cross-reactivity. In particular, we proved the reproducibility of the bioassay protocol adopted here by employing the ST-NCF sensor head reconstructed with ACE2. Our ST-NCF transducer is expected to be beneficially utilized as a low-cost and portable biosensing platform for the rapid detection of SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Jinsil Han
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seul-Lee Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jihoon Kim
- School of Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Giwan Seo
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea. .,Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.
| | - Yong Wook Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea. .,School of Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Ruiz-Aravena M, McKee C, Gamble A, Lunn T, Morris A, Snedden CE, Yinda CK, Port JR, Buchholz DW, Yeo YY, Faust C, Jax E, Dee L, Jones DN, Kessler MK, Falvo C, Crowley D, Bharti N, Brook CE, Aguilar HC, Peel AJ, Restif O, Schountz T, Parrish CR, Gurley ES, Lloyd-Smith JO, Hudson PJ, Munster VJ, Plowright RK. Ecology, evolution and spillover of coronaviruses from bats. Nat Rev Microbiol 2022; 20:299-314. [PMID: 34799704 PMCID: PMC8603903 DOI: 10.1038/s41579-021-00652-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.
Collapse
Affiliation(s)
- Manuel Ruiz-Aravena
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamika Lunn
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Aaron Morris
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Celine E Snedden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Claude Kwe Yinda
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Julia R Port
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christina Faust
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Elinor Jax
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lauren Dee
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Devin N Jones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Maureen K Kessler
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Caylee Falvo
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Daniel Crowley
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Cara E Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter J Hudson
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Vincent J Munster
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
10
|
Gonzalez Lomeli F, Elmaraghy N, Castro A, Osuna Guerrero CV, Newcomb LL. Conserved Targets to Prevent Emerging Coronaviruses. Viruses 2022; 14:v14030563. [PMID: 35336969 PMCID: PMC8949862 DOI: 10.3390/v14030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Novel coronaviruses emerged as zoonotic outbreaks in humans in 2003 (SARS), 2012 (MERS), and notably in 2019 (SARS2), which resulted in the COVID-19 pandemic, causing worldwide health and economic disaster. Vaccines provide the best protection against disease but cannot be developed and engineered quickly enough to prevent emerging viruses, zoonotic outbreaks, and pandemics. Antivirals are the best first line of therapeutic defense against novel emerging viruses. Coronaviruses are plus sense, single stranded, RNA genome viruses that undergo frequent genetic mutation and recombination, allowing for the emergence of novel coronavirus strains and variants. The molecular life cycle of the coronavirus family offers many conserved activities to be exploited as targets for antivirals. Here, we review the molecular life cycle of coronaviruses and consider antiviral therapies, approved and under development, that target the conserved activities of coronaviruses. To identify additional targets to inhibit emerging coronaviruses, we carried out in silico sequence and structure analysis of coronavirus proteins isolated from bat and human hosts. We highlight conserved and accessible viral protein domains and residues as possible targets for the development of viral inhibitors. Devising multiple antiviral therapies that target conserved viral features to be used in combination is the best first line of therapeutic defense to prevent emerging viruses from developing into outbreaks and pandemics.
Collapse
|
11
|
Starr TN, Zepeda SK, Walls AC, Greaney AJ, Alkhovsky S, Veesler D, Bloom JD. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. Nature 2022; 603:913-918. [PMID: 35114688 PMCID: PMC8967715 DOI: 10.1038/s41586-022-04464-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/25/2022] [Indexed: 11/08/2022]
Abstract
Two different sarbecoviruses have caused major human outbreaks in the past two decades1,2. Both of these sarbecoviruses, SARS-CoV-1 and SARS-CoV-2, engage ACE2 through the spike receptor-binding domain2-6. However, binding to ACE2 orthologues of humans, bats and other species has been observed only sporadically among the broader diversity of bat sarbecoviruses7-11. Here we use high-throughput assays12 to trace the evolutionary history of ACE2 binding across a diverse range of sarbecoviruses and ACE2 orthologues. We find that ACE2 binding is an ancestral trait of sarbecovirus receptor-binding domains that has subsequently been lost in some clades. Furthermore, we reveal that bat sarbecoviruses from outside Asia can bind to ACE2. Moreover, ACE2 binding is highly evolvable-for many sarbecovirus receptor-binding domains, there are single amino-acid mutations that enable binding to new ACE2 orthologues. However, the effects of individual mutations can differ considerably between viruses, as shown by the N501Y mutation, which enhances the human ACE2-binding affinity of several SARS-CoV-2 variants of concern12 but substantially decreases it for SARS-CoV-1. Our results point to the deep ancestral origin and evolutionary plasticity of ACE2 binding, broadening the range of sarbecoviruses that should be considered to have spillover potential.
Collapse
Affiliation(s)
- Tyler N Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Allison J Greaney
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sergey Alkhovsky
- N.F. Gamleya National Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - David Veesler
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022; 14:v14020351. [PMID: 35215937 PMCID: PMC8878323 DOI: 10.3390/v14020351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.
Collapse
|
13
|
Batishchev OV. Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:247-260. [PMCID: PMC9734521 DOI: 10.1134/s1990747822050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Over the past few years, the attention of the whole world has been riveted to the emergence of new dangerous strains of viruses, among which a special place is occupied by coronaviruses that have overcome the interspecies barrier in the past 20 years: SARS viruses (SARS), Middle East respiratory syndrome (MERS), as well as a new coronavirus infection (SARS-CoV-2), which caused the largest pandemic since the Spanish flu in 1918. Coronaviruses are members of a class of enveloped viruses that have a lipoprotein envelope. This class also includes such serious pathogens as human immunodeficiency virus (HIV), hepatitis, Ebola virus, influenza, etc. Despite significant differences in the clinical picture of the course of disease caused by enveloped viruses, they themselves have a number of characteristic features, which determine their commonality. Regardless of the way of penetration into the cell—by endocytosis or direct fusion with the cell membrane—enveloped viruses are characterized by the following stages of interaction with the target cell: binding to receptors on the cell surface, interaction of the surface glycoproteins of the virus with the membrane structures of the infected cell, fusion of the lipid envelope of the virion with plasma or endosomal membrane, destruction of the protein capsid and its dissociation from the viral nucleoprotein. Subsequently, within the infected cell, the newly synthesized viral proteins must self-assemble on various membrane structures to form a progeny virion. Thus, both the initial stages of viral infection and the assembly and release of new viral particles are associated with the activity of viral proteins in relation to the cell membrane and its organelles. This review is devoted to the analysis of physicochemical mechanisms of functioning of the main structural proteins of a number of enveloped viruses in order to identify possible strategies for the membrane activity of such proteins at various stages of viral infection of the cell.
Collapse
Affiliation(s)
- O. V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
14
|
SANTOS SOBRINHO ELIANEM, SANTOS HÉRCULESO, MARTINS ERNANER, FONSECA FRANCINESOUZAALVESDA, FARIAS LUCYANAC, AGUILAR CHARLESM, PEREIRA ULISSESA, NICOLAU JUNIOR NILSON, GOMES MATHEUSS, SOUZA CINTYANDE, RAVNJAK JOÃOMATHEUSA, PORTO RAPHAELR, ALMEIDA ANNACHRISTINADE. Protein-coding gene interaction network prediction of bioactive plant compound action against SARS-CoV-2: a novel hypothesis using bioinformatics analysis. AN ACAD BRAS CIENC 2022; 94:e20201380. [DOI: 10.1590/0001-3765202220201380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
|
15
|
Parkhe P, Verma S. Evolution, Interspecies Transmission, and Zoonotic Significance of Animal Coronaviruses. Front Vet Sci 2021; 8:719834. [PMID: 34738021 PMCID: PMC8560429 DOI: 10.3389/fvets.2021.719834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses are single-stranded RNA viruses that affect humans and a wide variety of animal species, including livestock, wild animals, birds, and pets. These viruses have an affinity for different tissues, such as those of the respiratory and gastrointestinal tract of most mammals and birds and the hepatic and nervous tissues of rodents and porcine. As coronaviruses target different host cell receptors and show divergence in the sequences and motifs of their structural and accessory proteins, they are classified into groups, which may explain the evolutionary relationship between them. The interspecies transmission, zoonotic potential, and ability to mutate at a higher rate and emerge into variants of concern highlight their importance in the medical and veterinary fields. The contribution of various factors that result in their evolution will provide better insight and may help to understand the complexity of coronaviruses in the face of pandemics. In this review, important aspects of coronaviruses infecting livestock, birds, and pets, in particular, their structure and genome organization having a bearing on evolutionary and zoonotic outcomes, have been discussed.
Collapse
Affiliation(s)
| | - Subhash Verma
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
16
|
Ogunrinola OO, Kanmodi RI, Ogunrinola OA. Medicinal plants as immune booster in the palliative management of viral diseases: A perspective on coronavirus. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Olabisi O. Ogunrinola
- Department of Biochemistry, Faculty of Science Lagos State University Ojo Lagos Nigeria
| | - Rahmon I. Kanmodi
- Department of Biochemistry, Faculty of Science Lagos State University Ojo Lagos Nigeria
| | | |
Collapse
|
17
|
Beaudoin CA, Jamasb AR, Alsulami AF, Copoiu L, van Tonder AJ, Hala S, Bannerman BP, Thomas SE, Vedithi SC, Torres PH, Blundell TL. Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Comput Struct Biotechnol J 2021; 19:3938-3953. [PMID: 34234921 PMCID: PMC8249111 DOI: 10.1016/j.csbj.2021.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/19/2022] Open
Abstract
Potential coronavirus spike protein mimicry revealed by structural comparison. Human and non-human protein potential interactions with virus identified. Predicted structural mimicry corroborated by protein–protein docking. Epitope-based alignments may help guide vaccine efforts.
Viruses often encode proteins that mimic host proteins in order to facilitate infection. Little work has been done to understand the potential mimicry of the SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins, particularly the receptor-binding motifs, which could be important in determining tropism and druggability of the virus. Peptide and epitope motifs have been detected on coronavirus spike proteins using sequence homology approaches; however, comparing the three-dimensional shape of the protein has been shown as more informative in predicting mimicry than sequence-based comparisons. Here, we use structural bioinformatics software to characterize potential mimicry of the three coronavirus spike protein receptor-binding motifs. We utilize sequence-independent alignment tools to compare structurally known protein models with the receptor-binding motifs and verify potential mimicked interactions with protein docking simulations. Both human and non-human proteins were returned for all three receptor-binding motifs. For example, all three were similar to several proteins containing EGF-like domains: some of which are endogenous to humans, such as thrombomodulin, and others exogenous, such as Plasmodium falciparum MSP-1. Similarity to human proteins may reveal which pathways the spike protein is co-opting, while analogous non-human proteins may indicate shared host interaction partners and overlapping antibody cross-reactivity. These findings can help guide experimental efforts to further understand potential interactions between human and coronavirus proteins.
Collapse
Affiliation(s)
- Christopher A. Beaudoin
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Corresponding authors.
| | - Arian R. Jamasb
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Department of Computer Science & Technology, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0FD, United Kingdom
| | - Ali F. Alsulami
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Liviu Copoiu
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Andries J. van Tonder
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, United Kingdom
| | - Sharif Hala
- King Abdullah International Medical Research Centre – Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Bridget P. Bannerman
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Sherine E. Thomas
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Sundeep Chaitanya Vedithi
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
| | - Pedro H.M. Torres
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tom L. Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, Tennis Court Rd, Cambridge CB2 1GA, United Kingdom
- Corresponding authors.
| |
Collapse
|
18
|
Urbanovych A, Laniush F, Borovets M, Kozlovska K. Coronavirus as a Trigger Of Graves' Disease. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2021; 17:413-415. [PMID: 35342470 PMCID: PMC8919476 DOI: 10.4183/aeb.2021.413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT SARS-CoV-2 infection was declared a pandemic in 2020 and affected millions of people worldwide. Angiotensin-converting enzyme-2 receptors, through which coronavirus enters the cells of different organs, have been detected in the thyroid gland. The most common cause of thyrotoxicosis is Graves' disease in which thyroid-receptors antibodies (TRAb) stimulate the TSH receptor, increasing thyroid hormone production and release. CASE PRESENTATION A 22-year-old woman had symptoms of palpitation, tremor, muscle weakness, anxiety and sleep disturbance. 3 weeks before the onset of these symptoms, the patient suffered from COVID-19, which lasted 14 days and was characterized by a course of moderate severity with fever up to 38°C, general weakness without shortness of breath. The patient had no pre-existing thyroid problems. Her TSH was <0.01 mU/L, FT4, FT3 and TRAb were increased. Antithyroid drugs, glucocorticosteroids and β-blockers were prescribed. During 3 months of treatment doses of methimazole, methylprednisolone and bisoprolol were gradually reduced due to the improvement of the patient's condition and thyroid tests normalization. CONCLUSIONS COVID-19 infection can cause Graves' disease and thyrotoxicosis. The onset of this disease after SARS-CoV-2 does not depend on the presence of pre-existing thyroid pathology and requires the appointment of glucocortisteroids.
Collapse
Affiliation(s)
- A.M. Urbanovych
- Correspondence to: Alina M. Urbanovych MD, PhD, “Danylo Halytsky” Lviv National Medical University, Dept. of Endocrinology, Pekarska str. 69, Lviv, 79010, Ukraine, E-mail:
| | | | | | | |
Collapse
|
19
|
Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Syed A, Elgorban AM, Marraiki N, Kim DY. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens Bioelectron 2021; 177:112969. [PMID: 33434780 PMCID: PMC7836906 DOI: 10.1016/j.bios.2021.112969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023]
Abstract
Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea.
| |
Collapse
|
20
|
Alam W. Hypercoagulability in COVID-19: A review of the potential mechanisms underlying clotting disorders. SAGE Open Med 2021; 9:20503121211002996. [PMID: 33815798 PMCID: PMC7989108 DOI: 10.1177/20503121211002996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 has emerged as a new viral pandemic, causing Coronavirus disease 2019 (COVID-19) leading to a wide array of symptoms ranging from asymptomatic to severe respiratory failure. However, coagulation disorders have been found in some patients infected with SARS-CoV-2, leading to either a clotting disorder or hemorrhage. Several mechanisms attempt to explain the mechanism behind the pro-coagulant state seen with COVID-19 patients, including different receptor binding, cytokine storm, and direct viral endothelial damage. SARS-CoV-2 has also been recently found to bind to CLEC4M receptor, a receptor that participates in the clearance of von Willebrand Factor and Factor VIII. The competitive binding of SARS-CoV-2 to CLEC4M could lead to decreased clearance, and therefore a promotion of a pro-coagulative state; however, an experimental study needs to be done to prove such an association.
Collapse
Affiliation(s)
- Walid Alam
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
21
|
Contact residue contributions to interaction energies between SARS-CoV-1 spike proteins and human ACE2 receptors. Sci Rep 2021; 11:1156. [PMID: 33441985 PMCID: PMC7806713 DOI: 10.1038/s41598-020-80942-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
Several viruses of the corona family interact, via their spike (S) proteins, with human cellular receptors. Spike proteins of SARS-CoV-1 and SARS-CoV-2 virions, being structurally related but not identical, mediate attachment to the human angiotensin-converting enzyme 2 (hACE2) receptor in similar but non-identical ways. Molecular-level understanding of interactions between spike proteins and hACE2 can aid strategies for blocking attachment of SARS-CoV-1, a potentially reemerging health threat, to human cells. We have identified dominant molecular-level interactions, some attractive and some repulsive, between the receptor binding domain of SARS-CoV-1 spike proteins (S-RBD) and hACE2. We performed fragment-based quantum-biochemical calculations which directly relate biomolecular structure to the hACE2...S-RBD interaction energy. Consistent with X-ray crystallography and cryo-EM, the interaction energy between hACE2 and S-RBD (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\approx -$$\end{document}≈-26 kcal/mol) corresponds to a net intermolecular attraction which is significantly enhanced by inclusion of dispersion van der Waals forces. Protein fragments at the hACE2...S-RBD interface, that dominate host-virus attraction, have been identified together with their constituent amino acid residues. Two hACE2 fragments which include residues (GLU37, ASP38, TYR41, GLN42) and (GLU329, LYS353, GLY354), respectively, as well as three S-RBD fragments which include residues (TYR436), (ARG426) and (THR487, GLY488, TYR491), respectively, have been identified as primary attractors at the hACE2...S-RBD interface.
Collapse
|
22
|
Xiao Y, Xu H, Guo W, Zhao Y, Luo Y, Wang M, He Z, Ding Z, Liu J, Deng L, Sha F, Ma X. Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. MOLECULAR BIOMEDICINE 2020; 1:16. [PMID: 34765999 PMCID: PMC7711057 DOI: 10.1186/s43556-020-00017-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) triggered by the new member of the coronaviridae family, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an unprecedented challenge for global health. In addition to mild to moderate clinical manifestations such as fever, cough, and fatigue, severe cases often developed lethal complications including acute respiratory distress syndrome (ARDS) and acute lung injury. Given the alarming rate of infection and increasing trend of mortality, the development of underlying therapeutic and preventive treatment, as well as the verification of its effectiveness, are the top priorities. Current research mainly referred to and evaluated the application of the empirical treatment based on two precedents, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), including antiviral drugs targeting different stages of virus replication, immunotherapy modulating the overactivated inflammation response, and other therapies such as herbal medicine and mesenchymal stem cells. Besides, the ongoing development of inventing prophylactic interventions such as various vaccines by companies and institutions worldwide is crucial to decline morbidity and mortality. This review mainly focused on promising candidates for the treatment of COVID-19 and collected recently updated evidence relevant to its feasibility in clinical practice in the near future.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hanyue Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wen Guo
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yunuo Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yuling Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Ming Wang
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jiyan Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lei Deng
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, 10465 USA
| | - Fushen Sha
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
23
|
Morenikeji OB, Wallace M, Strutton E, Bernard K, Yip E, Thomas BN. Integrative Network Analysis of Predicted miRNA-Targets Regulating Expression of Immune Response Genes in Bovine Coronavirus Infection. Front Genet 2020; 11:584392. [PMID: 33193717 PMCID: PMC7554596 DOI: 10.3389/fgene.2020.584392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Bovine coronavirus (BCoV) infection that causes disease outbreaks among farm animals, resulting in significant economic losses particularly in the cattle industry, has the potential to become zoonotic. miRNAs, which are short non-coding segments of RNA that inhibits the expression of their target genes, have been identified as potential biomarkers and drug targets, though this potential in BCoV remains largely unknown. We hypothesize that certain miRNAs could simultaneously target multiple genes, are significantly conserved across many species, thereby demonstrating the potential to serve as diagnostic or therapeutic tools for bovine coronavirus infection. To this end, we utilized different existing and publicly available computational tools to conduct system analysis predicting important miRNAs that could affect BCoV pathogenesis. Eleven genes including CEBPD, IRF1, TLR9, SRC, and RHOA, significantly indicated in immune-related pathways, were identified to be associated with BCoV, and implicated in other coronaviruses. Of the 70 miRNAs predicted to target the identified genes, four concomitant miRNAs (bta-miR-11975, bta-miR-11976, bta-miR-22-3p, and bta-miR-2325c) were found. Examining the gene interaction network suggests IL-6, IRF1, and TP53 as key drivers. Phylogenetic analysis revealed that miR-22 was completely conserved across all 14 species it was searched against, suggesting a shared and important functional role. Functional annotation and associated pathways of target genes, such as positive regulation of cytokine production, IL-6 signaling pathway, and regulation of leukocyte differentiation, indicate the miRNAs are major participants in multiple aspects of both innate and adaptive immune response. Examination of variants evinced a potentially deleterious SNP in bta-miR-22-3p and an advantageous SNP in bta-miR-2325c. Conclusively, this study provides new insight into miRNAs regulating genes responding to BCoV infection, with bta-miR-22-3p particularly indicated as a potential drug target or diagnostic marker for bovine coronavirus.
Collapse
Affiliation(s)
| | | | - Ellis Strutton
- Department of Biology, Hamilton College, Clinton, NY, United States
| | - Kahleel Bernard
- Department of Biology, Hamilton College, Clinton, NY, United States
| | - Elaine Yip
- Department of Biology, Hamilton College, Clinton, NY, United States
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
24
|
Wang L, Xiang Y. Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Viruses 2020; 12:E1289. [PMID: 33187074 PMCID: PMC7696831 DOI: 10.3390/v12111289] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 are enveloped, positive-sense, single-stranded RNA viruses and causes of epidemic diseases that have resulted in public health emergencies worldwide. Angiotensin-converting enzyme 2 (ACE2) is the receptor that allows the entry of these two viruses into host cells, a key step in the life cycle of the pathogens. The characterization of the interactions of ACE2 with the viral spike glycoproteins and structural studies of the ACE2-binding-induced conformational changes in the viral spike glycoproteins have furthered our understanding of the entry processes of these two viruses, and these studies provide useful information that will facilitate the development of antiviral agents and vaccines to control the diseases.
Collapse
Affiliation(s)
| | - Ye Xiang
- Center for Infectious Disease Research, Beijing Frontier Research Center for Biological Structure & Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
25
|
Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers (Basel) 2020; 12:E2186. [PMID: 32764454 PMCID: PMC7464614 DOI: 10.3390/cancers12082186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Human coronaviruses, especially SARS-CoV-2, are emerging pandemic infectious diseases with high morbidity and mortality in certain group of patients. In general, SARS-CoV-2 causes symptoms ranging from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome in addition to other organs' destruction. The main impact upon SARS-CoV-2 infection is damage to alveolar and acute respiratory failure. Thus, lung cancer patients are identified as a particularly high-risk group for SARS-CoV-2 infection and its complications. On the other hand, it has been reported that SARS-CoV-2 spike (S) protein binds to angiotensin-converting enzyme 2 (ACE-2), that promotes cellular entry of this virus in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2). Today, there are no vaccines and/or effective drugs against the SARS-CoV-2 coronavirus. Thus, manipulation of key entry genes of this virus especially in lung cancer patients could be one of the best approaches to manage SARS-CoV-2 infection in this group of patients. We herein provide a comprehensive and up-to-date overview of the role of ACE-2 and TMPRSS2 genes, as key entry elements as well as therapeutic targets for SARS-CoV-2 infection, which can help to better understand the applications and capacities of various remedial approaches for infected individuals, especially those with lung cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Eyad Elkord
- Qatar Biomedical Research Institute & 4Hamad Bin Khalifa University, 34110 Doha, Qatar;
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
26
|
Davis PJ, Lin HY, Hercbergs A, Keating KA, Mousa SA. Coronaviruses and Integrin αvβ3: Does Thyroid Hormone Modify the Relationship? Endocr Res 2020; 45:210-215. [PMID: 32628899 DOI: 10.1080/07435800.2020.1767127] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Uptake of coronaviruses by target cells involves binding of the virus by cell ectoenzymes. For the etiologic agent of COVID-19 (SARS-CoV-2), a receptor has been identified as angiotensin-converting enzyme-2 (ACE2). Recently it has been suggested that plasma membrane integrins may be involved in the internalization and replication of clinically important coronaviruses. For example, integrin αvβ3 is involved in the cell uptake of a model porcine enteric α-coronavirus that causes human epidemics. ACE2 modulates the intracellular signaling generated by integrins. OBJECTIVE We propose that the cellular internalization of αvβ3 applies to uptake of coronaviruses bound to the integrin, and we evaluate the possibility that clinical host T4 may contribute to target cell uptake of coronavirus and to the consequence of cell uptake of the virus. DISCUSSION AND CONCLUSIONS The viral binding domain of the integrin is near the Arg-Gly-Asp (RGD) peptide-binding site and RGD molecules can affect virus binding. In this same locale on integrin αvβ3 is the receptor for thyroid hormone analogues, particularly, L-thyroxine (T4). By binding to the integrin, T4 has been shown to modulate the affinity of the integrin for other proteins, to control internalization of αvβ3 and to regulate the expression of a panel of cytokine genes, some of which are components of the 'cytokine storm' of viral infections. If T4 does influence coronavirus uptake by target cells, other thyroid hormone analogues, such as deaminated T4 and deaminated 3,5,3'-triiodo-L-thyronine (T3), are candidate agents to block the virus-relevant actions of T4 at integrin αvβ3 and possibly restrict virus uptake.
Collapse
Affiliation(s)
- Paul J Davis
- Department of Medicine, Albany Medical College , Albany, NY, USA
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University , Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University , Taipei, Taiwan
| | - Aleck Hercbergs
- Department of Radiation Oncology, The Cleveland Clinic , Cleveland, OH, USA
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Rensselaer, NY, USA
| |
Collapse
|
27
|
Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S. COVID-19: The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2. In Vivo 2020; 34:1567-1588. [PMID: 32503814 PMCID: PMC8378025 DOI: 10.21873/invivo.11946] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND On March 11, 2020, the World Health Organization (WHO) declared the outbreak of coronavirus disease (COVID-19) a pandemic. Since then, thousands of people have suffered and died, making the need for a treatment of severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) more crucial than ever. MATERIALS AND METHODS The authors carried out a search in PubMed, ClinicalTrials.gov and New England Journal of Medicine (NEJM) for COVID-19 to provide information on the most promising treatments against SARS-CoV-2. RESULTS Possible COVID-19 agents with promising efficacy and favorable safety profile were identified. The results support the combination of copper, N-acetylcysteine (NAC), colchicine and nitric oxide (NO) with candidate antiviral agents, remdesivir or EIDD-2801, as a treatment for patients positive for SARS-CoV-2. CONCLUSION The authors propose to study the effects of the combination of copper, NAC, colchicine, NO and currently used experimental antiviral agents, remdesivir or EIDD-2801, as a potential treatment scheme for SARS-COV-2.
Collapse
Affiliation(s)
- Andri Andreou
- Pharmaceutical Services, Ministry of Health of the Republic of Cyprus, Nicosia, Cyprus
| | | | - Demetrios Filippou
- National Organization for Medicines, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Sipsas
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor. J Virol 2019; 93:JVI.00355-19. [PMID: 31315999 PMCID: PMC6744225 DOI: 10.1128/jvi.00355-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development. Human coronavirus NL63 (HCoV-NL63) is a common respiratory virus that causes moderately severe infections. We have previously shown that the virus uses heparan sulfate proteoglycans (HSPGs) as the initial attachment factors, facilitating viral entry into the cell. In the present study, we show that the membrane protein (M) of HCoV-NL63 mediates this attachment. Using viruslike particles lacking the spike (S) protein, we demonstrate that binding to the cell is not S protein dependent. Furthermore, we mapped the M protein site responsible for the interaction with HSPG and confirmed its relevance using a viable virus. Importantly, in silico analysis of the region responsible for HSPG binding in different clinical isolates and the Amsterdam I strain did not exhibit any signs of cell culture adaptation. IMPORTANCE It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development.
Collapse
|
29
|
Sun P, Fahd Q, Li Y, Sun Y, Li J, Qaria MA, He ZS, Fan Y, Zhang Q, Xu Q, Yin Z, Xu X, Li Y. Transcriptomic analysis of small intestinal mucosa from porcine epidemic diarrhea virus infected piglets. Microb Pathog 2019; 132:73-79. [PMID: 31026494 PMCID: PMC7125762 DOI: 10.1016/j.micpath.2019.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
Caused by porcine epidemic diarrhea virus (PEDV), porcine epidemic diarrhea (PED) is an acute infectious disease which causes damage to the intestine including intestinal villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. In order to obtain detailed information about the pathogenesis and host immune response in a PEDV-infected host for first In vivo study we used high-throughput sequencing to analyze the gene expression differences of the small intestinal mucosa after infection with PEDV. Transcripts obtained were over 65,525,000 clean reads after reassembly were 22,605 genes detected, of which 22,248 were known genes and 371 new genes were predicted. Moreover, 3168 genes expression was up-regulated and 3876 genes down-regulated. (Gene Ontology) GO annotation and functional enrichment analysis indicated that all of the DEGs (differentially expressed genes) were annotated into biological process, cellular component and molecular function. Most of these unigenes are annotated in cellular processes, the cell and binding. KEGG analysis of the DEGs showed that a total of 7044 DEGs unigenes were annotated into 323 pathways classified into 6 main categories. Most of these unigenes are annotated were related to immune system response to the infectious diseases pathways. In addition, 20 DEGs were verified by quantitative real-time PCR. As the first, in vivo, RNAseq analysis of piglets and PEDV infection, our study provides knowledge about the transcriptomics of intestinal mucosa in PEDV-infected piglets, from which a complex molecular pathways and pathogenesis-related biological processes are involved in PEDV interaction with piglet intestinal mucosa.
Collapse
Affiliation(s)
- Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, Anhui, 230036, PR China.
| | - Qarih Fahd
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Yezhen Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Yao Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Jie Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Majjid A Qaria
- Pathogens Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India.
| | - Zhan Song He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Yuzhen Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Qiang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| | - Xingang Xu
- College of Veterinary Medicine Northwest Agriculture and Forestry University. Yangling, Shanxi, 712100, PR China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| |
Collapse
|
30
|
J Alsaadi EA, Jones IM. Membrane binding proteins of coronaviruses. Future Virol 2019; 14:275-286. [PMID: 32201500 PMCID: PMC7079996 DOI: 10.2217/fvl-2018-0144] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Coronaviruses (CoVs) infect many species causing a variety of diseases with a range of severities. Their members include zoonotic viruses with pandemic potential where therapeutic options are currently limited. Despite this diversity CoVs share some common features including the production, in infected cells, of elaborate membrane structures. Membranes represent both an obstacle and aid to CoV replication - and in consequence - virus-encoded structural and nonstructural proteins have membrane-binding properties. The structural proteins encounter cellular membranes at both entry and exit of the virus while the nonstructural proteins reorganize cellular membranes to benefit virus replication. Here, the role of each protein in membrane binding is described to provide a comprehensive picture of their role in the CoV replication cycle.
Collapse
Affiliation(s)
- Entedar A J Alsaadi
- Biomedical Sciences, School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.,Department of Microbiology, College of Medicine, Thiqar University, Thiqar, Iraq.,Biomedical Sciences, School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.,Department of Microbiology, College of Medicine, Thiqar University, Thiqar, Iraq
| | - Ian M Jones
- Biomedical Sciences, School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK.,Biomedical Sciences, School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK
| |
Collapse
|
31
|
Chen Y, Zhang Z, Li J, Gao Y, Zhou L, Ge X, Han J, Guo X, Yang H. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis. Virol J 2018; 15:170. [PMID: 30404647 PMCID: PMC6222994 DOI: 10.1186/s12985-018-1078-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/10/2018] [Indexed: 02/10/2023] Open
Abstract
Background Porcine Epidemic Diarrhea (PED) is an acute and highly contagious enteric disease caused by PED virus (PEDV), characterized by vomitting, watery diarrhea and fatal dehydration with high mortality in sucking piglets of one week of age. Although PEDV induced cell apoptosis has been established in vitro and in vivo, the functional protein that contributes to this event remains unclear. Methods The activation or cleavage of main apoptosis-associated molecular such as AIFM1, caspase-3, caspase-8, caspase-9 and PARP in PEDV infected host cells were analyzed by western blotting. The nuclear change of infected cell was monitored by confocal immunofluorescence assay. The overexpressing plasmids of 16 non-structural proteins (Nsp1–16) and 6 structural proteins (M, N, E, ORF3, S1 and S2) were constructed by cloning. Cell apoptosis induced by PEDV or overexpression non-structural or structural proteins was measured by the flow cytometry assay. Results PEDV could infect various host cells including Vero, Vero-E6 and Marc-145 and cause obvious cytopathic effects, including roundup, cell fusion, cell membrane vacuolation, syncytium formation and cause apparent apoptosis. In infected cells, PEDV-induced apoptosis is accompanied by nuclear concentration and fragmentation as a result of caspase-3 and caspase-8 activation and AIFM1 and PARP cleavage. Overexpression of S1 Spike protein of PEDV SM98 strain effectively induced host cell apoptosis, while the expression of the other non-structure proteins (Nsp1–16) and structural proteins (M, N, E, S2 and ORF3) has no or less effect on cell apoptosis. Similarly, expression of S1 protein from wild-type strain BJ2011 or cell-adapted strain CV777, also induce apoptosis in transfected cells. Finally, we demonstrated that the S1 proteins from various coronavirus family members such as TGEV, IBV, CCoV, SARS and MERS could also induce Vero-E6 cells apoptosis. Conclusion S1 Spike protein is one of the most critical functional proteins that contribute to cell apoptosis. Expression of S1 proteins of the coronavirus tested in this study could all induce cell apoptosis suggesting S1 maybe is an effective inducer in Coronavirus-induced cell apoptosis and targeting S1 protein expression probably is a promising strategy to inhibit coronavirus infection and thus mediated apoptosis on host cells. Electronic supplementary material The online version of this article (10.1186/s12985-018-1078-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yifeng Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China.,Animal Medicine Research Center of DBN Group, South Crossroad of Xiangrui Street and Huatuo Road DBN Daxing Science Park, Daxing Distract, Beijing, 102600, People's Republic of China
| | - Zhibang Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Jie Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Yueyi Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian Distract, Beijing, 100193, People's Republic of China
| |
Collapse
|
32
|
Yuan P, Yang Z, Song H, Wang K, Yang Y, Xie L, Huang S, Liu J, Ran L, Song Z. Three Main Inducers of Alphacoronavirus Infection of Enterocytes: Sialic Acid, Proteases, and Low pH. Intervirology 2018; 61:53-63. [PMID: 30176660 PMCID: PMC7179561 DOI: 10.1159/000492424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are similar coronaviruses, causing diseases characterized by vomiting, diarrhea, and death from severe dehydration in piglets. Thus, they have caused huge losses to the swine-breeding industry worldwide. Nowadays, they are easily transmitted among the continents via vehicles, equipment, and cargo. Both viruses establish an infection in porcine enterocytes in the small intestine, and their spike (S) proteins play a key role in the virus-cell binding process under unfavorable conditions when the intestine with a low pH is filled with a thick layer of mucus and proteases. Sialic acid, proteases, and low pH are three main inducers of coronavirus infection. However, the details of how sialic acid and low pH affect virus binding to the host cell are not determined, and the functions of the proteases are unknown. This review emphasizes the role of three factors in the invasion of TGEV and PEDV into porcine enterocytes and offers more insights into Alphacoronavirus infection in the intestinal environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhenhui Song
- *Zhenhui Song, PhD, Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460 (People's Republic of China), E-Mail
| |
Collapse
|
33
|
Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection. Emerg Microbes Infect 2018; 7:65. [PMID: 29636467 PMCID: PMC5893578 DOI: 10.1038/s41426-018-0068-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV), a member of genus Deltacoronavirus, is an emerging swine enteropathogenic coronavirus (CoV). Although outstanding efforts have led to the identification of Alphacoronavirus and Betacoronavirus receptors, the receptor for Deltacoronavirus is unclear. Here, we compared the amino acid sequences of several representative CoVs. Phylogenetic analysis showed that PDCoV spike (S) protein was close to the cluster containing transmissible gastroenteritis virus (TGEV), which utilizes porcine aminopeptidase N (pAPN) as a functional receptor. Ectopic expression of pAPN in non-susceptible BHK-21 cells rendered them susceptible to PDCoV. These results indicate that pAPN may be a functional receptor for PDCoV infection. However, treatment with APN-specific antibody and inhibitors did not completely block PDCoV infection in IPI-2I porcine intestinal epithelial cells. pAPN knockout in IPI-2I cells completely blocked TGEV infection but only slightly decreased PDCoV infection. Homologous modeling of pAPN with the S1 C-terminal domain (S1-CTD) of PDCoV or TGEV showed that TGEV S1-CTD adopted β-turns (β1-β2 and β3-β4), forming the tip of a β-barrel, to recognize pAPN. However, only the top residues in the β1-β2 turn of PDCoV S1-CTD had the possibility to support an interaction with pAPN, and the β3-β4 turn failed to contact pAPN. We also discuss the evolution and variation of PDCoV S1-CTD based on structure information, providing clues to explain the usage of pAPN by PDCoV. Taken together, the results presented herein reveal that pAPN is likely not a critical functional receptor for PDCoV, although it is involved in PDCoV infection.
Collapse
|
34
|
Lara-Romero R, Gómez-Núñez L, Cerriteño-Sánchez JL, Márquez-Valdelamar L, Mendoza-Elvira S, Ramírez-Mendoza H, Rivera-Benítez JF. Molecular characterization of the spike gene of the porcine epidemic diarrhea virus in Mexico, 2013-2016. Virus Genes 2017; 54:215-224. [PMID: 29243063 PMCID: PMC7088687 DOI: 10.1007/s11262-017-1528-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
In Mexico, the first outbreaks suggestive of the circulation of the porcine epidemic diarrhea virus (PEDV) were identified at the beginning of July 2013. To identify the molecular characteristics of the PEDV Spike (S) gene in Mexico, 116 samples of the intestine and diarrhea of piglets with clinical signs of porcine epidemic diarrhea (PED) were obtained. Samples were collected from 14 farms located in six states of Mexico (Jalisco, Puebla, Sonora, Veracruz, Guanajuato, and Michoacán) from 2013 to 2016. To identify PEDV, we used real-time RT-PCR to discriminate between non-INDEL and INDEL strains. We chose samples according to state and year to characterize the S gene. After amplification of the S gene, the obtained products were sequenced and assembled. The complete amino acid sequences of the spike protein were used to perform an epitope analysis, which was used to determine null mutations in regions SS2, SS6, and 2C10 compared to the sequences of G2. A phylogenetic analysis determined the circulation of G2b and INDEL strains in Mexico. However, several mutations were recorded in the collagenase equivalent (COE) region that were related to the change in polarity and charge of the amino acid residues. The PEDV strain circulating in Jalisco in 2016 has an insertion of three amino acids (232LGL234) and one change in the antigenic site of the COE region, and strains from the years 2015 and 2016 changed the index of the surface probability, which could be related to the re-emergence of disease outbreaks.
Collapse
Affiliation(s)
- Rocío Lara-Romero
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico.,Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Estado de México, Mexico
| | - Luis Gómez-Núñez
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico
| | | | - Laura Márquez-Valdelamar
- Laboratorio de Secuenciación Genómica de la Biodiversidad y de la Salud, Instituto de Biología, UNAM, Mexico City, Mexico
| | - Susana Mendoza-Elvira
- Laboratorio de Microbiología y Virología de las Enfermedades Respiratorias del Cerdo, Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán, Estado de México, Mexico
| | - Humberto Ramírez-Mendoza
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| | - José Francisco Rivera-Benítez
- Laboratorio de Virología, Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km. 15.5 Carretera México-Toluca, C.P. 05110, Mexico City, Mexico.
| |
Collapse
|
35
|
Dietrich MH, Harprecht C, Stehle T. The bulky and the sweet: How neutralizing antibodies and glycan receptors compete for virus binding. Protein Sci 2017; 26:2342-2354. [PMID: 28986957 PMCID: PMC5699497 DOI: 10.1002/pro.3319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022]
Abstract
Numerous viruses rely on glycan receptor binding as the initial step in host cell infection. Engagement of specific glycan receptors such as sialylated carbohydrates, glycosaminoglycans, or histo-blood group antigens can determine host range, tissue tropism, and pathogenicity. Glycan receptor-binding sites are typically located in exposed regions on viral surfaces-sites that are also generally prone to binding of neutralizing antibodies that directly interfere with virus-glycan receptor interactions. In this review, we examine the locations and architecture of the glycan- and antibody-binding sites in four different viruses with stalk-like attachment proteins (reovirus, influenza virus, norovirus, and coronavirus) and investigate the mechanisms by which antibodies block glycan recognition. Those viruses exemplify that direct molecular mimicking of glycan receptors by antibodies is rare and further demonstrate that antibodies often partly overlap or bind sufficiently close to the receptor-binding region to hinder access to this site, achieving neutralization partially because of the epitope location and partly due to their sheer size.
Collapse
Affiliation(s)
- Melanie H. Dietrich
- Interfaculty Institute of BiochemistryUniversity of TuebingenTuebingenGermany
| | - Christina Harprecht
- Interfaculty Institute of BiochemistryUniversity of TuebingenTuebingenGermany
| | - Thilo Stehle
- Interfaculty Institute of BiochemistryUniversity of TuebingenTuebingenGermany
- Department of PediatricsVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
36
|
Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie 2017; 142:1-10. [PMID: 28778717 PMCID: PMC7116903 DOI: 10.1016/j.biochi.2017.07.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Influenza virus and coronavirus epidemics or pandemics have occurred in succession worldwide throughout the early 21st century. These epidemics or pandemics pose a major threat to human health. Here, we outline a critical role of the host cell protease TMPRSS2 in influenza virus and coronavirus infections and highlight an antiviral therapeutic strategy targeting TMPRSS2.
Collapse
Affiliation(s)
- Li Wen Shen
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Juan Mao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Ling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
37
|
Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies. J Virol 2017; 91:JVI.00273-17. [PMID: 28381581 DOI: 10.1128/jvi.00273-17] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes enteric disease in pigs, resulting in significant economic losses to the swine industry worldwide. Current vaccination approaches against this emerging coronavirus are only partially effective, though natural infection protects pigs against reinfection and provides lactogenic immunity to suckling piglets. The viral spike (S) glycoprotein, responsible for receptor binding and cell entry, is the major target for neutralizing antibodies. However, knowledge of antibody epitopes, their nature and location in the spike structure, and the mechanisms by which the antibodies interfere with infection is scarce. Here we describe the generation and characterization of 10 neutralizing and nonneutralizing mouse monoclonal antibodies raised against the S1 receptor binding subunit of the S protein. By expression of different S1 protein fragments, six antibody epitope classes distributed over the five structural domains of the S1 subunit were identified. Characterization of antibodies for cross-reactivity and cross-neutralization revealed antigenic differences among PEDV strains. The epitopes of potent neutralizing antibodies segregated into two epitope classes and mapped within the N-terminal sialic acid binding domain and in the more C-terminal receptor binding domain. Antibody neutralization escape mutants displayed single amino acid substitutions that impaired antibody binding and neutralization and defined the locations of the epitopes. Our observations picture the antibody epitope landscape of the PEDV S1 subunit and reveal that its cell attachment domains are key targets of neutralizing antibodies.IMPORTANCE Porcine epidemic diarrhea virus (PEDV), an emerging porcine coronavirus, causes an economically important enteric disease in pigs. Effective PEDV vaccines for disease control are currently lacking. The spike (S) glycoprotein on the virion surface is the key player in virus cell entry and, therefore, the main target of neutralizing antibodies. To understand the antigenic landscape of the PEDV spike protein, we developed monoclonal antibodies against the spike protein's S1 receptor binding region and characterized their epitopes, neutralizing activity, and cross-reactivity toward multiple PEDV strains. Epitopes of antibodies segregated into six epitope classes dispersed over the multidomain S1 structure. Monoclonal antibodies revealed antigenic variability in B-cell epitopes between PEDV strains. The epitopes of neutralizing antibodies mapped to two distinct domains in S1 that are involved in binding to carbohydrate and proteinaceous cell surface molecules, respectively, indicating the importance of these cell attachment sites on the PEDV spike protein in eliciting a protective humoral immune response.
Collapse
|
38
|
Characterization of porcine epidemic diarrhea virus infectivity in human embryonic kidney cells. Arch Virol 2017; 162:2415-2419. [PMID: 28470417 DOI: 10.1007/s00705-017-3369-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a causative agent of porcine epidemic diarrhea, causes economic loss in the global swine industry. Vero cell, an African green monkey kidney cell line, has been commonly used to isolate and propagate PEDV. However, since the production of interferon in these cells is defective, Vero cells are not the ideal cell type to study the molecular mechanisms of PEDV infection and the host antiviral innate immune response. In this study, we observed that human embryonic kidney 293 (HEK293) cells were susceptible to infection with PEDV vaccine strain CV777 (G1 subtype) and field isolate LNCT2 (G2 subtype). The one-step growth curve showed that the growth dynamics of PEDV in HEK293 cells was similar to that observed in Vero cells. Furthermore, we revealed that aminopeptidase N was involved in PEDV infection in HEK293 cells. Taken together, our findings suggest that HEK293 cells can be efficiently infected by PEDV, which might provide a useful tool for understanding the fundamental mechanisms of PEDV infection in vitro.
Collapse
|
39
|
Santiago C, Mudgal G, Reguera J, Recacha R, Albrecht S, Enjuanes L, Casasnovas JM. Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection. Sci Rep 2017; 7:46045. [PMID: 28393915 PMCID: PMC5385526 DOI: 10.1038/srep46045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/07/2017] [Indexed: 01/15/2023] Open
Abstract
Cell surface aminopeptidase N (APN) is a membrane-bound ectoenzyme that hydrolyzes proteins and peptides and regulates numerous cell functions. APN participates in tumor cell expansion and motility, and is a target for cancer therapies. Small drugs that bind to the APN active site inhibit catalysis and suppress tumor growth. APN is also a major cell entry receptor for coronavirus, which binds to a region distant from the active site. Three crystal structures that we determined of human and pig APN ectodomains defined the dynamic conformation of the protein. These structures offered snapshots of closed, intermediate and open APN, which represent distinct functional states. Coronavirus envelope proteins specifically recognized the open APN form, prevented ectodomain progression to the closed form and substrate hydrolysis. In addition, drugs that bind the active site inhibited both coronavirus binding to cell surface APN and infection; the drugs probably hindered APN transition to the virus-specific open form. We conclude that allosteric inhibition of APN functions occurs by ligand suppression of ectodomain motions necessary for catalysis and virus cell entry, as validated by locking APN with disulfides. Blocking APN dynamics can thus be a valuable approach to development of drugs that target this ectoenzyme.
Collapse
Affiliation(s)
- César Santiago
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gaurav Mudgal
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Department of Biotechnology, Institute of Engineering and Technology, Mangalayatan University, 33rd Milestone, Beswan, Aligarh, UP, India-202145
| | - Juan Reguera
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.,INSERM, Aix-Marseille Université, CNRS, AFMB UMR 7257, 163 avenue de Luminy, 13288 Marseille, France
| | - Rosario Recacha
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Sébastien Albrecht
- Laboratoire de Chimie Organique et Bioorganique, Ecole Nationale Supérieure de Chimie Mulhouse, Université Haute-Alsace, 68093 Mulhouse, France
| | - Luis Enjuanes
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M Casasnovas
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
40
|
Molecular Characterization of the ORF3 and S1 Genes of Porcine Epidemic Diarrhea Virus Non S-INDEL Strains in Seven Regions of China, 2015. PLoS One 2016; 11:e0160561. [PMID: 27494026 PMCID: PMC4975444 DOI: 10.1371/journal.pone.0160561] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
In an effort to trace the evolution of porcine epidemic diarrhea virus (PEDV), S1 and ORF3 genes of viruses identified in 41 pig farms from seven regions (North, Northeast, Northwest, Central, East, South West, and South, respectively) of China in 2015 were sequenced and analyzed. Sequence analysis revealed that the 41 ORF3 genes and 29 S1 genes identified in our study exhibited nucleotide homologies of 98.2%–100% and 96.6%–100%, respectively; these two genes exhibited low nucleotide sequence similarities with classical CV777 strain and early Chinese strain LZC. Phylogenetic analysis indicated that the identified PEDV strains belonged to global non S-INDEL strains, and exhibited genetic diversity; S1 gene of the HLJ2015/DP1-1 strain harbored an unique deletion of 12 nucleotides (A1130CAACTCCACTG1141); while the Chinese PEDV S-INDEL reference strains included two types of the “CV777” S-INDEL as well as the “US” S-INDEL, and all co-circulated with Chinese non S-INDEL strains. Of 29 identified S1 genes, the SS2 epitope (Y748SNIGVCK755) was highly conserved, while the SS6 epitope (L764QDGQVKI771) and pAPN receptor-binding region (aa 490–615) exhibited amino substitutions. Nine possible recombination events were identified between the 29 identifed S1 genes and the 3 S1 reference genes from early Chinese PEDV strains. The complete S genes of selected Chinese PEDV field strains (2011–2015) showed 5.18%–6.07% nucleotide divergence, which is far higher than the divergence observed in early Chinese PEDV strains (3.1%) (P<0.05). Our data provide evidence that PEDV non S-INDEL strains with genetic diversities and potential recombination circulate in seven regions of China in 2015; Chinese PEDV S-INDEL strains exhibit genetic diversity and co-circulate with non S-INDEL strains.
Collapse
|
41
|
Abstract
Human rhinovirus (HRV) and coronavirus (HCoV) infections are associated with both upper respiratory tract illness (“the common cold”) and lower respiratory tract illness (pneumonia). New species of HRVs and HCoVs have been diagnosed in the past decade. More sensitive diagnostic tests such as reverse transcription-polymerase chain reaction have expanded our understanding of the role these viruses play in both immunocompetent and immunosuppressed hosts. Recent identification of severe acute respiratory syndrome and Middle East respiratory syndrome viruses causing serious respiratory illnesses has led to renewed efforts for vaccine development. The role these viruses play in patients with chronic lung disease such as asthma makes the search for antiviral agents of increased importance.
Collapse
Affiliation(s)
- Stephen B Greenberg
- Department of Medicine, Ben Taub Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
42
|
Identification and Comparison of Receptor Binding Characteristics of the Spike Protein of Two Porcine Epidemic Diarrhea Virus Strains. Viruses 2016; 8:55. [PMID: 26907329 PMCID: PMC4810246 DOI: 10.3390/v8030055] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of Alphacoronavirus, has caused huge economic losses for the global pork industry recently. The spike (S) protein mediates PEDV entry into host cells. Herein, we investigated the interactions between the S protein and its receptor porcine aminopeptidase N (pAPN) or co-receptor sugars. The C-terminal domain (CTD) of the S1 domain is bound to pAPN. The prototype strain demonstrated similar receptor-binding activity compared with the variant field isolate. Three loops at the tips of the β-barrel domains did not play crucial roles in the PEDV S-pAPN association, indicating that PEDV conforms to a different receptor recognition model compared with transmissible gastroenteritis virus (TGEV), porcine respiratory CoV (PRCV), and human coronavirus NL63 (HCoV-NL63). The N-terminal domain (NTD) of the PEDV S1 domain could bind sugar, a possible co-receptor for PEDV. The prototype strain exhibited weaker sugar-binding activity compared with the variant field isolate. Strategies targeting the receptor binding domain (RBD) may be helpful for developing vaccines or antiviral drugs for PEDV. Understanding the differences in receptor binding between the prototype and the variant strains may provide insight into PEDV pathogenesis.
Collapse
|
43
|
Lee C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol J 2015; 12:193. [PMID: 26689811 PMCID: PMC4687282 DOI: 10.1186/s12985-015-0421-2] [Citation(s) in RCA: 410] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022] Open
Abstract
The enteric disease of swine recognized in the early 1970s in Europe was initially described as “epidemic viral diarrhea” and is now termed “porcine epidemic diarrhea (PED)”. The coronavirus referred to as PED virus (PEDV) was determined to be the etiologic agent of this disease in the late 1970s. Since then the disease has been reported in Europe and Asia, but the most severe outbreaks have occurred predominantly in Asian swine-producing countries. Most recently, PED first emerged in early 2013 in the United States that caused high morbidity and mortality associated with PED, remarkably affecting US pig production, and spread further to Canada and Mexico. Soon thereafter, large-scale PED epidemics recurred through the pork industry in South Korea, Japan, and Taiwan. These recent outbreaks and global re-emergence of PED require urgent attention and deeper understanding of PEDV biology and pathogenic mechanisms. This paper highlights the current knowledge of molecular epidemiology, diagnosis, and pathogenesis of PEDV, as well as prevention and control measures against PEDV infection. More information about the virus and the disease is still necessary for the development of effective vaccines and control strategies. It is hoped that this review will stimulate further basic and applied studies and encourage collaboration among producers, researchers, and swine veterinarians to provide answers that improve our understanding of PEDV and PED in an effort to eliminate this economically significant viral disease, which emerged or re-emerged worldwide.
Collapse
Affiliation(s)
- Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
44
|
Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol 2015. [PMID: 26206723 PMCID: PMC7125587 DOI: 10.1016/j.tim.2015.06.003] [Citation(s) in RCA: 403] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bats are natural reservoirs of many coronaviruses that can infect humans. Mechanisms of cross-species transmission of coronaviruses are important scientific questions. The coronaviral spike protein is an important viral determinant of cross-species transmission. Receptor-binding characteristics and cleavage priming of the spike protein are summarized.
Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming.
Collapse
Affiliation(s)
- Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Office of Director-General, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|