1
|
Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer's disease pathology. J Neurochem 2024; 168:3415-3429. [PMID: 37850241 PMCID: PMC11024062 DOI: 10.1111/jnc.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly escalated into a global pandemic that primarily affects older and immunocompromised individuals due to underlying clinical conditions and suppressed immune responses. Furthermore, COVID-19 patients exhibit a spectrum of neurological symptoms, indicating that COVID-19 can affect the brain in a variety of manners. Many studies, past and recent, suggest a connection between viral infections and an increased risk of neurodegeneration, raising concerns about the neurological effects of COVID-19 and the possibility that it may contribute to Alzheimer's disease (AD) onset or worsen already existing AD pathology through inflammatory processes given that both COVID-19 and AD share pathological features and risk factors. This leads us to question whether COVID-19 is a risk factor for AD and how these two conditions might influence each other. Considering the extensive reach of the COVID-19 pandemic and the devastating impact of the ongoing AD pandemic, their combined effects could have significant public health consequences worldwide.
Collapse
Affiliation(s)
- Susana Furman
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Kim Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA
- Center for Virus Research, University of California, Irvine 92697, USA
| |
Collapse
|
2
|
Davis DA, Nair A, Astter Y, Treco E, Peyser B, Gussio R, Nguyen T, Eaton B, Postnikova E, Murphy M, Shrestha P, Bulut H, Hattorri SI, Mitsuya H, Yarchoan R. Discovery of a nasal spray steroid, tixocortol, as an inhibitor of SARS-CoV-2 main protease and viral replication. RSC Med Chem 2024; 15:d4md00454j. [PMID: 39371432 PMCID: PMC11450544 DOI: 10.1039/d4md00454j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Coronaviruses rely on the viral-encoded chymotrypsin-like main protease (Mpro or 3CLpro) for replication and assembly. Our previous research on Mpro of SARS-CoV-2 identified cysteine 300 (Cys300) as a potential allosteric site of Mpro inhibition. Here, we identified tixocortol (TX) as a covalent modifier of Cys300 which inhibits Mpro activity in vitro as well as in a cell-based Mpro expression assay. Most importantly TX inhibited SARS-CoV-2 replication in ACE2 expressing HeLa cells. Biochemical analysis and kinetic assays were consistent with TX acting as a non-competitive inhibitor. By contrast, TX was a weaker inhibitor and modifier of C300S Mpro, confirming a role for Cys300 in inhibition of WT Mpro but also providing evidence for an additional Cys target. TX pivalate (TP), a prodrug for TX that was previously marketed as a nasal spray, also inhibited SARS-CoV-2 replication in HeLa-ACE2 cells at low micromolar IC50s. These studies suggest that TX and/or TP could possibly be repurposed for the prevention and/or treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Ashwin Nair
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Yana Astter
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Emma Treco
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Brian Peyser
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health USA
| | - Rick Gussio
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Computational Institute for Health and Environmental Research, (CIFHER.ORG) Riverside 5, RM 4076, 8490 Progress Dr. Frederick MD 21701 USA
| | - Tam Nguyen
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health USA
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick 8200 Research Plaza Frederick MD 21702 USA
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick 8200 Research Plaza Frederick MD 21702 USA
| | - Michael Murphy
- Integrated Research Facility at Fort Detrick 8200 Research Plaza Frederick MD 21702 USA
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Haydar Bulut
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Shin-Ichiro Hattorri
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute 1-21-1 Toyama Shinjuku-ku Tokyo 162-8655 Japan
| | - Hiroaki Mitsuya
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute 1-21-1 Toyama Shinjuku-ku Tokyo 162-8655 Japan
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| |
Collapse
|
3
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
López MJV, Meineke A, Stephan B, Rustenbach SJ, Kis A, Thaçi D, Mrowietz U, Reich K, Staubach-Renz P, von Kiedrowski R, Bogena H, Augustin M. SARS-CoV-2 infection among psoriasis patients in Germany: Data from the German registries PsoBest and CoronaBest. J Dtsch Dermatol Ges 2024; 22:965-972. [PMID: 38778439 DOI: 10.1111/ddg.15433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Limited data exist on the characteristics of SARS-CoV-2 infections in German patients with psoriasis or psoriasis arthritis (PsA). This study analyses COVID-19 prevalence and severity of symptoms in these patients. PATIENTS AND METHODS Participants of the German registries PsoBest and CoronaBest were surveyed in February 2022. Descriptive analyses were conducted. RESULTS 4,818 patients were included in the analysis, mean age of 56.4 years. Positive SARS-CoV-2 tests were reported by 737 (15.3%) patients. The most frequently reported acute symptoms were fatigue (67.3%), cough (58.8%), and headache (58.3%). Longer-lasting symptoms after COVID-19 were reported by 231 of 737 patients after the acute phase. For most patients (92.9%), systemic treatment for their psoriasis or PsA was not modified during the pandemic. Patients positively tested for SARS-CoV-2 were younger on average and had more often changes in the therapy of psoriasis than negatively tested patients (8.5% vs. 5.4%). CONCLUSIONS In this cohort of patients with psoriasis or PsA undergoing systemic treatment, SARS-CoV-2 infections were common but less frequent than in the general German population. No risk signals for more severe COVID-19 or increased infection rates were observed in the patients. In addition, systemic treatments remained largely unchanged, so that no risks can be attributed to these therapies.
Collapse
Affiliation(s)
- María José Valencia López
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anna Meineke
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Brigitte Stephan
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stephan Jeff Rustenbach
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anne Kis
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Diamant Thaçi
- Institute and Comprehensive Center for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | - Ulrich Mrowietz
- Psoriasis Center Kiel, Department of Dermatology, Venereology and Allergology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Kristian Reich
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Petra Staubach-Renz
- Department of Dermatology and Allergy, University Medical Center Mainz, Mainz, Germany
| | | | - Henriette Bogena
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
5
|
Trischitta P, Tamburello MP, Venuti A, Pennisi R. Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review. Int J Mol Sci 2024; 25:5188. [PMID: 38791226 PMCID: PMC11121416 DOI: 10.3390/ijms25105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus's entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
Collapse
Affiliation(s)
- Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, 69366 Lyon, CEDEX 07, France;
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| |
Collapse
|
6
|
Sohrab SS, Alsaqaf F, Hassan AM, Tolah AM, Bajrai LH, Azhar EI. Genomic Diversity and Recombination Analysis of the Spike Protein Gene from Selected Human Coronaviruses. BIOLOGY 2024; 13:282. [PMID: 38666894 PMCID: PMC11048170 DOI: 10.3390/biology13040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002-2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from Wuhan City, China, in late December 2019. The HCoV-Spike (S) gene has the highest mutation/insertion/deletion rate and has been the most utilized target for vaccine/antiviral development. In this manuscript, we discuss the genetic diversity, phylogenetic relationships, and recombination patterns of selected HCoVs with emphasis on the S protein gene of MERS-CoV and SARS-CoV-2 to elucidate the possible emergence of new variants/strains of coronavirus in the near future. The findings showed that MERS-CoV and SARS-CoV-2 have significant sequence identity with the selected HCoVs. The phylogenetic tree analysis formed a separate cluster for each HCoV. The recombination pattern analysis showed that the HCoV-NL63-Japan was a probable recombinant. The HCoV-NL63-USA was identified as a major parent while the HCoV-NL63-Netherland was identified as a minor parent. The recombination breakpoints start in the viral genome at the 142 nucleotide position and end at the 1082 nucleotide position with a 99% CI and Bonferroni-corrected p-value of 0.05. The findings of this study provide insightful information about HCoV-S gene diversity, recombination, and evolutionary patterns. Based on these data, it can be concluded that the possible emergence of new strains/variants of HCoV is imminent.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
| | - Ahmed Mohamed Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
| | - Ahmed Majdi Tolah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, P.O. Box 21911, Rabigh 344, Saudi Arabia
| | - Leena Hussein Bajrai
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Chu Y, Li M, Sun M, Wang J, Xin W, Xu L. Gene crosstalk between COVID-19 and preeclampsia revealed by blood transcriptome analysis. Front Immunol 2024; 14:1243450. [PMID: 38259479 PMCID: PMC10800816 DOI: 10.3389/fimmu.2023.1243450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background The extensive spread of coronavirus disease 2019 (COVID-19) has led to a rapid increase in global mortality. Preeclampsia is a commonly observed pregnancy ailment characterized by high maternal morbidity and mortality rates, in addition to the restriction of fetal growth within the uterine environment. Pregnant individuals afflicted with vascular disorders, including preeclampsia, exhibit an increased susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection via mechanisms that have not been fully delineated. Additionally, the intricate molecular mechanisms underlying preeclampsia and COVID-19 have not been fully elucidated. This study aimed to discern commonalities in gene expression, regulators, and pathways shared between COVID-19 and preeclampsia. The objective was to uncover potential insights that could contribute to novel treatment strategies for both COVID-19 and preeclampsia. Method Transcriptomic datasets for COVID-19 peripheral blood (GSE152418) and preeclampsia blood (GSE48424) were initially sourced from the Gene Expression Omnibus (GEO) database. Subsequent to that, we conducted a subanalysis by selecting females from the GSE152418 dataset and employed the "Deseq2" package to identify genes that exhibited differential expression. Simultaneously, the "limma" package was applied to identify differentially expressed genes (DEGs) in the preeclampsia dataset (GSE48424). Following that, an intersection analysis was conducted to identify the common DEGs obtained from both the COVID-19 and preeclampsia datasets. The identified shared DEGs were subsequently utilized for functional enrichment analysis, transcription factor (TF) and microRNAs (miRNA) prediction, pathway analysis, and identification of potential candidate drugs. Finally, to validate the bioinformatics findings, we collected peripheral blood mononuclear cell (PBMC) samples from healthy individuals, COVID-19 patients, and Preeclampsia patients. The abundance of the top 10 Hub genes in both diseases was assessed using real-time quantitative polymerase chain reaction (RT-qPCR). Result A total of 355 overlapping DEGs were identified in both preeclampsia and COVID-19 datasets. Subsequent ontological analysis, encompassing Gene Ontology (GO) functional assessment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, revealed a significant association between the two conditions. Protein-protein interactions (PPIs) were constructed using the STRING database. Additionally, the top 10 hub genes (MRPL11, MRPS12, UQCRH, ATP5I, UQCRQ, ATP5D, COX6B1, ATP5O, ATP5H, NDUFA6) were selected based on their ranking scores using the degree algorithm, which considered the shared DEGs. Moreover, transcription factor-gene interactions, protein-drug interactions, co-regulatory networks of DEGs and miRNAs, and protein-drug interactions involving the shared DEGs were also identified in the datasets. Finally, RT-PCR results confirmed that 10 hub genes do exhibit distinct expression profiles in the two diseases. Conclusion This study successfully identified overlapping DEGs, functional pathways, and regulatory elements between COVID-19 and preeclampsia. The findings provide valuable insights into the shared molecular mechanisms and potential therapeutic targets for both diseases. The validation through RT-qPCR further supports the distinct expression profiles of the identified hub genes in COVID-19 and preeclampsia, emphasizing their potential roles as biomarkers or therapeutic targets in these conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Syage A, Pachow C, Cheng Y, Mangale V, Green KN, Lane TE. Microglia influence immune responses and restrict neurologic disease in response to central nervous system infection by a neurotropic murine coronavirus. Front Cell Neurosci 2023; 17:1291255. [PMID: 38099152 PMCID: PMC10719854 DOI: 10.3389/fncel.2023.1291255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.
Collapse
Affiliation(s)
- Amber Syage
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Collin Pachow
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yuting Cheng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Vrushali Mangale
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Wildner G, Tucci AR, Prestes ADS, Muller T, Rosa ADS, Borba NRR, Ferreira VN, Rocha JBT, Miranda MD, Barbosa NV. Ebselen and Diphenyl Diselenide Inhibit SARS-CoV-2 Replication at Non-Toxic Concentrations to Human Cell Lines. Vaccines (Basel) 2023; 11:1222. [PMID: 37515038 PMCID: PMC10384302 DOI: 10.3390/vaccines11071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the COVID-19 pandemic, a global public health problem. Despite the numerous studies for drug repurposing, there are only two FDA-approved antiviral agents (Remdesivir and Nirmatrelvir) for non-hospitalized patients with mild-to-moderate COVID-19 symptoms. Consequently, it is pivotal to search for new molecules with anti-SARS-CoV-2 activity and to study their effects in the human immune system. Ebselen (Eb) is an organoselenium compound that is safe for humans and has antioxidant, anti-inflammatory, and antimicrobial properties. Diphenyl diselenide ((PhSe)2) shares several pharmacological properties with Eb and is of low toxicity to mammals. Herein, we investigated Eb and (PhSe)2 anti-SARS-CoV-2 activity in a human pneumocytes cell model (Calu-3) and analyzed their toxic effects on human peripheral blood mononuclear cells (PBMCs). Both compounds significantly inhibited the SARS-CoV-2 replication in Calu-3 cells. The EC50 values for Eb and (PhSe)2 after 24 h post-infection (hpi) were 3.8 µM and 3.9 µM, respectively, and after 48 hpi were 2.6 µM and 3.4 µM. These concentrations are safe for non-infected cells, since the CC50 values found for Eb and (PhSe)2 on Calu-3 were greater than 200 µM. Importantly, the concentration rates tested on viral replication were not toxic to human PBMCs. Therefore, our findings reinforce the efficacy of Eb and demonstrate (PhSe)2 as a new candidate to be tested in future trials against SARS-CoV-2 infection/inflammation conditions.
Collapse
Affiliation(s)
- Guilherme Wildner
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Amanda Resende Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Alessandro de Souza Prestes
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Talise Muller
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Alice Dos Santos Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Nathalia Roberto R Borba
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Vivian Neuza Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - João Batista Teixeira Rocha
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Milene Dias Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil
| | - Nilda Vargas Barbosa
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
10
|
Gheban-Roșca IA, Gheban BA, Pop B, Mironescu DC, Siserman VC, Jianu EM, Drugan T, Bolboacă SD. Identification of Histopathological Biomarkers in Fatal Cases of Coronavirus Disease: A Study on Lung Tissue. Diagnostics (Basel) 2023; 13:2039. [PMID: 37370934 DOI: 10.3390/diagnostics13122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
We aimed to evaluate the primary lung postmortem macro- and microscopic biomarkers and factors associated with diffuse alveolar damage in patients with fatal coronavirus (COVID-19). We retrospectively analyzed lung tissue collected from autopsies performed in Cluj-Napoca, Romania, between April 2020 and April 2021 on patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examined 79 patients with confirmed SARS-CoV-2 infection, ages 34 to 96 years, split into two groups using the cut-off value of 70 years. Arterial hypertension (38%) and type 2 diabetes mellitus (19%) were the most common comorbidities with similar distribution between groups (p-values > 0.14). Macroscopically, bloody exudate was more frequently observed among patients < 70 years (33/36 vs. 29/43, p-value = 0.0091). Diffuse alveolar damage (53.1%) was similarly observed among the evaluated groups (p-value = 0.1354). Histopathological biomarkers of alveolar edema in 83.5% of patients, interstitial pneumonia in 74.7%, and microthrombi in 39.2% of cases were most frequently observed. Half of the evaluated lungs had an Ashcroft score of up to 2 and an alveolar air capacity of up to 12.5%. Bronchopneumonia (11/43 vs. 3/36, p-value = 0.0456) and interstitial edema (9/43 vs. 2/36, p-value = 0.0493) were significantly more frequent in older patients. Age (median: 67.5 vs. 77 years, p-value = 0.023) and infection with the beta variant of the virus (p-value = 0.0071) proved to be significant factors associated with diffuse alveolar damage.
Collapse
Affiliation(s)
- Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Clinical Hospital of Infectious Diseases, 400003 Cluj-Napoca, Romania
| | - Bogdan-Alexandru Gheban
- Rouen University Hospital-Charles-Nicolle, 76000 Rouen, France
- Department of Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Pop
- The Oncology Institute "Prof. Dr. Ion Chiricuță", 400015 Cluj-Napoca, Romania
- Department of Anatomic Pathology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniela-Cristina Mironescu
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Forensic Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Vasile Costel Siserman
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
- Department of Forensic Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Elena Mihaela Jianu
- Department of Histology, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Sorana D Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Li Y, Huang Y, Zhu K, Duan X, Li S, Xu M, Yang C, Liu J, Bäumler H, Yu P, Xie H, Li B, Cao Y, Chen L. Functionalized protein microparticles targeting hACE2 as a novel preventive strategy for SARS-CoV-2 infection. Int J Pharm 2023; 638:122921. [PMID: 37028575 PMCID: PMC10082558 DOI: 10.1016/j.ijpharm.2023.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), resulting in a serious burden on public health and social economy worldwide. SARS-CoV-2 infection is mainly initialized in the nasopharyngeal cavity through the binding of viral spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) receptors which are widely expressed in many human cells. Thus, blockade of the interaction between viral S protein and hACE2 receptor in the primary entry site is a promising prevention strategy for the management of COVID-19. Here we showed protein microparticles (PMPs) decorated with hACE2 could bind and neutralize SARS-CoV-2 S protein-expressing pseudovirus (PSV) and protect host cells from infection in vitro. In the hACE2 transgenic mouse model, administration of intranasal spray with hACE2-decorated PMPs markedly decreased the viral load of SARS-CoV-2 in the lungs though the inflammation was not attenuated significantly. Our results provided evidence for developing functionalized PMPs as a potential strategy for preventing emerging air-borne infectious pathogens, such as SARS-CoV-2 infection.
Collapse
|
12
|
Bezerra-Santos MA, Dantas-Torres F, Benelli G, Otranto D. Emerging parasites and vectors in a rapidly changing world: from ecology to management. Acta Trop 2023; 238:106746. [PMID: 36403676 DOI: 10.1016/j.actatropica.2022.106746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Abstract
Global changes have influenced our societies in several ways with both positive (e.g., technology, transportation, and food security), and negative impacts (e.g., mental health problems, spread of diseases, and pandemics). Overall, these changes have affected the distribution patterns of parasites and arthropod vectors with the introduction and spreading of alien species in new geographical areas, eventually posing new challenges in public health. In this framework, the Acta Tropica Special Issue "Emerging parasites and vectors in a rapidly changing world: from ecology to management" provides a focus on the biology, ecology and management of emerging parasites and vectors of human and veterinary importance. Herein we review and discuss novel studies dealing with interactions of parasites and vectors with animals in changing environmental settings. In our opinion, a special focus on the implementation of management strategies of parasitic diseases to face anthropogenic environmental changes still represent a priority for public health. In the final section, key research challenges in this rapidly changing scenario are outlined.
Collapse
Affiliation(s)
- Marcos Antonio Bezerra-Santos
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. prov. per Casamassima km 3, Valenzano, Bari 70010, Italy
| | | | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Str. prov. per Casamassima km 3, Valenzano, Bari 70010, Italy; Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
13
|
Sato R, Tomioka Y, Sakuma C, Nakagawa M, Kurosawa Y, Shiba K, Arakawa T, Akuta T. Detection of concentration-dependent conformational changes in SARS-CoV-2 nucleoprotein by agarose native gel electrophoresis. Anal Biochem 2023; 662:114995. [PMID: 36427555 PMCID: PMC9681993 DOI: 10.1016/j.ab.2022.114995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The nucleoprotein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is abundantly expressed during infection, making it a diagnostic target protein. We analyzed the structure of the NP in solution using a recombinant protein produced in E. coli. A codon-optimized Profinity eXact™-tagged NP cDNA was cloned into pET-3d vector and transformed into E. coli T7 Express. The recombinant protein was first purified via chromatographic step using an affinity tag-based system that was followed by tag cleavage with sodium fluoride, resulting in proteolytic removal of the N-terminal tag sequence. The digested sample was then loaded directly onto a size exclusion chromatography run in the presence of L-Arg-HCl, resulting in removal of host nucleic acids and endotoxin. The molecular mass of the main NP fraction was determined by mass photometry as a dimeric form of NP, consistent with the blue native PAGE results. Interestingly, analysis of the purified NP by our newly developed agarose native gel electrophoresis revealed that it behaved like an acidic protein at low concentration despite its alkaline isoelectric point (theoretical pI = 10) and displayed a unique character of concentration-dependent charge and shape changes. This study should shed light into the behavior of NP in the viral life cycle.
Collapse
Affiliation(s)
- Ryo Sato
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Chiaki Sakuma
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Yasunori Kurosawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan; Abwiz Bio Inc., 9823 Pacific Heights Blvd., Suite J, San Diego, CA, 92121, USA.
| | - Kohei Shiba
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo, 6570036, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA, 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| |
Collapse
|
14
|
Padhi AK, Tripathi T. Hotspot residues and resistance mutations in the nirmatrelvir-binding site of SARS-CoV-2 main protease: Design, identification, and correlation with globally circulating viral genomes. Biochem Biophys Res Commun 2022; 629:54-60. [PMID: 36113178 PMCID: PMC9450486 DOI: 10.1016/j.bbrc.2022.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Shortly after the onset of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired numerous variations in its intracellular proteins to adapt quickly, become more infectious, and ultimately develop drug resistance by mutating certain hotspot residues. To keep the emerging variants at bay, including Omicron and subvariants, FDA has approved the antiviral nirmatrelvir for mild-to-moderate and high-risk COVID-19 cases. Like other viruses, SARS-CoV-2 could acquire mutations in its main protease (Mpro) to adapt and develop resistance against nirmatrelvir. Employing a unique high-throughput protein design technique, the hotspot residues, and signatures of adaptation of Mpro having the highest probability of mutating and rendering nirmatrelvir ineffective were identified. Our results show that ∼40% of the designed mutations in Mpro already exist in the globally circulating SARS-CoV-2 lineages and several predicted mutations. Moreover, several high-frequency, designed mutations were found to be in corroboration with the experimentally reported nirmatrelvir-resistant mutants and are naturally occurring. Our work on the targeted design of the nirmatrelvir-binding site offers a comprehensive picture of potential hotspot sites and resistance mutations in Mpro and is thus crucial in comprehending viral adaptation, robust antiviral design, and surveillance of evolving Mpro variations.
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India; Regional Director's Office, Indira Gandhi National Open University, Regional Centre Kohima, Kenuozou, Kohima, 797001, India.
| |
Collapse
|