1
|
Rodriguez FD, Covenas R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr Med Chem 2024; 31:6460-6486. [PMID: 37594106 DOI: 10.2174/0929867331666230818110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Numerous biochemical reactions leading to altered cell proliferation cause tumorigenesis and cancer treatment resistance. The mechanisms implicated include genetic and epigenetic changes, modified intracellular signaling, and failure of control mechanisms caused by intrinsic and extrinsic factors alone or combined. No unique biochemical events are responsible; entangled molecular reactions conduct the resident cells in a tissue to display uncontrolled growth and abnormal migration. Copious experimental research supports the etiological responsibility of NK-1R (neurokinin-1 receptor) activation, alone or cooperating with other mechanisms, in cancer appearance in different tissues. Consequently, a profound study of this receptor system in the context of malignant processes is essential to design new treatments targeting NK-1R-deviated activity. METHODS This study reviews and discusses recent literature that analyzes the main signaling pathways influenced by the activation of neurokinin 1 full and truncated receptor variants. Also, the involvement of NK-1R in cancer development is discussed. CONCLUSION NK-1R can signal through numerous pathways and cross-talk with other receptor systems. The participation of override or malfunctioning NK-1R in malignant processes needs a more precise definition in different types of cancers to apply satisfactory and effective treatments. A long way has already been traveled: the current disposal of selective and effective NK-1R antagonists and the capacity to develop new drugs with biased agonistic properties based on the receptor's structural states with functional significance opens immediate research action and clinical application.
Collapse
Affiliation(s)
- Francisco David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| | - Rafael Covenas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
3
|
Funahashi H, Miyahara Y, Haruta-Tsukamoto A, Matsuo T, Naono-Nakayama R, Ebihara K, Nishimori T, Ishida Y. Pharmacological characteristics of hemokinin-1-derived peptides in rat pruriceptive processing. Peptides 2020; 124:170232. [PMID: 31843553 DOI: 10.1016/j.peptides.2019.170232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022]
Abstract
Hemokinin-1 (HK-1) is a member of mammalian tachykinin peptide family, and [Leu11]-HK-1 has an antagonistic effect on HK-1. The attenuation of pruritogen-induced scratching behavior by pretreatment with [Leu11]-HK-1 indicates the involvement of HK-1 in pruriceptive processing. However, it remains unclear whether the intrathecal or intranasal administration of HK-1-derived peptides, such as [D-Trp7,9]-[Leu11]-HK-1 or [D-Trp7]-[Leu11]-HK-1, elicits the effects different from [Leu11]-HK-1. The induction of scratching by intrathecal administration of HK-1 was attenuated 30 min, 4 h and 24 h after pretreatment with [Leu11]-HK-1, [D-Trp7,9]-[Leu11]-HK-1 and [D-Trp7]-[Leu11]-HK-1 or [D-Trp9]-[Leu11]-HK-1, respectively. Similarly, the scratching induced by subcutaneous injection of pruritogens as chloroquine and histamine was ameliorated 30 min and 24 h after pretreatment with [Leu11]-HK-1 and these three HK-1-derived peptides, respectively. Moreover, the effective minimum concentrations of intrathecal administrations of [D-Trp9]-[Leu11]-HK-1 on scratching induced by chloroquine and histamine were 10-6 M, while the effective minimum concentrations of intranasal administration of this peptide on scratching induced by chloroquine and histamine were 10-5 M and 10-4 M, respectively. Thus, the present results indicate that the intrathecal administration of HK-1-derived peptides with D-Trp extends its effective time on scratching induced by intrathecal administration of HK-1 and pruritogens such as chloroquine and histamine. Similarly, the induction of scratching by pruritogens was attenuated by intranasal administration of HK-1-derived peptide, although the effective minimum concentration of this peptide was slightly lower than that of intrathecal administration, indicating that intranasal administration is an effective tool for carrying peptides into the brain.
Collapse
Affiliation(s)
- Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Tomoko Matsuo
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Rumi Naono-Nakayama
- Division of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kosuke Ebihara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan.
| |
Collapse
|
4
|
Satake H, Matsubara S, Shiraishi A, Yamamoto T, Osugi T, Sakai T, Kawada T. Peptide receptors and immune-related proteins expressed in the digestive system of a urochordate, Ciona intestinalis. Cell Tissue Res 2019; 377:293-308. [PMID: 31079207 DOI: 10.1007/s00441-019-03024-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The digestive system is responsible for nutrient intake and defense against pathogenic microbes. Thus, identification of regulatory factors for digestive functions and immune systems is a key step to the verification of the life cycle, homeostasis, survival strategy and evolutionary aspects of an organism. Over the past decade, there have been increasing reports on neuropeptides, their receptors, variable region-containing chitin-binding proteins (VCBPs) and Toll-like receptors (TLRs) in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomes and genome database-searching detected not only Ciona orthologs or prototypes of vertebrate peptides and their receptors, including cholecystokinin, gonadotropin-releasing hormones, tachykinin, calcitonin and vasopressin but also Ciona-specific neuropeptides including Ci-LFs and Ci-YFVs. The species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors has also been revealed. These findings shed light on the remarkable significance of ascidians in investigations of the evolution and diversification of the peptidergic systems in chordates. In the defensive systems of C. intestinalis, VCBPs and TLRs have been shown to play major roles in the recognition of exogenous microbes in the innate immune system. These findings indicate both common and species-specific functions of the innate immunity-related molecules between C. intestinalis and vertebrates. In this review article, we present recent advances in molecular and functional features and evolutionary aspects of major neuropeptides, their receptors, VCBPs and TLRs in C. intestinalis.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan.
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| |
Collapse
|
5
|
Neuropeptides, Peptide Hormones, and Their Receptors of a Tunicate, Ciona intestinalis. Results Probl Cell Differ 2019; 68:107-125. [PMID: 31598854 DOI: 10.1007/978-3-030-23459-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The critical phylogenetic position of the ascidian, Ciona intestinalis, as the closest relative of vertebrates, suggested its potential applicability as a model organism in a wide variety of biological events including the nervous, neuroendocrine, and endocrine regulation. To date, approximately 40 neuropeptides and/or peptide hormones and several cognate receptors have been identified. These peptides are categorized into two types: (1) orthologs of vertebrate peptides, such as cholecystokinin, GnRH, tachykinin, vasopressin, and calcitonin, and (2) novel family peptides such as LF peptides and YFL/V peptides. Ciona GnRH receptors (Ci-GnRHR) were found to be multiplicated in the Ciona-specific lineages and to form unique heterodimers between Ci-GnRHR1 and R4 and between Ci-GnRHR2 and R4, leading to fine-tuning of the generation of second messengers. Furthermore, Ciona tachykinin was shown to regulate a novel protease-associated follicle growth pathway. These findings will pave the way for the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of invertebrate deuterostomes and/or chordates. In this chapter, we provide an overview of primary sequences, functions, and evolutionary aspects of neuropeptides, peptide hormones, and their receptors in C. intestinalis.
Collapse
|
6
|
Salman H, Shah M, Ali A, Aziz A, Vitale SG. Assessment of Relationship of Serum Neurokinin-B Level in the Pathophysiology of Pre-eclampsia: A Case-Control Study. Adv Ther 2018; 35:1114-1121. [PMID: 29923045 DOI: 10.1007/s12325-018-0723-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Pre-eclampsia is a pregnancy-induced disorder that complicates approximately 5-7% of pregnancies. It is the leading cause of maternal and foetal morbidity and mortality worldwide. AIM To determine the role of serum neurokinin-B level in the pathophysiology of pre-eclampsia. METHODS This was a case-control study. A total of 80 pregnant women in their third trimester of pregnancy were included in the study. They were divided into two groups (40 pre-eclamptic and 40 normotensive) according to the presence or absence of clinical parameters of pre-eclampsia. Serum level of neurokinin-B was measured with ELISA. RESULTS Maternal age, weight, BMI, pulse, systolic BP and diastolic BP were statistically higher in the pre-eclampsia group compared to the normotensive group (P < 0.0001). Moreover, statistically higher levels were observed for neurokinin-B in the normotensive group as compared to the pre-eclamptic group. The mean value of neurokinin-B was 83.50 ng/L in the pre-eclamptic group compared to 111.5 ng/L in the normotensive group (P = 0.006). CONCLUSION Higher levels of serum neurokinin-B were observed in the normotensive pregnant females as compared to the pre-eclamptic females. Thus, apparently, it seems that serum neurokinin-B plays no role in the pathophysiology of pre-eclampsia, and further large multicentre prospective studies may be required to ascertain its role.
Collapse
|
7
|
Deliconstantinos G, Barton S, Soloviev M, Page N. Mouse Hemokinin-1 Decapeptide Subjected to a Brain-specific Post-translational Modification. ACTA ACUST UNITED AC 2017; 31:991-998. [PMID: 28882971 DOI: 10.21873/invivo.11159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The tachykinin mouse hemokinin-1, expressed by the mouse Tac4 gene, produces either analgesia or nociception, interacting with the neurokinin 1 receptor. TAC4 precursor processing is not identical to the processing of the TAC1 precursor, for the release of substance P (amidated undecapeptide). The characterization of the mouse hemokinin-1 sequence was required. MATERIALS AND METHODS We developed anti-tachykinin-specific antibodies for the immunoaffinity purification of tachykinins. RESULTS Using MALDI-ToF, we identified mouse hemokinin-1 as an amidated decapeptide expressed in murine brain and periphery. Furthermore, we interestingly observed an additional mass peak corresponding to acetylated mouse hemokinin-1 and this post-translational modification is brain-specific, not detected in the periphery. CONCLUSION We suggest that the N-terminal acetylation of the peptide provides greater potency for ligand-receptor interactions during neural cell signaling.
Collapse
Affiliation(s)
| | - Stephen Barton
- School of Pharmacy & Chemistry, Kingston University, London, U.K
| | - Mikhail Soloviev
- School of Biological Sciences, Royal Holloway University of London, London, U.K
| | - Nigel Page
- School of Life Sciences, Kingston University, London, U.K
| |
Collapse
|
8
|
Borbély É, Helyes Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017; 64:9-17. [PMID: 27993375 DOI: 10.1016/j.npep.2016.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
Hemokinin-1 (HK-1), the newest tachykinin encoded by the Tac4 gene was discovered in 2000. Its name differs from that of the other members of this peptide family due to its first demonstration in B lymphocytes. Since tachykinins are classically found in the nervous system, the significant expression of HK-1 in blood cells is a unique feature of this peptide. Due to its widespread distribution in the whole body, HK-1 is involved in different physiological and pathophysiological functions involving pain inflammation modulation, immune regulation, respiratory and endocrine functions, as well as tumor genesis. Furthermore, despite the great structural and immunological similarities to substance P (SP), the functions of HK-1 are often different or the opposite. They both have the highest affinity to the tachykinin NK1 receptor, but HK-1 is likely to have a distinct binding site and signalling pathways. Moreover, several actions of HK-1 different from SP have been suggested to be mediated via a presently not identified own receptor/target molecule. Therefore, it is very important to explore its effects at different levels and compare its characteristics with SP to get a deeper insight in the different cellular mechanisms. Since HK-1 has recently been in the focus of intensive research, in the present review we summarize the few clinical data and experimental results regarding HK-1 expression and function in different model systems obtained throughout the 16years of its history. Synthesizing these findings help to understand the complexity of HK-1 actions and determine its biomarker values and/or drug development potentials.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary
| |
Collapse
|
9
|
Distribution of hemokinin-1 in the rat trigeminal ganglion and trigeminal sensory nuclear complex. Arch Oral Biol 2017; 79:62-69. [PMID: 28301818 DOI: 10.1016/j.archoralbio.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/18/2017] [Accepted: 03/05/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE A new mammalian tachykinin peptide encoded in a TAC4 gene was identified and designated as hemokinin-1 (HK-1). A representative of the tachykinin peptide family is substance P (SP), and the function of SP has been well characterized as a pain transmitter or modulator, while it is possible that HK-1 is involved in pruriceptive processing, but, as yet, the distribution of HK-1 peptide in the trigeminal sensory system is still unknown. Thus, the aim of the present study was to elucidate the distribution of HK-1, while comparing the expression of SP, in the trigeminal ganglion and trigeminal sensory nuclear complex. DESIGN The trigeminal ganglion and the brain stem of male SD rats were used in the immunohistochemical study. Since the amino acid sequence in the carboxyl-terminal regions of HK-1 and SP is common, polyclonal antibodies of HK-1 and SP derived from 6 amino acids consisting of amino-terminal regions of these peptides were produced in guinea pig and rabbit, respectively. The immunohistochemical staining of HK-1 and SP was conducted using frozen sections of the trigeminal ganglion and brain stem in rats. RESULTS Immunohistochemical studies revealed the expression of HK-1 in small- and medium-sized trigeminal ganglion neurons, in the paratrigeminal nucleus, and in lamina I of the trigeminal nucleus caudalis, while there was no immunoreactivity of HK-1 in the trigeminal nucleus principalis, trigeminal nucleus oralis, and trigeminal nucleus interpolaris. CONCLUSION These findings indicate that HK-1 is a target molecule for treatment of itch in the orofaicial regions.
Collapse
|
10
|
Mistrova E, Kruzliak P, Chottova Dvorakova M. Role of substance P in the cardiovascular system. Neuropeptides 2016; 58:41-51. [PMID: 26706184 DOI: 10.1016/j.npep.2015.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Abstract
This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting.
Collapse
Affiliation(s)
- Eliska Mistrova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Peter Kruzliak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
11
|
Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol 2015; 77:5-20. [PMID: 23432438 DOI: 10.1111/bcp.12097] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/08/2013] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624, Pécs, Hungary
| | | | | | | | | |
Collapse
|
12
|
Hajna Z, Borbély É, Kemény Á, Botz B, Kereskai L, Szolcsányi J, Pintér E, Paige CJ, Berger A, Helyes Z. Hemokinin-1 is an important mediator of endotoxin-induced acute airway inflammation in the mouse. Peptides 2015; 64:1-7. [PMID: 25541043 DOI: 10.1016/j.peptides.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Hemokinin-1, the newest tachykinin encoded by the preprotachykinin C (Tac4) gene, is predominatly produced by immune cells. Similarly to substance P, it has the greatest affinity to the tachykinin NK1 receptor, but has different binding site and signaling mechanisms. Furthermore, several recent data indicate the existence of a not yet identified own receptor and divergent non-NK1-mediated actions. Since there is no information on its functions in the airways, we investigated its role in endotoxin-induced pulmonary inflammation. METHODS Acute pneumonitis was induced in Tac4 gene-deleted (Tac4(-/-)) mice compared to C57Bl/6 wildtypes by intranasal E. coli lipopolysaccharide (LPS). Airway responsiveness to inhaled carbachol was measured with unrestrained whole body plethysmography 24h later. Semiquantitative histopathological scoring was performed; reactive oxygen species (ROS) production was measured with luminol bioluminescence, myeloperoxidase activity with spectrophotometry, and inflammatory cytokines with Luminex. RESULTS All inflammatory parameters, such as histopathological alterations (perivascular edema, neutrophil/macrophage accumulation, goblet cell hyperplasia), myeloperoxidase activity, ROS production, as well as interleukin-1beta, interleukin-6, tumor necrosis factor alpha, monocyte chemoattractant protein-1 and keratinocyte chemoattractant concentrations were significantly diminished in the lung of Tac4(-/-) mice. However, bronchial hyperreactivity similarly developed in both groups. Interestingly, in LPS-treated Tac4(-/-) mouse lungs, bronchus-associated, large, follicle-like lymphoid structures developed. CONCLUSIONS We provide the first evidence that hemokinin-1 plays a crucial pro-inflammatory role in the lung by increasing inflammatory cell activities, and might also be a specific regulator of lymphocyte functions.
Collapse
Affiliation(s)
- Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | | | - Alexandra Berger
- Ontario Cancer Institute, University Health Network, Toronto, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary; MTA-PTE NAP B Pain Research Group.
| |
Collapse
|
13
|
Forn-Cuní G, Varela M, Fernández-Rodríguez CM, Figueras A, Novoa B. Liver immune responses to inflammatory stimuli in a diet-induced obesity model of zebrafish. J Endocrinol 2015; 224:159-170. [PMID: 25371540 DOI: 10.1530/joe-14-0398] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity- and metabolic syndrome-related diseases are becoming important medical challenges for the western world. Non-alcoholic fatty liver disease (NAFLD) is a manifestation of these altered conditions in the liver, and inflammation appears to be a factor that is tightly connected to its evolution. In this study, we used a diet-induced obesity approach in zebrafish (Danio rerio) based on overfeeding to analyze liver transcriptomic modulation in the disease and to determine how obesity affects the immune response against an acute inflammatory stimulus such as lipopolysaccharide (LPS). Overfed zebrafish developed an obese phenotype, showed signs of liver steatosis, and its modulation profile resembled that observed in humans, with overexpression of tac4, col4a3, col4a5, lysyl oxidases, and genes involved in retinoid metabolism. In response to LPS, healthy fish exhibited a typical host defense reaction comparable to that which occurs in mammals, whereas there was no significant gene modulation when comparing expression in the liver of LPS-stimulated and non-stimulated obese zebrafish at the same statistical level. The stimulation of obese fish represents a double-hit to the already damaged liver and can help understand the evolution of the disease. Finally, a comparison of the differential gene activation between stimulated healthy and obese zebrafish revealed the expected difference in the metabolic state between healthy and diseased liver. The differentially modulated genes are currently being studied as putative new pathological markers in NAFLD-stimulated liver in humans.
Collapse
Affiliation(s)
- Gabriel Forn-Cuní
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Monica Varela
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Conrado M Fernández-Rodríguez
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Antonio Figueras
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| |
Collapse
|
14
|
Dvorakova MC, Kruzliak P, Rabkin SW. Role of neuropeptides in cardiomyopathies. Peptides 2014; 61:1-6. [PMID: 25149360 DOI: 10.1016/j.peptides.2014.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 01/19/2023]
Abstract
The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy. Several neuropeptides appear to alter regulation of genes involved in heart failure. Demonstration of an association is an essential first step in proving causality or establishing a role for a factor in a disease. Understanding the complexity of neuropeptide function should be helpful in establishing new or optimal therapeutic strategies for the treatment of heart failure in cardiomyopathies.
Collapse
Affiliation(s)
- Magdalena Chottova Dvorakova
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Pilsen, Lidicka 1, 301 00 Pilsen, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Lidicka 1, 301 00 Pilsen, Czech Republic
| | - Peter Kruzliak
- Department of Cardiovascular Diseases, International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Pekarska 53, 656 91 Brno, Czech Republic.
| | - Simon W Rabkin
- Department of Medicine Division of Cardiology, University of British Columbia, 2329W Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Funahashi H, Naono-Nakayama R, Ebihara K, Koganemaru G, Kuramashi A, Ikeda T, Nishimori T, Ishida Y. Hemokinin-1 mediates pruriceptive processing in the rat spinal cord. Neuroscience 2014; 277:206-16. [DOI: 10.1016/j.neuroscience.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022]
|
16
|
Zhou Y, Zuo D, Wang M, Zhang Y, Yu M, Yang J, Yao Z. Effect of truncated neurokinin-1 receptor expression changes on the interaction between human breast cancer and bone marrow-derived mesenchymal stem cells. Genes Cells 2014; 19:676-91. [PMID: 25130457 DOI: 10.1111/gtc.12168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 06/16/2014] [Indexed: 12/22/2022]
Abstract
Previous studies in breast cancer cell lines showed that truncated neurokinin receptor-1 (NK1R-Tr) was able to promote malignant transformation of breast cells, and NK1R-Tr may contribute to tumor progression and promote distant metastasis in human breast cancer. A co-culture model of breast cancer and bone marrow-derived human mesenchymal stem (HMSC-bm) cells showed that HMSC-bm inhibited the growth of breast cancer cells and entered the bone marrow at early stages. Down-regulation of NK1R-Tr may be a key factor in maintaining the quiescent phenotype of breast cancer cells among bone marrow stroma. Stromal-derived factor (SDF)-1α expression was negatively correlated with NK1R-Tr expression in breast cancer cells. Secretion of SDF-1α by HMSC-bm may maintain the quiescent phenotype of breast cancer cells among bone marrow stroma by down-regulating NK1R-Tr expression. Transforming growth factor (TGF)-β1 expression was positively associated with NK1R-Tr expression in breast cancer cells. In a co-culture system, MDA-MB-231-TGF-β1I (TGF-β genes were suppressed using specific shRNA) cells were able to attach to HMSC-bm quickly, indicating that TGF-β1 was also a key factor for maintaining the quiescent phenotype of breast cancer cells in bone marrow stroma. However, the detailed mechanism still remained unclear and could involve other molecules, in addition to NK1R-Tr.
Collapse
Affiliation(s)
- Yunli Zhou
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Borbély É, Hajna Z, Sándor K, Kereskai L, Tóth I, Pintér E, Nagy P, Szolcsányi J, Quinn J, Zimmer A, Stewart J, Paige C, Berger A, Helyes Z. Role of tachykinin 1 and 4 gene-derived neuropeptides and the neurokinin 1 receptor in adjuvant-induced chronic arthritis of the mouse. PLoS One 2013; 8:e61684. [PMID: 23626716 PMCID: PMC3634005 DOI: 10.1371/journal.pone.0061684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/13/2013] [Indexed: 12/19/2022] Open
Abstract
Objective Substance P, encoded by the Tac1 gene, is involved in neurogenic inflammation and hyperalgesia via neurokinin 1 (NK1) receptor activation. Its non-neuronal counterpart, hemokinin-1, which is derived from the Tac4 gene, is also a potent NK1 agonist. Although hemokinin-1 has been described as a tachykinin of distinct origin and function compared to SP, its role in inflammatory and pain processes has not yet been elucidated in such detail. In this study, we analysed the involvement of tachykinins derived from the Tac1 and Tac4 genes, as well as the NK1 receptor in chronic arthritis of the mouse. Methods Complete Freund’s Adjuvant was injected intraplantarly and into the tail of Tac1−/−, Tac4−/−, Tacr1−/− (NK1 receptor deficient) and Tac1−/−/Tac4−/− mice. Paw volume was measured by plethysmometry and mechanosensitivity using dynamic plantar aesthesiometry over a time period of 21 days. Semiquantitative histopathological scoring and ELISA measurement of IL-1β concentrations of the tibiotarsal joints were performed. Results Mechanical hyperalgesia was significantly reduced from day 11 in Tac4−/− and Tacr1−/− animals, while paw swelling was not altered in any strain. Inflammatory histopathological alterations (synovial swelling, leukocyte infiltration, cartilage destruction, bone damage) and IL-1β concentration in the joint homogenates were significantly smaller in Tac4−/− and Tac1−/−/Tac4−/− mice. Conclusions Hemokinin-1, but not substance P increases inflammation and hyperalgesia in the late phase of adjuvant-induced arthritis. While NK1 receptors mediate its antihyperalgesic actions, the involvement of another receptor in histopathological changes and IL-1β production is suggested.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Edema/chemically induced
- Edema/genetics
- Edema/metabolism
- Edema/pathology
- Freund's Adjuvant
- Gene Expression Regulation
- Hyperalgesia/chemically induced
- Hyperalgesia/genetics
- Hyperalgesia/metabolism
- Hyperalgesia/pathology
- Inflammation
- Interleukin-1beta/biosynthesis
- Joints/metabolism
- Joints/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Plethysmography
- Protein Precursors/deficiency
- Protein Precursors/genetics
- Receptors, Neurokinin-1/deficiency
- Receptors, Neurokinin-1/genetics
- Signal Transduction
- Substance P/deficiency
- Substance P/genetics
- Tachykinins/deficiency
- Tachykinins/genetics
- Tarsus, Animal/metabolism
- Tarsus, Animal/pathology
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Katalin Sándor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - István Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Péter Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - John Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine Liverpool University, Liverpool, United Kingdom
| | - Andreas Zimmer
- Laboratory of Molecular Neurobiology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - James Stewart
- School of Infection and Host Defense, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Paige
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Alexandra Berger
- Ontario Cancer Institute, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- * E-mail:
| |
Collapse
|
18
|
New tachykinin peptides and nociception. JAPANESE DENTAL SCIENCE REVIEW 2013. [DOI: 10.1016/j.jdsr.2012.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Satake H, Matsubara S, Aoyama M, Kawada T, Sakai T. GPCR Heterodimerization in the Reproductive System: Functional Regulation and Implication for Biodiversity. Front Endocrinol (Lausanne) 2013; 4:100. [PMID: 23966979 PMCID: PMC3744054 DOI: 10.3389/fendo.2013.00100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/31/2013] [Indexed: 01/24/2023] Open
Abstract
A G protein-coupled receptor (GPCR) functions not only as a monomer or homodimer but also as a heterodimer with another GPCR. GPCR heterodimerization results in the modulation of the molecular functions of the GPCR protomer, including ligand binding affinity, signal transduction, and internalization. There has been a growing body of reports on heterodimerization of multiple GPCRs expressed in the reproductive system and the resultant functional modulation, suggesting that GPCR heterodimerization is closely associated with reproduction including the secretion of hormones and the growth and maturation of follicles and oocytes. Moreover, studies on heterodimerization among paralogs of gonadotropin-releasing hormone (GnRH) receptors of a protochordate, Ciona intestinalis, verified the species-specific regulation of the functions of GPCRs via multiple GnRH receptor pairs. These findings indicate that GPCR heterodimerization is also involved in creating biodiversity. In this review, we provide basic and current knowledge regarding GPCR heterodimers and their functional modulation, and explore the biological significance of GPCR heterodimerization.
Collapse
Affiliation(s)
- Honoo Satake
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
- *Correspondence: Honoo Satake, Suntory Foundation for Life Sciences, Bioorganic Research Institute, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan e-mail:
| | - Shin Matsubara
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
| | - Masato Aoyama
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
| | - Tsuyoshi Kawada
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
| | - Tsubasa Sakai
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
| |
Collapse
|
20
|
Naono-Nakayama R, Sunakawa N, Ikeda T, Matsushima O, Nishimori T. Pharmacological characteristics of endokinin C/D-derived peptides in nociceptive and inflammatory processing in rats. Peptides 2011; 32:2407-17. [PMID: 22074956 DOI: 10.1016/j.peptides.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
Endokinins designated from the human TAC4 gene consist of endokinin A, endokinin B, endokinin C (EKC) and endokinin D (EKD). EKC/D is a peptide using the common carboxyl-terminal in EKC and EKD and consists of 12 amino acids, and exerts antagonistic effects on the induction of scratching behavior by substance P (SP). Some of SP-preferring receptor antagonists have several d-tryptophan (d-Trp); however, the pharmacological effect of EKC/D-derived peptides with d-Trp remains to be solved. Therefore, to clarify the pharmacological characteristics of EKC/D-derived peptides, effects of pretreatment with these peptides on SP-induced scratching and thermal hyperalgesia, formalin-induced flinching and carrageenan-induced inflammation were evaluated. Intrathecal administration of [d-Trp(8)]-EKC/D and [d-Trp(10)]-EKC/D showed a markedly long inhibitory effect, at least 14 h, whereas the antagonistic effects of [d-Trp(8,10)]-EKC/D and EKC/D without d-Trp disappeared after 1h. Furthermore, the inhibitory effect of [d-Trp(10)]-EKC/D-derived peptides was dependent on the number of amino acids from the amino-terminus, and the more numerous the amino acids, the more marked the antagonistic effect. Thus, these results indicate that the effective duration of EKC/D-derived peptides is dependent on the number of d-Trp in the carboxyl-terminal region and the amino-terminal region regulates the antagonistic effect of EKC/D.
Collapse
Affiliation(s)
- Rumi Naono-Nakayama
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
21
|
Douglas SD, Leeman SE. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann N Y Acad Sci 2011; 1217:83-95. [PMID: 21091716 PMCID: PMC3058850 DOI: 10.1111/j.1749-6632.2010.05826.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The G protein-coupled receptor (GPCR), neurokinin-1 receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and SP are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa B (NF-κB) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by SP are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major class 1, rhodopsin-like GPCR ligand-receptor interaction.
Collapse
Affiliation(s)
- Steven D Douglas
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
22
|
Helyes Z, Elekes K, Sándor K, Szitter I, Kereskai L, Pintér E, Kemény A, Szolcsányi J, McLaughlin L, Vasiliou S, Kipar A, Zimmer A, Hunt SP, Stewart JP, Quinn JP. Involvement of preprotachykinin A gene-encoded peptides and the neurokinin 1 receptor in endotoxin-induced murine airway inflammation. Neuropeptides 2010; 44:399-406. [PMID: 20579732 DOI: 10.1016/j.npep.2010.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/28/2010] [Accepted: 05/28/2010] [Indexed: 11/28/2022]
Abstract
Tachykinins encoded by the preprotachykinin A (TAC1) gene such as substance P (SP) and neurokinin A (NKA) are involved in neurogenic inflammatory processes via predominantly neurokinins 1 and 2 (NK1 and NK2) receptor activation, respectively. Endokinins and hemokinins encoded by the TAC4 gene also have remarkable selectivity and potency for the NK1 receptors and might participate in inflammatory cell functions. The aim of the present study was to investigate endotoxin-induced airway inflammation and consequent bronchial hyper-reactivity in TAC1(-/-), NK1(-/-) and also in double knockout (TAC1(-/-)/NK1(-/-)) mice. Sub-acute interstitial lung inflammation was evoked by intranasal Escherichia coli lipopolysaccharide (LPS) in the knockout mice and their wildtype C57BL/6 counterparts 24 h before measurement. Respiratory parameters were measured with unrestrained whole body plethysmography. Bronchoconstriction was induced by inhalation of the muscarinic receptor agonist carbachol and Penh (enhanced pause) correlating with airway resistance was calculated. Lung interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) concentrations were measured with ELISA. Histological evaluation was performed and a composite morphological score was determined. Myeloperoxidase (MPO) activity in the lung was measured with spectrophotometry to quantify the number of infiltrating neutrophils/macrophages. Airway hyper-reactivity was significantly reduced in the TAC1(-/-) as well as the TAC1(-/-)/NK1(-/-) groups. However, LPS-induced histological inflammatory changes (perivascular/peribronchial oedema, neutrophil infiltration and goblet cell hyperplasia), MPO activity and TNF-alpha concentration were markedly diminished only in TAC1(-/-) mice. Interestingly, the concentrations of both cytokines, IL-1beta and TNF-alpha, were significantly greater in the NK1(-/-) group. These data clearly demonstrated on the basis of histology, MPO and cytokine measurements that TAC1 gene-derived tachykinins, SP and NKA, play a significant role in the development of endotoxin-induced murine airway inflammation, but not solely via NK1 receptor activation. However, in inflammatory bronchial hyper-responsiveness other tachykinins, such as hemokinin-1 acting through NK1 receptors also might be involved.
Collapse
Affiliation(s)
- Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Naono-Nakayama R, Sunakawa N, Ikeda T, Matsushima O, Nishimori T. Subcutaneous injection of endokinin C/D attenuates carrageenan-induced inflammation. Peptides 2010; 31:1767-71. [PMID: 20638946 DOI: 10.1016/j.peptides.2010.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/24/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Endokinins, encoded by the human preprotachykinin C (PPT-C)/TAC4 gene, are peptides that consist of endokinin A (EKA), B (EKB), C (EKC) and D (EKD) and belong to the tachykinin family. Intrathecal injection of EKC/D (using the common carboxyl-terminal duodecapeptide in EKC and EKD) markedly attenuated the induction of thermal hyperalgesia and scratching behavior by intrathecal administration of substance P (SP), indicating that EKC/D has an antagonistic effect on the neurokinin 1 receptor (NK1R), SP-preferring receptor, at the spinal level; however, the pharmacological function of EKC/D at the periphery is not yet understood. Therefore, to clarify the effect of EKC/D on the peripheral tissue, the effect of subcutaneous injection of EKC/D on carrageenan-induced inflammation was examined. Subcutaneous injection of EKC/D attenuated an increase in paw volume following carrageenan-induced inflammation in a dose-dependent manner. Indeed, the increased paw volume was significantly decreased 40 min after treatment with 10(-4) M (10 nmol) and 10(-3) M (100 nmol) EKC/D (100 microl/rat). Similarly, injection of NK1R antagonists such as L-703,606 and Spantide I (10(-3) M) attenuated the increased paw volume following inflammation. Furthermore, the reduced withdrawal latency evoked by inflammation following subcutaneous injection of carrageenan was also dose-dependently attenuated by EKC/D administration. These results indicate that subcutaneous injection of EKC/D elicits an anti-inflammatory effect on carrageenan-induced inflammation.
Collapse
Affiliation(s)
- Rumi Naono-Nakayama
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
24
|
Targeted deletion of the tachykinin 4 gene (TAC4-/-) influences the early stages of B lymphocyte development. Blood 2010; 116:3792-801. [PMID: 20660792 DOI: 10.1182/blood-2010-06-291062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hemokinin-1 (HK-1), encoded by the TAC4 gene, is a tachykinin peptide that is predominantly expressed in non-neuronal cells, such as immune cells. We have disrupted the mouse TAC4 gene to obtain a better understanding of the actions of HK-1 during hematopoiesis. We demonstrate here that TAC4(-/-) mice exhibit an increase of CD19(+)CD117(+)HSA(+)BP.1(-) "fraction B" pro-B cells in the bone marrow, whereas pre-B, immature, and mature B cells are within the normal range. We show that in vitro cultures derived from TAC4(-/-) bone marrow, sorted "fraction B" pro-B cells or purified long-term reconstituting stem cells, contain significantly higher numbers of pro-B cells compared with controls, suggesting an inhibitory role for HK-1 on developing B cells. Supporting this idea, we show that addition of HK-1 to cultures established from long-term reconstituting stem cells and the newly described intermediate-term reconstituting stem cells leads to a significant decrease of de novo generated pro-B cells. Based on our studies, we postulate that HK-1 plays an inhibitory role in hematopoiesis, and we hypothesize that it may be part of the bone marrow microenvironment that supports and regulates the proliferation and differentiation of hematopoietic cells.
Collapse
|
25
|
Sunakawa N, Naono R, Ikeda T, Matsushima O, Sakoda S, Nishimori T. The amino-terminal region of hemokinin-1 regulates the induction of thermal hyperalgesia in rats. Neuropeptides 2010; 44:273-8. [PMID: 20176398 DOI: 10.1016/j.npep.2010.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/28/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
It is known that intrathecal administration of substance P (SP) induces thermal hyperalgesia, whereas hemokinin-1 (HK-1), a member of the same tachykinin family as SP, hardly induces thermal hyperalgesia; however, the underlying mechanism remains to be elucidated. Therefore, we aimed to clarify which amino acid of these peptides contributes to the induction of thermal hyperalgesia. When two chimera peptides between the N-terminal region of SP and the C-terminal region of HK-1, and vice versa, SP (1-5)/HK-1 and HK-1 (1-5)/SP, were intrathecally administered, SP (1-5)/HK-1 induced thermal hyperalgesia whereas HK-1 (1-5)/SP had hardly any effect; furthermore, thermal hyperalgesia was induced by only C-terminal fragments of HK-1 and SP. These findings indicate that the N-terminal region of HK-1 is involved in the non-induction of thermal hyperalgesia. Next, we synthesized and intrathecally administered these chimera peptides in which part of the N-terminal region of HK-1 was replaced with that of SP, and vice versa, and all synthesized peptides induced thermal hyperalgesia. Both SP (1-2)/HK-1 and HK-1 (1-4)/SP certainly induced thermal hyperalgesia, although HK-1 and HK-1 (1-5)/SP had hardly any effect; therefore, it is probable that Ser at the 2nd position and Arg at the 5th position of HK-1 may be involved in the non-induction of thermal hyperalgesia. Furthermore, peptides in which amino acid at the 3rd and/or 4th positions of HK-1 was replaced with that of SP were synthesized. Intrathecal administration of HK-1 (1-2,4-5)/SP, but not HK-1 (1-2,5)/SP and HK-1 (1-3,5)/SP, hardly induced thermal hyperalgesia. These findings indicate that three amino acids, Ser, Thr and Arg at the 2nd, 4th and 5th positions of HK-1, respectively, regulate the induction of thermal hyperalgesia by HK-1.
Collapse
Affiliation(s)
- N Sunakawa
- Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Yang Y, Ni Z, Dong S. Effects of Endokinin A/B and Endokinin C/D on the antinociception of Endomorphin-1 in mice. Peptides 2010; 31:689-95. [PMID: 20035812 DOI: 10.1016/j.peptides.2009.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/16/2009] [Accepted: 12/16/2009] [Indexed: 01/24/2023]
Abstract
In our previous study, Endokinin A/B (EKA/B, the common C-terminal decapeptide in Endokinin A and Endokinin B) was found to induce analgesic effect at high dose and nociception at low dose, while Endokinin C/D (EKC/D, the common C-terminal duodecapeptide in Endokinin C and Endokinin D) has analgesic effect only. So in this study an attempt was undertaken to investigate the interaction of EKA/B and EKC/D with Endomorphin-1 (EM-1) on antinociceptive effect at supraspinal level. Results showed that the antinociceptive effect of EM-1 was enhanced by high dose of EKA/B and abolished by low dose of EKA/B, while EKC/D could only enhance the analgesic effect. Mechanism studies showed that EKA/B blocked the antinociception of EM-1 by activating neurokinin-1 receptor (NK(1)), whose specific antagonist, SR140333B could fully block EKA/B-induced attenuation on the analgesic response of EM-1. Surprisingly, EKC/D could also block the same EKA/B-induced attenuation. Taken together, the different effects of EKA/B and EKC/D on the antinociception of EM-1 may pave the way for a new strategy on investigating the interaction between tachykinins and opioids on pain modulation.
Collapse
Affiliation(s)
- Yinliang Yang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
| | | | | |
Collapse
|
27
|
Abstract
At the start of the last decade, we provided evidence that levels of the peptide neurokinin B were highly elevated in pre-eclampsia. We hypothesized that elevated levels of neurokinin B may be an indicator of pre-eclampsia and that treatment with certain neurokinin receptor antagonists may be useful in alleviating the symptoms. At the time of the original hypothesis many questions remained outstanding. These included - Does neurokinin B have any diagnostic value in the detection and diagnosis of pre-eclampsia? - What is the cause of the elevated levels of neurokinin B during pre-eclampsia? - What is the physiological significance of neurokinin B in the placenta? This review discusses the answers to these questions taking into account the subsequent developments of the past ten years and analyzing the plethora of discoveries that have arisen from those initial observations.
Collapse
Affiliation(s)
- Nigel M Page
- School of Life Sciences, Kingston University London, Kingston-upon-Thames, Surrey, UK.
| |
Collapse
|
28
|
Tuluc F, Lai JP, Kilpatrick LE, Evans DL, Douglas SD. Neurokinin 1 receptor isoforms and the control of innate immunity. Trends Immunol 2009; 30:271-6. [DOI: 10.1016/j.it.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 10/20/2022]
|
29
|
Tran AH, Berger A, Wu GE, Paige CJ. Regulatory mechanisms in the differential expression of Hemokinin-1. Neuropeptides 2009; 43:1-12. [PMID: 19081134 DOI: 10.1016/j.npep.2008.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 11/20/2022]
Abstract
Hemokinin-1, encoded by the TAC4 gene, is the most recent addition to the tachykinin family. Although most closely related to the neuropeptide Substance P, Hemokinin-1 distinguishes itself from other tachykinins by its predominantly non-neuronal expression pattern. Its expression in T and B lymphocytes, macrophages, and dendritic cells points to an important role for Hemokinin-1 in the immune system. To seek reasons for its preferential expression in the immune system and ultimately to provide clues to its function, we investigated the molecular mechanisms driving the differential expression pattern of this unique tachykinin. Our study provides the first analysis of the promoter region of the TAC4 gene, which reveals regulatory mechanism different from the Substance P promoter. We demonstrate for the first time that Hemokinin-1 initiates transcription from multiple start sites through a TATA-less promoter. Conservation of the 5' non-coding region indicates the importance of the upstream regulatory region in directing expression of Hemokinin-1 in specific cell types, during cell differentiation and activation. Furthermore, NFkappaB, a transcription factor important in the activation of immune cells was shown to be involved in promoting increased TAC4 transcription during PMA induction of a T cell line. Our studies reveal that Hemokinin-1 is regulated by a unique transcription regulation system that likely governs its differential expression pattern and suggests a role for Hemokinin-1 distinct from Substance P.
Collapse
Affiliation(s)
- Anne H Tran
- Department of Stem Cell and Developmental Biology, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, University of Toronto, 610 University Avenue, Toronto, ON, Canada M5G 2M9.
| | | | | | | |
Collapse
|
30
|
Effect of the carboxyl-terminal of endokinins on SP-induced pain-related behavior. Biochem Biophys Res Commun 2009; 378:182-5. [DOI: 10.1016/j.bbrc.2008.04.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 04/04/2008] [Indexed: 02/04/2023]
|
31
|
Naono R, Nakayama T, Ikeda T, Matsusima O, Nishimori T. Pharmacological characterization of desensitization in scratching behavior induced by intrathecal administration of hemokinin-1 in the rat. Neuropeptides 2008; 42:47-55. [PMID: 18055010 DOI: 10.1016/j.npep.2007.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/23/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
Desensitization is induced by the repeated administration of high doses of substance P (SP) or hemokinin-1 (HK-1). However, little information is available about the mechanisms involved in the induction of desensitization by these peptides. Thus, to characterize this desensitization, we examined the dose-dependent effect of these peptides, the effect of pretreatment with neurokinin 1(NK1) receptor antagonists, and the effect of pretreatment with inhibitors of protein kinases such as protein kinase A (PKA), protein kinase C (PKC), calcium/calmodulin kinase II (CaMKII) and mitogen-activated protein kinase kinase (MEK). The number of scratchings induced by 10(-3)M SP or HK-1 decreased following pretreatment with 10(-11)-10(-3)M SP or HK-1 with a marked reduction at 10(-3) and 10(-6)M SP or HK-1. The effect of NK1 receptor antagonists on desensitization induced by pretreatment with 10(-6)M SP was marked, whereas there was little effect of pretreatment with these antagonists on 10(-6)M HK-1-induced desensitization. Additionally, 10(-6)M SP- and HK-1-induced desensitization was attenuated by pretreatment with PKA, PKC and MEK inhibitors, except a CaMKII inhibitor that inhibited SP-induced desensitization. These results indicate that the receptor and kinases involved in HK-1-induced desensitization are partially different from those of SP.
Collapse
Affiliation(s)
- R Naono
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | |
Collapse
|
32
|
Liu K, Castillo MD, Murthy RG, Patel N, Rameshwar P. Tachykinins and Hematopoiesis. Clin Chim Acta 2007; 385:28-34. [PMID: 17698052 DOI: 10.1016/j.cca.2007.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
Originally discovered in the 1930s, tachykinins have been a subject of renewed interest. Antagonists to the tachykinin receptors have shown potential in the treatment of a variety of maladies including neurodegenerative disorders, heart disease, pain perception and malignancies. Tachykinins have been the subject of intense studies due to their impact on hematopoiesis that has significant effects on endothelial tissue and vascular conditions. Hematopoiesis relies on a relatively small subset of bone marrow-resident hematopoietic stem cells. This review discusses the network developed by cytokines and the tachykinins to regulate hematopoiesis. An understanding of tachykinin effect on normal hematopoietic functions and their involvement in hematological disorders could lead to new treatments for bone marrow disorders such as fibrosis, leukemia and anemia.
Collapse
Affiliation(s)
- Katherine Liu
- Graduate School of Biomedical Sciences, UMDNJ, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
33
|
Lindström E, von Mentzer B, Påhlman I, Ahlstedt I, Uvebrant A, Kristensson E, Martinsson R, Novén A, de Verdier J, Vauquelin G. Neurokinin 1 receptor antagonists: correlation between in vitro receptor interaction and in vivo efficacy. J Pharmacol Exp Ther 2007; 322:1286-93. [PMID: 17575073 DOI: 10.1124/jpet.107.124958] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the neurokinin 1 receptor (NK(1)R) antagonists aprepitant, CP-99994 [(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine], and ZD6021 [3-cyano-N-((2S)-2-(3,4-dichlorophenyl)-4-[4-[2-(methyl-(S)-sulfinyl)phenyl]piperidino]butyl)-N-methyl]napthamide]] with respect to receptor interactions and duration of efficacy in vivo. In Ca(2+) mobilization assays (fluorometric imaging plate reader), antagonists were applied to human U373MG cells simultaneously with or 2.5 min before substance P (SP). In reversibility studies, antagonists were present for 30 min before washing, and responses to SP were repeatedly measured afterward. The compounds were administered i.p. to gerbils, and the gerbil foot tap (GFT) response was monitored at various time points. The NK(1)R receptor occupancy for aprepitant was determined in striatal regions. Levels of compound in brain and plasma were measured. Antagonists were equipotent at human NK(1)R and acted competitively with SP. After preincubation, aprepitant and ZD6021 attenuated the maximal responses, whereas CP-99994 only shifted the SP concentration-response curve to the right. The inhibitory effect of CP-99994 was over within 30 min, whereas for ZD6021, 50% inhibition still persisted after 60 min. Aprepitant produced maximal inhibition lasting at least 60 min. CP-99994 (3 micromol/kg) inhibited GFT by 100% 15 min after administration, but the effect declined rapidly together with brain levels thereafter. The efficacy of ZD6021 (10 micromol/kg) lasted 4 h and correlated well with brain levels. Aprepitant (3 micromol/kg) inhibited GFT and occupied striatal NK(1)R by 100% for >48 h despite that brain levels of compound were below the limit of detection after 24 h. Slow functional reversibility is associated with long-lasting in vivo efficacy of NK(1)R antagonists, whereas the efficacy of compounds with rapid reversibility is reflected by their pharmacokinetics.
Collapse
|
34
|
Naono R, Nakayama T, Ikeda T, Matsushima O, Nishimori T. Leucine at the carboxyl-terminal of endokinins C and D contributes to elicitation of the antagonistic effect on substance P in rat pain processing. Brain Res 2007; 1165:71-80. [PMID: 17655832 DOI: 10.1016/j.brainres.2007.05.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 02/05/2023]
Abstract
Endokinins are tachykinin peptides designated from a human preprotachykinin C (PPT-C, TAC4) gene and consist of endokinin A (EKA), endokinin B (EKB), endokinin C (EKC) and endokinin D (EKD). A representative of mammalian tachykinins is substance P (SP), which functions as a neurotransmitter or modulator in the pain system; however, little is known about the role of these endokinins, especially EKC and EKD, in pain processing. Therefore, we evaluated the effects of EKC/D (using the common carboxyl-terminal duodecapeptide in EKC and EKD) on pain processing in rats. Pretreatment with EKC/D prevented induction of scratching behavior and thermal hyperalgesia by intrathecal administration of EKA/B (using the common C-terminal decapeptide in EKA and EKB) and SP and c-Fos expression in laminae I/II and V/VI of the spinal cord by noxious thermal stimulation. A prominent difference between EKC/D and SP is the presence of leucine instead of methionine at the carboxyl-terminal of EKC/D. Thus, to clarify whether leucine at the carboxyl-terminal of EKC/D plays an important role in determining the inhibitory effect of this peptide, we intrathecally administered [Met(12)]-EKC/D in which only leucine of EKC/D is replaced by methionine. This peptide did not exhibit the inhibitory effect on SP-induced scratching behavior or thermal hyperalgesia but conversely caused thermal hyperalgesia. Taken together, these findings indicate that EKC/D has an inhibitory effect on pain processing in the rat spinal cord, and the effect is due to leucine at the carboxyl-terminal of EKC/D.
Collapse
Affiliation(s)
- Rumi Naono
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|
35
|
Berger A, Tran AH, Paige CJ. Co-regulated decrease of Neurokinin-1 receptor and Hemokinin-1 gene expression in monocytes and macrophages after activation with pro-inflammatory cytokines. J Neuroimmunol 2007; 187:83-93. [PMID: 17537522 DOI: 10.1016/j.jneuroim.2007.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/14/2007] [Accepted: 04/16/2007] [Indexed: 11/21/2022]
Abstract
Hemokinin-1 (HK-1), a potent ligand for the Neurokinin-1 receptor (NK-1) is thought to play a role in the immune system. To investigate the regulation of this receptor-ligand pair, we examined the effects of pro-inflammatory cytokines on their expression in the monocyte/macrophage cell lines Wehi-3 and RAW264.7. We demonstrate co-expression of NK-1 and HK-1 mRNA in both lines, as well as functional NK-1 receptor protein in Wehi-3 cells. Stimulation with IFN-gamma, IL-1beta and TNF-alpha markedly decreased NK-1 and HK-1 mRNA as well as NK-1 receptor protein, which coincided with monocytic differentiation. A co-regulated decrease could also be observed in differentiating primary bone marrow macrophages, suggesting that this receptor-ligand pair may be controlled by cytokine networks and may serve a developmental role in the immune system.
Collapse
Affiliation(s)
- Alexandra Berger
- Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, Department of Immunology, University of Toronto, 610 University Avenue, M5G 2M9 Toronto, Ontario, Canada.
| | | | | |
Collapse
|