1
|
Cui X, Zhang L, Lin L, Hu Y, Zhang M, Sun B, Zhang Z, Lu M, Guan X, Hao J, Li Y, Li C. Notoginsenoside R1-Protocatechuic aldehyde reduces vascular inflammation and calcification through increasing the release of nitric oxide to inhibit TGFβR1-YAP/TAZ pathway in vascular smooth muscle cells. Int Immunopharmacol 2024; 143:113574. [PMID: 39520961 DOI: 10.1016/j.intimp.2024.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Vascular calcification is a significant factor contributing to the rupture of vulnerable atherosclerotic plaques, ultimately leading to cardiovascular disease. However, no effective treatments are currently available to slow the progression of vascular calcification. Notoginsenoside R1 (R1) and protocatechuic aldehyde (PCAD), primary active components extracted from Panax notoginseng and Salvia miltiorrhiza Burge, have shown potential in mitigating endothelial injury and atherosclerosis. This study investigated the effects of R1-PCAD on nitric oxide (NO) production in endothelial cells (ECs) and its role in counteracting vascular calcification and inflammation. Additionally, it explored the mechanisms underlying these effects. To simulate atherosclerotic calcification, apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat diet and given intraperitoneal injections of vitamin D3. Treatment with the R1-PCAD combination improved endothelial function, reduced inflammation in the aorta, and lowered calcium deposition. Mechanistically, R1-PCAD enhanced eNOS-Ser1177 phosphorylation by activating the AMPKα/Akt pathway, which stimulated NO production and eNOS activation in ECs. In an in vitro co-culture model involving vascular smooth muscle cells (VSMCs) and ECs, R1-PCAD similarly reduced inflammation and calcification in VSMCs triggered by β-glycerophosphate, with these effects partially dependent on NO levels and EC functionality. Further investigation revealed that R1-PCAD facilitated NO release from ECs, which subsequently inhibited TGFβR1 activation in VSMCs. This inhibition reduced Smad2/3 activation and nuclear translocation of YAP/TAZ, thereby diminishing inflammation and calcification in VSMCs. These findings suggest that R1-PCAD alleviates vascular inflammation and calcification primarily via the NO-TGFβR1-YAP/TAZ signaling pathway. This study presents a promising new approach for treating vascular calcification by targeting intercellular signaling pathways.
Collapse
MESH Headings
- Animals
- Nitric Oxide/metabolism
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Mice
- Signal Transduction/drug effects
- Catechols/pharmacology
- Catechols/therapeutic use
- Benzaldehydes/pharmacology
- Benzaldehydes/therapeutic use
- Vascular Calcification/drug therapy
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Mice, Inbred C57BL
- Male
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Humans
- Transcription Factors/metabolism
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Cells, Cultured
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Xinhai Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bowen Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
Wu W, Wang Y, Shao X, Huang S, Wang J, Zhou S, Liu H, Lin Y, Yu P. GLP-1RA improves diabetic renal injury by alleviating glomerular endothelial cells pyrotosis via RXRα/circ8411/miR-23a-5p/ABCA1 pathway. PLoS One 2024; 19:e0314628. [PMID: 39621727 PMCID: PMC11611192 DOI: 10.1371/journal.pone.0314628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Lipotoxicity has been implicated in diabetic kidney disease (DKD). However, the role of high glucose levels in DKD and the underlying renal protective mechanisms of GLP-1 receptor agonists (GLP-1RAs) remain unclear. METHODS To investigate cholesterol accumulation, pyroptosis in glomerular endothelial cells (GEnCs), and the renal protective mechanisms of GLP-1RAs, we used various techniques, including RT-qPCR, Oil Red O staining, Western blotting, lactate dehydrogenase (LDH) activity assays, circRNA microarrays, bioinformatics analysis, gain and loss-of-function experiments, rescue experiments, and luciferase assays. Additionally, in vivo experiments were conducted using C57BL/6J and ApoE-deficient (ApoE-/-) mice. RESULTS GEnCs exposed to high glucose exhibited reduced cholesterol efflux, which was accompanied by downregulation of ATP-binding cassette transporter A1 (ABCA1) expression, cholesterol accumulation, and pyroptosis. Circ8411 was identified as a regulator of ABCA1, inhibiting miR-23a-5p through its binding to the 3'UTR. Additionally, higher glucose levels decreased circ8411 expression by inhibiting RXRα. GLP-1RAs effectively reduced cholesterol accumulation and cell pyroptosis by targeting the RXRα/circ8411/miR-23a-5p/ABCA1 pathway. In diabetic ApoE-/- mice, renal structure and function were impaired, with resulted in increased cholesterol accumulation and pyroptosis; however, GLP-1RAs treatment reversed these detrimental changes. CONCLUSIONS These findings suggest that the RXRα/circ8411/miR-23a-5p/ABCA1 pathway mediates the contribution of high glucose to lipotoxic renal injury. Targeting this pathway may represent a potential therapeutic strategy for patients with DKD and hypercholesterolemia. Moreover, GLP-1RAs may provide renal protective effects by activating this pathway.
Collapse
Affiliation(s)
- Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Shuai Huang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jian Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Tan J, Li X, Dou N. Insulin Resistance Triggers Atherosclerosis: Caveolin 1 Cooperates with PKCzeta to Block Insulin Signaling in Vascular Endothelial Cells. Cardiovasc Drugs Ther 2024; 38:885-893. [PMID: 37289375 PMCID: PMC11438709 DOI: 10.1007/s10557-023-07477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To date, therapies for endothelial dysfunction have primarily focused on ameliorating identified atherosclerosis (AS) risk factors rather than explicitly addressing endothelium-based mechanism. An in-depth exploration of the pathological mechanisms of endothelial injury was performed herein. METHODS Aortic caveolin 1 (Cav1) knockdown was achieved in mice using lentivirus, and AS was induced using a high-fat diet. Mouse body weight, blood glucose, insulin, lipid parameters, aortic plaque, endothelial injury, vascular nitric oxide synthase (eNOS), injury marker, and oxidative stress were examined. The effect of Cav1 knockdown on the content of PKCzeta and PI3K/Akt/eNOS pathway-related protein levels, as well as PKCzeta binding to Akt, was studied. ZIP, a PKCzeta inhibitor, was utilized to treat HUVECs in vitro, and the effect of ZIP on cell viability, inflammatory response, oxidative stress, and Akt activation was evaluated. RESULTS Cav1 knockdown had no significant effect on body weight or blood glucose in mice over an 8-week period, whereas drastically reduced insulin, lipid parameters, endothelial damage, E-selectin, and oxidative stress and elevated eNOS levels. Moreover, Cav1 knockdown triggered decreased PKCzeta enrichment and the activation of the PI3K/Akt/eNOS pathway. PKCzeta has a positive effect on cells without being coupled by Cav1, and ZIP had no marked influence on PKCzeta-Akt binding following Cav1/PKCzeta coupling. CONCLUSION Cav1/PKCzeta coupling antagonizes the activation of PI3K on Akt, leading to eNOS dysfunction, insulin resistance, and endothelial cell damage.
Collapse
Affiliation(s)
- Jingjing Tan
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
| | - Xiaoguang Li
- Department of Thyroid Breast and Vascular Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 1279 Sanmen Road, Hongkou District, Shanghai, 200081, China
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai, 200003, China
| | - Ning Dou
- Department of Thyroid Breast and Vascular Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, 1279 Sanmen Road, Hongkou District, Shanghai, 200081, China.
| |
Collapse
|
4
|
Chen S, Li Q, Shi H, Li F, Duan Y, Guo Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother 2024; 178:117084. [PMID: 39088967 DOI: 10.1016/j.biopha.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
The accumulation of excess reactive oxygen species (ROS) can lead to oxidative stress (OS), which can induce gene mutations, protein denaturation, and lipid peroxidation directly or indirectly. The expression is reduced ATP level in cells, increased cytoplasmic Ca2+, inflammation, and so on. Consequently, ROS are recognized as significant risk factors for human aging and various diseases, including diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria are involved in the production of ROS through the respiratory chain. Abnormal mitochondrial characteristics, including mitochondrial OS, mitochondrial fission, mitochondrial fusion, and mitophagy, play an important role in various tissues. However, previous excellent reviews focused on OS-induced diseases. In this review, we focus on the latest progress of OS-induced mitochondrial dynamics, discuss OS-induced mitochondrial damage-related diseases, and summarize the OS-induced mitochondrial dynamics-related signaling pathways. Additionally, it elaborates on potential therapeutic methods aimed at preventing oxidative stress from further exacerbating mitochondrial disorders.
Collapse
Affiliation(s)
- Sisi Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilong Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanjing Shi
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Li J, Zhang Z, Zhu C, Zheng X, Wang C, Jiang J, Zhang H. Salidroside enhances NO bioavailability and modulates arginine metabolism to alleviate pulmonary arterial hypertension. Eur J Med Res 2024; 29:423. [PMID: 39152472 PMCID: PMC11330049 DOI: 10.1186/s40001-024-02016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Salidroside (SAL), derived from Rhodiola, shows protective effects in pulmonary arterial hypertension (PAH) models, but its mechanisms are not fully elucidated. OBJECTIVES Investigate the therapeutic effects and the mechanism of SAL on PAH. METHODS Monocrotaline was used to establish a PAH rat model. SAL's impact on oxidative stress and inflammatory responses in lung tissues was analyzed using immunohistochemistry, ELISA, and Western blot. Untargeted metabolomics explored SAL's metabolic regulatory mechanisms. RESULTS SAL significantly reduced mean pulmonary artery pressure, right ventricular hypertrophy, collagen deposition, and fibrosis in the PAH rats. It enhanced antioxidant enzyme levels, reduced inflammatory cytokines, and improved NO bioavailability by upregulating endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC), cyclic guanosine monophosphate (cGMP), and protein kinase G (PKG) and decreases the expression of endothelin-1 (ET-1). Metabolomics indicated SAL restored metabolic balance in PAH rats, particularly in arginine metabolism. CONCLUSIONS SAL alleviates PAH by modulating arginine metabolism, enhancing NO synthesis, and improving pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Junfei Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Zengyu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Chenghui Zhu
- Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Xiaorong Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Chunlei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Jianwei Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China.
| | - Hongyan Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China.
| |
Collapse
|
6
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
7
|
Zhang P, Zhao H, Xia X, Xiao H, Han C, You Z, Wang J, Cao F. Network pharmacology and molecular-docking-based strategy to explore the potential mechanism of salidroside-inhibited oxidative stress in retinal ganglion cell. PLoS One 2024; 19:e0305343. [PMID: 38968273 PMCID: PMC11226129 DOI: 10.1371/journal.pone.0305343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Salidroside (SAL), the main component of Rhodiola rosea extract, is a flavonoid with biological activities, such as antioxidative stress, anti-inflammatory, and hypolipidemic. In this study, the potential therapeutic targets and mechanisms of SAL against oxidative stress in retinal ganglion cells (RGCs) were investigated on the basis of in-vitro experiments, network pharmacology, and molecular docking techniques. METHODS RGC oxidative stress models were constructed, and cell activity, reactive oxygen species (ROS), and apoptosis levels were examined for differences. The genes corresponding to rhodopsin, RGCs, and oxidative stress were screened from GeneCards, TCMSP database, and an analysis platform. The intersection of the three was taken, and a Venn diagram was drawn. Protein interactions, GO functional enrichment, and KEGG pathway enrichment data were analyzed by STRING database, Cytohubba plugin, and Metascape database. The key factors in the screening pathway were validated using qRT-PCR. Finally, molecular docking prediction was performed using MOE 2019 software, molecular dynamic simulations was performed using Gromacs 2018 software. RESULTS In the RGC oxidative stress model in vitro, the cell activity was enhanced, ROS was reduced, and apoptosis was decreased after SAL treatment. A total of 16 potential targets of oxidative stress in SAL RGCs were obtained, and the top 10 core targets were screened by network topology analysis. GO analysis showed that SAL retinal oxidative stress treatment mainly involved cellular response to stress, transcriptional regulatory complexes, and DNA-binding transcription factor binding. KEGG analysis showed that most genes were mainly enriched in multiple cancer pathways and signaling pathways in diabetic complications, nonalcoholic fatty liver, and lipid and atherosclerosis. Validation by PCR, molecular docking and molecular dynamic simulations revealed that SAL may attenuate oxidative stress and reduce apoptosis in RGCs by regulating SIRT1, NRF2, and NOS3. CONCLUSION This study initially revealed the antioxidant therapeutic effects and molecular mechanisms of SAL on RGCs, providing a theoretical basis for subsequent studies.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Hongxin Zhao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Xiangping Xia
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Hua Xiao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Chong Han
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Zhibo You
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Junjie Wang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| | - Fang Cao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, P.R. China
| |
Collapse
|
8
|
Priscilla L, Yoo C, Jang S, Park S, Lim G, Kim T, Lee DY. Immunotherapy targeting the obese white adipose tissue microenvironment: Focus on non-communicable diseases. Bioact Mater 2024; 35:461-476. [PMID: 38404641 PMCID: PMC10884763 DOI: 10.1016/j.bioactmat.2024.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Obesity triggers inflammatory responses in the microenvironment of white adipose tissue, resulting in chronic systemic inflammation and the subsequent development of non-communicable diseases, including type 2 diabetes, coronary heart disease, and breast cancer. Current therapy approaches for obesity-induced non-communicable diseases persist in prioritizing symptom remission while frequently overlooking the criticality of targeting and alleviating inflammation at its source. Accordingly, this review highlights the importance of the microenvironment of obese white adipose tissue and the promising potential of employing immunotherapy to target it as an effective therapeutic approach for non-communicable diseases induced by obesity. Additionally, this review discusses the challenges and offers perspective about the immunotherapy targeting the microenvironment of obese white adipose tissue.
Collapse
Affiliation(s)
- Lia Priscilla
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chaerim Yoo
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seonmi Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sewon Park
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gayoung Lim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Taekyun Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology (INST) & Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea
| |
Collapse
|
9
|
Qin Y, Su J. Salidroside suppresses cell growth and inflammatory response of fibroblast-like synoviocytes via inhibition of phosphoinositol-3 kinase/threonine kinase signaling in rheumatoid arthritis. Z Rheumatol 2024; 83:78-87. [PMID: 37851166 DOI: 10.1007/s00393-023-01431-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Salidroside (Sal) is a natural product commonly isolated from Rhodiola rosea L., which has been found to have numerous pharmacological activities (e.g., ameliorating apoptosis and inflammation, and acting as an antioxidant) in various diseases, but its concrete function in rheumatoid arthritis (RA) has not been revealed yet. Here, we aimed to explore the specific role and underlying mechanisms of Sal in RA-fibroblast-like synoviocytes (RA-FLSs). METHODS Cell counting kit 8 (CCK-8) was used to assess the viability of normal-FLSs and RA-FLSs. Cell apoptosis in RA-FLSs was evaluated by flow cytometry. Western blotting was prepared to examine the levels of apoptosis- and signaling-related proteins. Wound-healing and Transwell assays were conducted to examine RA-FLSs migration and invasion. Enzyme-linked immunosorbent assay (ELISA) was used to assess the effect of Sal on tumor necrosis factor-alpha (TNF-α)-induced inflammation in RA-FLSs. RA animal model was established through complete Freund's adjuvant (CFA) induction, and the histopathological changes in synovial tissues of the rat model were analyzed by H&E staining. RESULTS RA-FLSs were treated with 200 μM Sal for 24 h, and cell viability was significantly suppressed. Sal promoted RA-FLSs apoptosis. The migratory and invasive abilities of RA-FLSs were markedly inhibited by Sal. Sal incubation reduced the levels of inflammatory cytokines interleukin‑8 (IL-8), IL-1β, and IL‑6 in RA-FLSs under the stimulation of TNF‑α. Subsequently, Sal downregulated phosphorylated phosphatidylinositol‑3 kinase (p-PI3K) and protein kinase (p-AKT) expression in RA-FLSs. After the treatment with pathway activator 740Y‑P (20 μM) in RA-FLSs, the promotive effect of Sal on cell apoptosis was reversed, and inhibitory effects of it on cell viability, migration, invasion, and inflammatory response were abolished. Sal inhibited RA development in the CFA-induced rat model. CONCLUSION Sal suppressed cell growth and inflammation in RA-FLSs by inactivating PI3K/AKT-signaling pathways.
Collapse
Affiliation(s)
- Yajing Qin
- Department of Rheumatology and Immunology, Qinghai University Affiliated Hospital, 810000, Xining, China
| | - Juan Su
- Department of Rheumatology and Immunology, Qinghai University Affiliated Hospital, 810000, Xining, China.
- Qinghai University Affiliated Hospital, No. 29 Tongren Road, Chengxi District, Xining, Qinghai, China.
| |
Collapse
|
10
|
Li G, Cheng J, Yang L, Chen P, Duan X. Ethanol extract of Rubia yunnanensis inhibits carotid atherosclerosis via the PI3K/AKT signaling pathway. Biomed Rep 2024; 20:19. [PMID: 38170026 PMCID: PMC10758924 DOI: 10.3892/br.2023.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerosis is a multifactorial vascular disease caused by endothelial dysfunction. Because of adverse reactions to drugs used to treat atherosclerosis. For example, statins, which significantly reduce the burden of atherosclerotic disease, have been associated with muscle toxicity. There is a need to identify novel drugs for the prevention and treatment of atherosclerosis Rubia yunnanensis is a herbs commonly used in Asian countries for its protective effects against cardiovascular diseases. However, the mechanism of action of R. yunnanensis extract in carotid artery atherosclerosis has not been found. The carotid artery is usually used as a site for clinical evaluation of atherosclerosis. The present study aimed to determine the mechanism of action of R. yunnanensis extract in the inhibition of carotid atherosclerosis in apolipoprotein E gene knockout (ApoE-/-) mice. The mechanism of atherosclerosis inhibition was elucidated by detecting the blood lipid level, carotid artery pathology, and the protein expression of PI3K and AKT. The present study demonstrated that ethanol extract of R. yunnanensis reduced lipid levels, intima damage and carotid lipid accumulation and increased p-PI3K/PI3K and p-AKT/AKT protein levels in ApoE-/- mice fed high-fat diet for 12 weeks. It was hypothesized that the effects of R. yunnanensis extract may be achieved by regulation of the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Ethanol extract of R. yunnanensis decreased carotid atherosclerosis in ApoE-/- mice fed a high-fat diet via the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Therefore, R. yunnanensis may be a promising option for treating atherosclerosis in the future.
Collapse
Affiliation(s)
- Gaoyizhou Li
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Jianghao Cheng
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pu Chen
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
11
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
12
|
Jia X, Liu Z, Wang Y, Li G, Bai X. Serum amyloid A and interleukin -1β facilitate LDL transcytosis across endothelial cells and atherosclerosis via NF-κB/caveolin-1/cavin-1 pathway. Atherosclerosis 2023; 375:87-97. [PMID: 36935311 DOI: 10.1016/j.atherosclerosis.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND AND AIMS Inflammatory molecules play important roles in atherosclerosis. We aimed to illustrate the roles of serum amyloid A (SAA), and interleukin (IL)-1β in low density lipoproteins (LDL) transcytosis and atherosclerosis. METHODS Effects of SAA and IL-1β on transcytosis of LDL were measured by an in vitro LDL transcytosis model. NF-κB/caveolin-1/cavin-1 pathway activation was investigated by Western blots and ELISA. Effects of SAA and IL-1β on the retention of LDL in aorta of C57BL/6J mice were detected by IVIS spectrum. Effects of SAA and IL-1β on atherosclerosis in Apoe-/- mice were examined by Oil Red O staining. RESULTS SAA and IL-1β stimulated LDL transcytosis across endothelial cells (ECs), which was accompanied by an increase in LDL uptake by ECs. SAA and IL-1β enhanced the activity of nuclear factor (NF)-κB, consequently facilitating an up-regulation of proteins involved in caveolae formation, including caveolin-1 and cavin-1, along with an assembly of NLRP3 inflammasome. Furthermore, SAA- and IL-1β-induced effects were blocked by NF-κB subunit p65 siRNA. Meanwhile, SAA- and IL-1β-induced LDL transcytosis were effectively blocked by caveolin-1 siRNA or cavin-1 siRNA. Interestingly, SAA and IL-1β facilitated LDL entering into the aorta of C57BL/6J mice. In Apoe-/- mice, SAA and IL-1β increased the areas of lipid-rich atherosclerotic lesions in the both ascending and root of aorta. Furthermore, a significant increase in the NLRP3 inflammasome, accompanied by accumulation of cavin-1 and caveolin-1, was observed in the aortic endothelium of Apoe-/- mice. CONCLUSIONS SAA and IL-1β accelerated LDL transcytosis via the NF-κB/caveolin-1/cavin-1 axis.
Collapse
Affiliation(s)
- Xiong Jia
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, Shenzhen, Guangdong, 518020, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Cardiovascular Surgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiangli Bai
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| |
Collapse
|
13
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, Yang G, Zhang Z. The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med 2023; 10:1088575. [PMID: 37063954 PMCID: PMC10090687 DOI: 10.3389/fcvm.2023.1088575] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic proteins and organelles, which realizes the metabolic needs of cells and the renewal of organelles. Autophagy-related genes (ATGs) are the main molecular mechanisms controlling autophagy, and their functions can coordinate the whole autophagic process. Autophagy can also play a role in cardiovascular disease through several key signaling pathways, including PI3K/Akt/mTOR, IGF/EGF, AMPK/mTOR, MAPKs, p53, Nrf2/p62, Wnt/β-catenin and NF-κB pathways. In this paper, we reviewed the signaling pathway of cross-interference between autophagy and cardiovascular diseases, and analyzed the development status of novel cardiovascular disease treatment by targeting the core molecular mechanism of autophagy as well as the critical signaling pathway. Induction or inhibition of autophagy through molecular mechanisms and signaling pathways can provide therapeutic benefits for patients. Meanwhile, we hope to provide a unique insight into cardiovascular treatment strategies by understanding the molecular mechanism and signaling pathway of crosstalk between autophagy and cardiovascular diseases.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Yang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linlin Wang
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Longfei Feng
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng Wang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jin Xu
- Department of First Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Wang
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Haixiang Su
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - GuoWei Yang
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Miao L, Cheong MS, Zhou C, Farag M, Cheang WS, Xiao J. Apigenin alleviates diabetic endothelial dysfunction through activating AMPK/PI3K/Akt/eNOS and Nrf2/HO‐1 signaling pathways. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau SAR China
| | - Meng Sam Cheong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau SAR China
| | - Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau SAR China
| | - Mohamed Farag
- Pharmacognosy Department, Faculty of Pharmacy Cairo University Cairo Egypt
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macau SAR China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences Universidade de Vigo, Nutrition and Bromatology Group Ourense Spain
| |
Collapse
|
15
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
16
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022; 19:1235-1250. [PMID: 36071219 PMCID: PMC9622814 DOI: 10.1038/s41423-022-00921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022. [PMID: 36071219 DOI: 10.1038/s41423-022-00921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Song W, Yuan Y, Tan X, Gu Y, Zeng J, Song W, Xin Z, Fang D, Guan R. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways. PeerJ 2022; 10:e14192. [PMID: 36312762 PMCID: PMC9615964 DOI: 10.7717/peerj.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Icariside II, as a favonoid compound derived from epimedium, has been proved to involed in a variety of biological and pharmacological effects such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism is unclear, especially in terms of its effect on post-transcriptional modification of endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important role in the synthesis of nitric oxide in endothelial cells, which is closely related to erectile dysfunction, atherosclerosis, Alzheimer's disease, and other diseases. Our study aims to investigate the effect and mechanism of Icariside II on the rapid phosphorylation of eNOS. In this study, human umbilical vein endothelial cells (HUVECs) were stimulated with Icariside II in the presence or absence of multiple inhibitors (1 µM), including LY294002 (PI3K-inhibitor), MK-2206 (AKT-inhibitor), Bisindolylmaleimide X (AMPK-inhibitor), H-89 (CaMKII-inhibitor), KN-62 (PKA-inhibitor), Dorsomorphin (PKC-inhibitor). The proliferation of HUVECs was assessed using cell counting kit-8 (CCK-8). The release of nitric oxide (NO) within HUVECs was detected via fluorescence probe (DAF-FM). Western blot was used to examine the effect of Icariside II on the expression of eNOS, phosphorylation of eNOS, and common signaling pathways proteins. In this study, Icariside II was found to promote the cell proliferation and rapid NO release in HUVECs. The phosphorylation of eNOS-Ser1177 was significantly increased after Icariside II stimulation and reached a peak at 10 min (p < 0.05). Meanwhile, the phosphorylation of eNOS-Thr495 was significantly decreased after 45 min of stimulation (p < 0.05). Following the intervention with multiple inhibitors, it was found that MK-2206 (AKT inhibitor), LY294002 (PI3K inhibitor), KN-62 (AMPK inhibitor), and Bisindolylmaleimide X (PKC inhibitor) could significantly inhibit the phosphorylation of eNOS-Ser1177 caused by Icariside II (p < 0.05), while MK-2206, LY294002, and Bisindolylmaleimide X reversed the alleviated phosphorylation of eNOS-Thr495. We concluded that Icariside can regulate rapid phosphorylation of eNOS- Ser1177 and eNOS-Thr495 via multiple signaling pathways, resulting in the up-regulation of eNOS and the increased release of NO.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiaohui Tan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yangyang Gu
- Department of Urology, Peking University First Hospital, Beijing, China
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weidong Song
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhongcheng Xin
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Ruili Guan
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
19
|
Salidroside Regulates Mitochondrial Homeostasis After Polarization of RAW264.7 Macrophages. J Cardiovasc Pharmacol 2022; 81:85-92. [PMID: 36027482 PMCID: PMC9812418 DOI: 10.1097/fjc.0000000000001362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/06/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Salidroside has anti-inflammatory and antiatherosclerotic effects, and mitochondrial homeostasis imbalance is closely related to cardiovascular disease. The aim of this study was to investigate the effect of salidroside on mitochondrial homeostasis after macrophage polarization and elucidate its possible mechanism against atherosclerosis. RAW264.7 cells were stimulated with 1 μg·mL -1 Lipopolysaccharide and 50 ng·mL -1 IFN-γ establish M1 polarization and were also pretreated with 400 μM salidroside. The relative expression of proinflammatory genes was detected by RT-PCR whereas that of mitochondrial homeostasis-related proteins and nuclear factor kappa-B (NF-κB) was detected by WB. Levels of intracellular reactive oxygen species (ROS), mitochondrial membrane potential, and mass were measured by chemifluorescence whereas that of NF-κB nuclear translocation was detected by immunofluorescence. Compared with the Mφ group, the M1 group demonstrated increased mRNA expression of interleukin-1β , inductible nitric oxide synthase (iNOS), and tumor necrosis factor-α ; increased protein expression of iNOS, NOD-like receptor protein 3, putative kinase 1 , and NF-κB p65 but decreased protein expression of MFN2, Tom20, and PGC-1α; decreased mitochondrial membrane potential and mass; and increased ROS levels and NF-κB p65 nuclear translocation. Salidroside intervention decreased mRNA expression of interleukin-1β and tumor necrosis factor-α compared with the M1 group but did not affect that of iNOS. Furthermore, salidroside intervention prevented the changes in protein expression, mitochondrial membrane potential and mass, ROS levels, and NF-κB p65 nuclear translocation observed in the M1 group. In summary, salidroside ultimately inhibits M1 macrophage polarization and maintains mitochondrial homeostasis after macrophage polarization by increasing mitochondrial membrane potential, decreasing ROS levels, inhibiting NF-κB activation, and in turn regulating the expression of proinflammatory factors and mitochondrial homeostasis-associated proteins.
Collapse
|
20
|
The Combination of Rhodosin and MMF Prolongs Cardiac Allograft Survival by Inhibiting DC Maturation by Promoting Mitochondrial Fusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7260305. [PMID: 35855862 PMCID: PMC9288296 DOI: 10.1155/2022/7260305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Despite being the gold-standard treatment for end-stage heart disease, heart transplantation is associated with acute cardiac rejection within 1 year of transplantation. The continuous application of immunosuppressants may cause side effects such as hepatic and renal toxicity, infection, and malignancy. Developing new pharmaceutical strategies to alleviate acute rejection after heart transplantation effectively and safely is of critical importance. In this study, we performed a murine model of MHC-full mismatch cardiac transplantation and showed that the combination of Rhodosin (Rho) and mycophenolate mofetil (MMF) could prevent acute rejection and oxidative stress injury and prolong the survival time of murine heart transplants. The use of Rho plus MMF in allografts improved the balance of Tregs/Teff cells, which had a protective effect on allotransplantation. We also isolated bone marrow-derived dendritic cells (BMDCs) and determined that Rho inhibited DC maturation by promoting mitochondrial fusion mainly through the mitochondrial fusion-related protein MFN1. Herein, we demonstrated that Rho, an active ingredient isolated from the plant Rhodiola rosea with antioxidant and anti-inflammatory activities, could efficiently alleviate acute rejection and significantly prolong murine heart allograft survival when used with a low dose of MMF. More importantly, we found that Rho restrained DC maturation by promoting mitochondrial fusion and decreasing reactive oxygen species (ROS) levels, which then alleviated acute rejection in murine cardiac transplantation. Interestingly, as a novel immunosuppressant, Rho has almost no side effects compared with other traditional immunosuppressants. Taken together, these results suggest that Rho has good clinical auxiliary applications as an effective immunosuppressant and antioxidant, and this study provides an efficient strategy to overcome the side effects of immunosuppressive agents that are currently used in organ transplantation.
Collapse
|
21
|
Ji W, Sun J, Hu Z, Sun B. Resveratrol protects against atherosclerosis by downregulating the PI3K/AKT/mTOR signaling pathway in atherosclerosis model mice. Exp Ther Med 2022; 23:414. [PMID: 35601067 PMCID: PMC9117958 DOI: 10.3892/etm.2022.11341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 02/28/2020] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is a cardiovascular disease, which is characterized by the interaction between carbohydrates, lipids, cells and various other molecules and genetic factors. Previous studies have demonstrated that resveratrol (RV) served protective roles in numerous types of human disease by regulating different signaling pathways. The aim of the present study was to investigate the therapeutic effects of RV and analyze the potential RV-mediated mechanism in umbilical vein endothelial cells (UVECS) in atherosclerosis model mice. Reverse transcription-quantitative PCR, western blotting and immunohistochemistry were used to analyze the therapeutic effects of RV both in vitro and in vivo. The results demonstrated that total cholesterol, triglycerides, low-density lipoprotein cholesterin and high-density lipoprotein cholesterin levels were significantly decreased in the RV group compared with the control group. RV demonstrated significant anti-atherosclerotic activity, which was determined through the atherogenic index, 3-hydroxy-3-methyl-glutaryl-Coa (HMG-CoA) reductase activity and marker enzymes, such as lactate dehydrogenase, creatine phosphokinase, aspartate transaminase, alanine transaminase and alkaline phosphatase. It was also observed that RV treatment significantly decreased the area of the arteriosclerotic lesion in the RV group compared with the control, as well as significantly decreasing the expression levels of matrix metalloproteinase-9 and CD40 ligand (CD40L) in arterial lesion tissue compared with the control group. Serum expression levels of tumor necrosis factor-α and C-reactive protein were also significantly decreased by RV treatment compared with the control group. Furthermore, RV treatment significantly decreased the expression levels of PI3K, AKT and mTOR in UVECS in vitro. In conclusion, these results suggested that the anti-atherosclerotic activity of RV may be due to its modulatory activity over the PI3K/AKT/mTOR signaling pathway. These findings suggested a potential novel treatment option for patients with atherosclerosis.
Collapse
Affiliation(s)
- Wuguang Ji
- Department of Vascular Surgery, The People's Hospital of Weifang, Weifang, Shandong 310009, P.R. China
| | - Jing Sun
- Department of Radiology, Traditional Chinese Medicine Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Zonghua Hu
- Department of Interventional Radiology, The People's Hospital of Weifang, Weifang, Shandong 310009, P.R. China
| | - Bo Sun
- Department of Vascular Surgery, The People's Hospital of Weifang, Weifang, Shandong 310009, P.R. China
| |
Collapse
|
22
|
Chen Y, Tang M, Yuan S, Fu S, Li Y, Li Y, Wang Q, Cao Y, Liu L, Zhang Q. Rhodiola rosea: A Therapeutic Candidate on Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1348795. [PMID: 35265260 PMCID: PMC8898776 DOI: 10.1155/2022/1348795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases, also known as circulatory diseases, are diseases of the heart and blood vessels, and its etiology is hyperlipidemia, thick blood, atherosclerosis, and hypertension. Due to its high prevalence, disability, and mortality, it seriously threatens human health. According to reports, the incidence of cardiovascular disease is still on the rise. Rhodiola rosea is a kind of traditional Chinese medicine, which has the effects of antimyocardial ischemia-reperfusion injury, lowering blood fat, antithrombosis, and antiarrhythmia. Rhodiola rosea has various chemical components, and different chemical elements have the same pharmacological effects and medicinal values for various cardiovascular diseases. This article reviews the research on the pharmacological effects of Rhodiola rosea on cardiovascular diseases and provides references for the clinical treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yingqing Chen
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
| | - Minli Tang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
| | - Shuo Yuan
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
- Yanbian University, Yanji, Jilin 133022, China
| | - Shuang Fu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
| | - Yifei Li
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
| | - You Li
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
| | - Qi Wang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
| | - Yuying Cao
- Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Liping Liu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
| | - Qinggao Zhang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, China
| |
Collapse
|
23
|
Ling Y, Shi J, Ma Q, Yang Q, Rong Y, He J, Chen M. Vasodilatory Effect of Guanxinning Tablet on Rabbit Thoracic Aorta is Modulated by Both Endothelium-Dependent and -Independent Mechanism. Front Pharmacol 2021; 12:754527. [PMID: 34925014 PMCID: PMC8672209 DOI: 10.3389/fphar.2021.754527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vasodilatory therapy plays an important role in the treatment of cardiovascular diseases, especially hypertension and coronary heart disease. Previous research found that Guanxinning tablet (GXNT), a traditional Chinese compound preparation composed of Salvia miltiorrhiza (Danshen) and Ligusticum chuanxiong (Chuanxiong), increase blood flow in the arteries, but whether vasodilation plays a role in this effect remains unclear. Here, we found that GXNT significantly alleviated the vasoconstriction of isolated rabbit thoracic aorta induced by phenylephrine (PE), norepinephrine (NE), and KCl in a dose-dependent manner with or without endothelial cells (ECs). Changes in calcium ion levels in vascular smooth muscle cells (VSMCs) showed that both intracellular calcium release and extracellular calcium influx through receptor-dependent calcium channel (ROC) declined with GXNT treatment. Experiments to examine potassium channels suggested that endothelium-denuded vessels were also regulated by calcium-activated potassium channels (Kca) and ATP-related potassium channels (KATP) but not voltage-gated potassium channels (kv) and inward rectifying potassium channels (KIR). For endothelium-intact vessels, the nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) contents in vascular tissue obviously increased after GXNT treatment, and pretreatment with the NO synthase inhibitor Nw-nitro-L-arginine methyl ester (L-NAME) or guanylyl cyclase inhibitor methylthionine chloride (MB) significantly inhibited vasodilation. An assessment of NO-related pathway protein expression revealed that GXNT enhanced the expression of phosphorylated endothelial NO synthase (eNOS) in a dose-dependent manner but had no effect on total eNOS, p-Akt, Akt, or PI3K levels in human umbilical vein ECs (HUVECs). In addition to PI3K/AKT signaling, Ca2+/calmodulin (CaM)-Ca2+/CaM-dependent protein kinase II (CaMKII) signaling is a major signal transduction pathway involved in eNOS activation in ECs. Further results showed that free calcium ion levels were decreased in HUVECs with GXNT treatment, accompanied by an increase in p-CaMKII expression, implying an increase in the Ca2+/CaM-Ca2+/CaMKII cascade. Taken together, these findings suggest that the GXNT may have exerted their vasodilative effect by activating the endothelial CaMKII/eNOS signaling pathway in endothelium-intact rings and calcium-related ion channels in endothelium-denuded vessels.
Collapse
Affiliation(s)
- Yun Ling
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajun Shi
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Quanxin Ma
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinqin Yang
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yili Rong
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangmin He
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Minli Chen
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
24
|
Liu J, Xu P, Liu D, Wang R, Cui S, Zhang Q, Li Y, Yang W, Zhang D. TCM Regulates PI3K/Akt Signal Pathway to Intervene Atherosclerotic Cardiovascular Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4854755. [PMID: 34956379 PMCID: PMC8702326 DOI: 10.1155/2021/4854755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
Vascular endothelial injury is the initial stage of atherosclerosis (AS). Stimulating and activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway can regulate the expression of vascular endothelial cytokines, thus affecting the occurrence and development of AS. In addition, the PI3K/Akt signaling pathway can regulate the polarization and survival of macrophages and the expression of inflammatory factors and platelet function, thus influencing the progression of AS. In recent years, traditional Chinese medicine (TCM) has been widely recognized for its advantages of fewer side effects, multiple pathways, and multiple targets. Also, the research of TCM regulation of AS via the PI3K/Akt signaling pathway has achieved certain results. This study aimed to analyze the characteristics of the PI3K/Akt signaling pathway and its role in the pathogenesis of AS, as well as the role of Chinese medicine in regulating the PI3K/Akt signaling pathway. The findings are expected to provide a theoretical basis for the clinical treatment and pathological mechanism research of AS.
Collapse
Affiliation(s)
- Jiali Liu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pangao Xu
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine Shandong, Jinan, Shandong, China
| | - Dekun Liu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ruiqing Wang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengnan Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qiuyan Zhang
- Pharmacy School, Shandong University of Traditional Chinese Medicine Shandong, Jinan, Shandong, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Engineering Research Center of Traditional Chinese Medicine Precise Treatment of Cardiovascular Disease, Zibo, Shandong, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Engineering Research Center of Traditional Chinese Medicine Precise Treatment of Cardiovascular Disease, Zibo, Shandong, China
| | - Dan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
25
|
Relationship between PI3K-Akt pathway related gene polymorphisms and symptomatic intracranial atherosclerotic stenosis with hypertension in Chinese Han population. World Neurosurg 2021; 161:e25-e38. [PMID: 34844011 DOI: 10.1016/j.wneu.2021.11.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND PI3K-Akt signaling was proved to be closely related to atherosclerosis, in which hypertension is an important risk factor for atherosclerosis. Studies have shown that genetic susceptibility is vital in the etiology of symptomatic intracranial atherosclerotic stenosis (sICAS), but few candidate genes were identified. This research explores latent connections between single nucleotide polymorphisms (SNPs) of PI3K-Akt related genes and sICAS with hypertension in Han Chinese subjects. METHODS Eight genes related to the PI3K-Akt pathway in 400 sICAS patients and 1007 healthy controls of Han nationality were sequenced, and further subgroup analysis based on hypertension was carried out. Chi-squared testing and multiple logistic regression in dominant, recessive, and additive models were used to evaluate the association between SNPs and risk of sICAS with hypertension. When linkage disequilibrium exists in different loci of the same gene, tagSNP represents the SNP in haplotype block. RESULTS There were 4 common variants of 1 candidate gene differently distributed between sICAS with or without hypertension. Among these four common variations, INSR rs3745551 was significantly related to the risk of sICAS with hypertension after multiple regression analysis, with the T allele being more prevalent in the sICAS with hypertension. CONCLUSION The variant of the INSR rs3745551 loci may be crucial in the pathogenesis of sICAS with hypertension in Chinese Han populations. Furthermore, the C allele at this locus may be a potentially harmful variant in sICAS with hypertension.
Collapse
|
26
|
Qing Yan Li Ge Tang, a Chinese Herbal Formula, Induces Autophagic Cell Death through the PI3K/Akt/mTOR Pathway in Nasopharyngeal Carcinoma Cells In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9925684. [PMID: 34765012 PMCID: PMC8577896 DOI: 10.1155/2021/9925684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
Since a portion of patients with nasopharyngeal carcinoma (NPC) do not benefit much from current standard treatments, it is still needed to discover new therapeutic drugs to improve the prognosis of the patients. Considering that Chinese traditional medicine plays a role in inhibiting tumor progression, in this study, we aimed to investigate whether a Chinese herbal formula, Qing Yan Li Ge Tang (QYLGT), has the anticancer activity in NPC cells and explore the underlying mechanism as well. MTT assay, colony formation assay, immunoblotting assay, and DNA laddering assay were performed to assess cell viability, cell colony formation, protein expression, and DNA fragmentation, respectively. Results show that QYLGT was able to inhibit the cell viability and decrease colony formation ability in NPC cells. QYLGT could also increase the formation of intracellular vacuoles and induce the autophagy-related protein expressions, including Atg3, Atg6, and Atg12-Atg5 conjugate in NPC cells. Treatment with an autophagy inhibitor, 3-methyladenine, could significantly recover QYLGT-inhibited cell viability of NPC cells. In addition, QYLGT did not significantly induce apoptosis in NPC cells. We also found that QYLGT had the ability to activate phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway. Treatment with PI3K inhibitors, LY294002 and wortmannin, or mTOR inhibitors, rapamycin and Torin 1, could not only recover QYLGT-inhibited cell viability of NPC cells but also inhibit Atg3 expression. Taken together, our results demonstrated that QYLGT could induce autophagic cell death in NPC cells through the PI3K/Akt/mTOR pathway.
Collapse
|
27
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
28
|
Li L, Yang Y, Zhang H, Du Y, Jiao X, Yu H, Wang Y, Lv Q, Li F, Sun Q, Qin Y. Salidroside Ameliorated Intermittent Hypoxia-Aggravated Endothelial Barrier Disruption and Atherosclerosis via the cAMP/PKA/RhoA Signaling Pathway. Front Pharmacol 2021; 12:723922. [PMID: 34504429 PMCID: PMC8421548 DOI: 10.3389/fphar.2021.723922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Endothelial barrier dysfunction plays a key role in atherosclerosis progression. The primary pathology of obstructive sleep apnea-hypopnea syndrome is chronic intermittent hypoxia (IH), which induces reactive oxygen species (ROS) overproduction, endothelial barrier injury, and atherosclerosis. Salidroside, a typical pharmacological constituent of Rhodiola genus, has documented antioxidative, and cardiovascular protective effects. However, whether salidroside can improve IH-aggravated endothelial barrier dysfunction and atherosclerosis has not been elucidated. Methods and results: In normal chow diet-fed ApoE−/− mice, salidroside (100 mg/kg/d, p. o.) significantly ameliorated the formation of atherosclerotic lesions and barrier injury aggravated by 7-weeks IH (21%–5%–21%, 120 s/cycle). In human umbilical vein endothelial cells (HUVECs), exposure to IH (21%–5%–21%, 40 min/cycle, 72 cycles) decreased transendothelial electrical resistance and protein expression of vascular endothelial cadherin (VE-cadherin) and zonula occludens 1. In addition, IH promoted ROS production and activated ras homolog gene family member A (RhoA)/Rho-associated protein kinase (ROCK) pathway. All of these effects of IH were reversed by salidroside. Similar to salidroside, ROCK-selective inhibitors Y26732, and Fasudil protected HUVECs from IH-induced ROS overproduction and endothelial barrier disruption. Furthermore, salidroside increased intracellular cAMP levels, while the PKA-selective inhibitor H-89 attenuated the effects of salidroside on IH-induced RhoA/ROCK suppression, ROS scavenging, and barrier protection. Conclusion: Our findings demonstrate that salidroside effectively ameliorated IH-aggravated endothelial barrier injury and atherosclerosis, largely through the cAMP/PKA/RhoA signaling pathway.
Collapse
Affiliation(s)
- Linyi Li
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yunyun Yang
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Huina Zhang
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yunhui Du
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Xiaolu Jiao
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Huahui Yu
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yu Wang
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Qianwen Lv
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Fan Li
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Qiuju Sun
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Yanwen Qin
- The Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Ministry of Education, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| |
Collapse
|
29
|
Yang H, Yang Q, Wang Y, Zheng L. Inhibition of hypoxia-inducible factor-1 by Salidroside in an in vitro model of choroidal neovascularization. Cutan Ocul Toxicol 2021; 41:203-209. [PMID: 34428999 DOI: 10.1080/15569527.2021.1973023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE As a characteristic of age-related macular degeneration (AMD), choroidal neovascularization (CNV) causes severe vision loss. The current treatment has limited efficacy. This study was to investigate effects of Salidroside against CNV and explore its underlying mechanisms. METHODS RF/6A cells were treated with 200 mM cobalt chloride (CoCl2) for 6 hr to mimic hypoxic condition. Cells were then treated with Salidroside at 10, 30 and 100 µM for 24 hr. Cells treated with DMSO were used as negative control. The cell proliferation was assessed using 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium-bromid assay. The tube formation was investigated on Matrigel. The cell migration was measured by a Transwell assay. RT-qPCR was used to detect the gene expression. Immuohistochemistry and western blot were used to detect the expression of proteins. RESULTS Salidroside significantly inhibited the cell migration and tube formation activity of RF/6A cells under hypoxia. Moreover, Salidroside reduced the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF-1) in RF/6A cells. CONCLUSIONS Our data suggested that Salidroside could be a potential novel therapeutic agent against CNV.
Collapse
Affiliation(s)
- Haitao Yang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Qingwu Yang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Yunfeng Wang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Linfei Zheng
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| |
Collapse
|
30
|
Li D, Yang S, Xing Y, Pan L, Zhao R, Zhao Y, Liu L, Wu M. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Front Cell Dev Biol 2021; 9:673839. [PMID: 34307357 PMCID: PMC8293691 DOI: 10.3389/fcell.2021.673839] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained through the dynamic processes of fusion and fission. Mitochondria are involved in many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune cell activation, redox signaling, apoptosis, and inflammation, among others. Under stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential (MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated. mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and release interleukin, an event that eventually leads to tissue damage and inflammatory responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3 through the production of mitochondrial ROS, which together aggravate accumulating mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are risk factors for the progression of CVD, which are closely related to mitochondrial dynamics. Mitochondrial dynamics may represent a new target in the treatment of atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to correct mitochondrial dysfunction represent a few directions for future research on therapeutic intervention and amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Zhao CC, Wu XY, Yi H, Chen R, Fan G. The Therapeutic Effects and Mechanisms of Salidroside on Cardiovascular and Metabolic Diseases: An Updated Review. Chem Biodivers 2021; 18:e2100033. [PMID: 33991395 DOI: 10.1002/cbdv.202100033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
The increasing incidence of metabolic and cardiovascular diseases has severely affected global human health and life safety. In recent years, some effective drugs with remarkable curative effects and few side effects found in natural compounds have attracted attention. Salidroside (SAL), a phenylpropane glycoside, is the main active ingredient of the plateau plant Rhodiola. So far, many animal experiments proved that SAL has good biological activity against some metabolic and cardiovascular diseases. However, most of these reports are scattered. This review systematically summarizes the pharmacological progress of SAL in the treatment of several metabolic (e. g., diabetes and non-alcoholic fatty liver disease) and cardiovascular (e. g., atherosclerosis) diseases in a timely manner to promote the clinical application and basic research of SAL. Accumulating evidence proves that SAL has beneficial effects on these diseases. It can improve glucose tolerance, insulin sensitivity, and β-cell and liver functions, and inhibit adipogenesis, inflammation and oxidative stress. Overall, SAL may be a valuable and potential drug candidate for the treatment of metabolic and cardiovascular diseases. However, more studies especially clinical trials are needed to further confirm its therapeutic effects and molecular mechanisms.
Collapse
Affiliation(s)
- Cheng-Cheng Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xin-Yue Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Rong Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| |
Collapse
|
32
|
Li Y, Wei X, Liu SL, Zhao Y, Jin S, Yang XY. Salidroside protects cardiac function in mice with diabetic cardiomyopathy via activation of mitochondrial biogenesis and SIRT3. Phytother Res 2021; 35:4579-4591. [PMID: 34056772 DOI: 10.1002/ptr.7175] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2023]
Abstract
To investigate the effects and the underlying mechanisms of salidroside on diabetic cardiomyopathy, diabetes was induced in mice by a long-term high-fat diet and a low-dose injection of streptozocin. Measurements of cardiac function, biochemical analysis, and histopathological examinations were conducted to evaluate the therapeutic effects of salidroside. In this study, we found that diabetic mice exhibited decreased cardiac systolic function and impaired mitochondrial ultrastructure. Pre-treatment with salidroside protected mice against myocardial dysfunction, reduced blood glucose, improved insulin resistance, and induced mitochondrial biogenesis. Neonatal rat cardiomyocytes were cultured to explore the mechanisms of salidroside in vitro. Salidroside alleviated decreased expression of peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC-1α), mitochondrial transcription factor A (TFAM) via phosphorylation of 5' AMP-activated protein kinase (AMPK), which may be associated with mitochondrial biogenesis. Salidroside also increased sirtuin-3 (SIRT3) expression in cardiomyocytes. Furthermore, salidroside promoted the translocation of SIRT3 from cytoplasm to mitochondria and increased the deacetylation of mitochondrial proteins such as manganese-dependent superoxide dismutase (MnSOD). In Conclusion, salidroside not only improved diabetes, but also ameliorated diabetic cardiomyopathy, which was at least partly associated with the activation of mitochondrial SIRT3, AMPK/Akt, and PGC-1α/TFAM and subsequent improving mitochondrial function.
Collapse
Affiliation(s)
- Ye Li
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wei
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Li Liu
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yan Yang
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Shemiakova T, Ivanova E, Wu WK, Kirichenko TV, Starodubova AV, Orekhov AN. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med 2021; 8:660473. [PMID: 34017868 PMCID: PMC8129197 DOI: 10.3389/fcvm.2021.660473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a complex pathology that involves both metabolic dysfunction and chronic inflammatory process. During the last decade, a considerable progress was achieved in describing the pathophysiological features of atherosclerosis and developing approaches that target the abnormal lipid metabolism and chronic inflammation. However, early events in the arterial wall that initiate the disease development still remain obscure. Finding effective therapeutic targets in these early processes would allow developing methods for disease prevention and, possibly, atherosclerotic plaque regression. Currently, these early events are being actively studied by several research groups. One of the processes that are being investigated is the development of mitochondrial dysfunction, which was demonstrated to be present in the affected areas of the arterial wall. Detection and characterization of mitochondrial dysfunction associated with several chronic human disorders was made possible by the improved methods of studying mitochondrial biology and detecting mitochondrial DNA (mtDNA) mutations. It was found to be involved in several key atherogenic processes, such as oxidative stress, chronic inflammation, and intracellular lipid accumulation. Mitochondrial dysfunction can occur in all types of cells involved in the pathogenesis of atherosclerosis: monocytes and macrophages, smooth muscle cells, lymphocytes, and the endothelial cells. However, therapies that would specifically target the mitochondria to correct mitochondrial dysfunction and neutralize the defective organelles are still remain to be developed and characterized. The aim of this review is to outline the prospects for mitochondrial therapy for atherosclerosis. We discuss mechanisms of mitochondria-mediated atherogenic processes, known mitochondria-targeting therapy strategies, and novel mitochondria-targeting drugs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Taisiia Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tatiana V Kirichenko
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia.,Faculty of Therapy, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
34
|
Zheng T, Wang Q, Bian F, Zhao Y, Ma W, Zhang Y, Lu W, Lei P, Zhang L, Hao X, Chen L. Salidroside alleviates diabetic neuropathic pain through regulation of the AMPK-NLRP3 inflammasome axis. Toxicol Appl Pharmacol 2021; 416:115468. [PMID: 33639149 DOI: 10.1016/j.taap.2021.115468] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022]
Abstract
High glucose (HG)-induced nucleotide-binding and oligomerization (NACHT) domain, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome activation leads to diabetic neuropathic pain. We recently showed that salidroside could suppress NLRP3 inflammasome activation in hepatocytes exposed to HG. The aim of this study was to evaluate the analgesic effect of salidroside on diabetic rats and to explore its underlying mechanisms. Rat models with diabetic neuropathic pain were induced by high-fat diet feeding combined with low dose streptozotocin injections. Doses of salidroside at 50 and 100 mg.kg-1.day-1 were administered by gavage to diabetic rats for 6 weeks. Mechanical allodynia test, thermal hyperalgesia test and biochemical analysis were performed to evaluate therapeutic effects. Primary dorsal root ganglion (DRG) cells exposed to HG at 45 mM were used to further study the effects of salidroside on the AMP-activated protein kinase (AMPK)-NLRP3 inflammasome axis and insulin sensitivity in vitro. Salidroside administration improved hyperglycemia, ameliorated insulin resistance, and alleviated neuropathic pain in diabetic rats. Moreover, salidroside induced AMPK activation and suppressed NLRP3 inflammasome activation in the DRGs of diabetic rats. In addition, salidroside treatment relieved oxidative stress, improved insulin sensitivity and regulated the AMPK-NLRP3 inflammasome axis in HG-treated DRGs in vitro. Furthermore, AMPK inhibition in vivo or AMPK silencing in vitro abolished the beneficial effects of salidroside on diabetic neuropathic pain. Together, these results indicate that salidroside alleviates diabetic neuropathic pain through its regulation of the AMPK-NLRP3 inflammasome axis in DRGs.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Analgesics/pharmacology
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetic Neuropathies/enzymology
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/physiopathology
- Diabetic Neuropathies/prevention & control
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/enzymology
- Ganglia, Spinal/physiopathology
- Glucosides/pharmacology
- Hypoglycemic Agents/pharmacology
- Inflammasomes/metabolism
- Insulin Resistance
- Male
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Neuralgia/enzymology
- Neuralgia/etiology
- Neuralgia/physiopathology
- Neuralgia/prevention & control
- Oxidative Stress/drug effects
- Pain Threshold/drug effects
- Phenols/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction
- Rats
Collapse
Affiliation(s)
- Tao Zheng
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Qibin Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yan Zhao
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Weidong Ma
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yonghong Zhang
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Lu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Pan Lei
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lulu Zhang
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Li Chen
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
35
|
Xing SS, Yang J, Li WJ, Li J, Chen L, Yang YT, Lei X, Li J, Wang K, Liu X. Salidroside Decreases Atherosclerosis Plaque Formation via Inhibiting Endothelial Cell Pyroptosis. Inflammation 2021; 43:433-440. [PMID: 32076940 DOI: 10.1007/s10753-019-01106-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pyroptosis, a new pro-inflammatory programmed cell death, is linked to atherosclerosis (AS). Our previous studies suggested that salidroside (SAL) can alleviate AS and exert anti-oxidative and anti-inflammatory properties. However, the effect of SAL on atherosclerosis-related pyroptosis has not been studied. Here, we investigated the effect of SAL on pyroptosis to explain the underlying mechanisms of SAL on atherosclerosis-related inflammation. We established an atherosclerosis mouse model via western diet (HFD) to explore the protective effect of SAL. According to our results, administration of SAL for 12 weeks markedly reduced the atherosclerotic plaque in aorta. Meanwhile, SAL also alleviated the pyroptosis, as evidenced by inhibiting caspase-1 activation, interleukin-1β (IL-1β) release, and TUNEL-positive staining, and decreasing the expression of Gasdermin D (GSDMD). Furthermore, SAL also decreased the activation of caspase-1 and inhibited the release of IL-1β induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP) in human umbilical vein endothelial cell (HUVECs). Our data indicate that SAL inhibit NLRP3-related pyroptosis, which might be the underlying mechanism of SAL anti-inflammatory in atherosclerosis.
Collapse
Affiliation(s)
- Sha-Sha Xing
- Clinical Drug Trial Institution, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China.
| | - Wen-Jing Li
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jian Li
- Department of Basic Medicine, Chengdu University School of Medicine, Chengdu, 610106, Sichuan, People's Republic of China
| | - Lin Chen
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Yu-Ting Yang
- Clinical Drug Trial Institution, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Xia Lei
- Clinical Drug Trial Institution, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Jun Li
- Department of General Surgery, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Kai Wang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Xun Liu
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| |
Collapse
|
36
|
Lee AY, Lee JY, Chun JM. Exploring the Mechanism of Gyejibokryeong-hwan against Atherosclerosis Using Network Pharmacology and Molecular Docking. PLANTS 2020; 9:plants9121750. [PMID: 33321972 PMCID: PMC7764045 DOI: 10.3390/plants9121750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
Gyejibokryeong-hwan (GBH) is a traditional formula comprised of five herbal medicines that is frequently used to treat blood stasis and related complex multifactorial disorders such as atherosclerosis. The present study used network pharmacology and molecular docking simulations to clarify the effect and mechanism of the components of GBH. Active compounds were selected using Oriental Medicine Advanced Searching Integrated System (OASIS) and the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), and target genes linked to the selected components were retrieved using Search Tool for Interacting Chemicals (STITCH) and GeneCards. Functional analysis of potential target genes was performed through the Annotation, Visualization and Integrated Discovery (DAVID) database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and molecular docking confirmed the correlation between five core compounds (quercetin, kaempferol, baicalein, ellagic acid, and baicalin) and six potential target genes (AKT1, CASP3, MAPK1, MAPK3, NOS2, and PTGS2). Molecular docking studies indicated that quercetin strongly interacted with six potential target proteins. Thus, these potential target proteins were closely related to TNF, HIF-1, FoxO, and PI3K-Akt signal pathways, suggesting that these factors and pathways may mediate the beneficial effects of GBH on atherosclerosis. Our results identify target genes and pathways that may mediate the clinical effects of the compounds contained within GBH on atherosclerosis.
Collapse
Affiliation(s)
- A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Korea;
| | - Joo-Youn Lee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Jin Mi Chun
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Korea;
- Correspondence: ; Tel.: +82-613-387-130
| |
Collapse
|
37
|
Magani SKJ, Mupparthi SD, Gollapalli BP, Shukla D, Tiwari AK, Gorantala J, Yarla NS, Tantravahi S. Salidroside - Can it be a Multifunctional Drug? Curr Drug Metab 2020; 21:512-524. [PMID: 32520682 DOI: 10.2174/1389200221666200610172105] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Salidroside is a glucoside of tyrosol found mostly in the roots of Rhodiola spp. It exhibits diverse biological and pharmacological properties. In the last decade, enormous research is conducted to explore the medicinal properties of salidroside; this research reported many activities like anti-cancer, anti-oxidant, anti-aging, anti-diabetic, anti-depressant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, etc. Objective: Despite its multiple pharmacological effects, a comprehensive review detailing its metabolism and therapeutic activities is still missing. This review aims to provide an overview of the metabolism of salidroside, its role in alleviating different metabolic disorders, diseases and its molecular interaction with the target molecules in different conditions. This review mostly concentrates on the metabolism, biological activities and molecular pathways related to various pharmacological activities of salidroside. CONCLUSION Salidroside is produced by a three-step pathway in the plants with tyrosol as an intermediate molecule. The molecule is biotransformed into many metabolites through phase I and II pathways. These metabolites, together with a certain amount of salidroside may be responsible for various pharmacological functions. The salidroside based inhibition of PI3k/AKT, JAK/ STAT, and MEK/ERK pathways and activation of apoptosis and autophagy are the major reasons for its anti-cancer activity. AMPK pathway modulation plays a significant role in its anti-diabetic activity. The neuroprotective activity was linked with decreased oxidative stress and increased antioxidant enzymes, Nrf2/HO-1 pathways, decreased inflammation through suppression of NF-κB pathway and PI3K/AKT pathways. These scientific findings will pave the way to clinically translate the use of salidroside as a multi-functional drug for various diseases and disorders in the near future.
Collapse
Affiliation(s)
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - A K Tiwari
- Department of Zoology, Dr. Bhanvar Singh Porte Government College, Pendra Bilaspur, India
| | | | | | | |
Collapse
|
38
|
Antioxidant Effects of Salidroside in the Cardiovascular System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9568647. [PMID: 33062029 PMCID: PMC7533795 DOI: 10.1155/2020/9568647] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is one of the main human health risks, and the incidence is increasing. Salidroside is an important bioactive component of Rhodiola rosea L., which is used to treat Alzheimer's disease, tumor, depression, and other diseases. Recent studies have shown that salidroside has therapeutic effects, to some degree, in cardiovascular diseases via an antioxidative mechanism. However, evidence-based clinical data supporting the effectiveness of salidroside in the treatment of cardiovascular diseases are limited. In this review, we discuss the effects of salidroside on cardiovascular risk factors and cardiovascular diseases and highlight potential antioxidant therapeutic strategies.
Collapse
|
39
|
Zhang Y, Lin F, Yan Z, Chen Z, Chen Y, Zhao Y, Zhao G. Salidroside downregulates microRNA‑133a and inhibits endothelial cell apoptosis induced by oxidized low‑density lipoprotein. Int J Mol Med 2020; 46:1433-1442. [PMID: 32945356 PMCID: PMC7447316 DOI: 10.3892/ijmm.2020.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/17/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial cell apoptosis is regulated by microRNA-133a (miR-133a), which participates in the formation of atherosclerotic (AS) plaques, leading to the development of several cardiovascular diseases. Salidroside (SAL), the main component of Rhodiola, is considered to exert anti-AS effect; however, its mode of action remains unclear. Thus, the present study aimed to determine whether SAL inhibits endothelial cell apoptosis through the miR-133a pathway. Cultured human coronary artery endothelial cells (HCAECs) were exposed to oxidized low-density lipoprotein (ox-LDL). Cell viability and cytotoxicity were monitored by MTT assay. In parallel, the mRNA expression levels of miR-133a and Bcl-xL, and the protein levels of anti-apoptotic Bcl-xL and activated caspase-3 were measured. The apoptotic levels were examined by flow cytometry. Furthermore, the effects of silencing and overexpressing miR-133a on the parameters mentioned above were evaluated. Exposure to ox-LDL induced an increase in the expression of miR-133a, with a concomitant decrease in the level of Bcl-xL in the HCAECs; these effects were reversed by treatment with SAL. Importantly, the effects of SAL were impaired upon the silencing of miR-133a, whereas the overexpression of miR-133a partly restored the effects of SAL. On the whole, the findings of the present study demonstrate that SAL inhibits the ox-LDL-induced upregulation of miR-133a expression, while promoting the expression of Bcl-xL, thereby preventing endothelial cell apoptosis.
Collapse
Affiliation(s)
- Yongjie Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Fei Lin
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Zhigang Yan
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Zhigang Chen
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Yingen Chen
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Yilin Zhao
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| | - Guoan Zhao
- The First Affiliated Hospital of Xinxiang Medical University, Henan Engineering Research Center for Mitochondrion Biomedical of Heart, Heart Center, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
40
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
41
|
Malekmohammad K, Sewell RD, Rafieian-Kopaei M. Mechanisms of Medicinal Plant Activity on Nitric Oxide (NO) Bioavailability as Prospective Treatments for Atherosclerosis. Curr Pharm Des 2020; 26:2591-2601. [DOI: 10.2174/1381612826666200318152049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Background and objective:
Atherosclerosis is one of the leading causes of human morbidity globally
and reduced bioavailability of vascular nitric oxide (NO) has a critical role in the progression and development of
the atherosclerotic disease. Loss of NO bioavailability, for example via a deficiency of the substrate (L-arginine)
or cofactors for endothelial nitric oxide synthase (eNOS), invariably leads to detrimental vascular effects such as
impaired endothelial function and increased smooth muscle cell proliferation, deficiency of the substrate (Larginine)
or cofactors for eNOS. Various medicinal plants and their bioactive compounds or secondary metabolites
with fewer side effects are potentially implicated in preventing cardiovascular disease by increasing NO
bioavailability, thereby ameliorating endothelial dysfunction. In this review, we describe the most notable medicinal
plants and their bioactive compounds that may be appropriate for enhancing NO bioavailability, and
treatment of atherosclerosis.
Methods:
The material in this article was obtained from noteworthy scientific databases, including Web of Science,
PubMed, Science Direct, Scopus and Google Scholar.
Results:
Medicinal plants and their bioactive compounds influence NO production through diverse mechanisms
including the activation of the nuclear factor kappa B (NF-κB) signaling pathway, activating protein kinase C
(PKC)-α, stimulating protein tyrosine kinase (PTK), reducing the conversion of nitrite to NO via nitrate-nitrite
reduction pathways, induction of eNOS, activating the phosphatidylinositol 3-kinase (PI3K)/serine threonine
protein kinase B (AKT) (PI3K/AKT/eNOS/NO) pathway and decreasing oxidative stress.
Conclusion:
Medicinal plants and/or their constituent bioactive compounds may be considered as safe therapeutic
options for enhancing NO bioavailability and prospective preventative therapy for atherosclerosis.
Collapse
Affiliation(s)
| | - Robert D.E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
42
|
Meng Q, Li J, Chao Y, Bi Y, Zhang W, Zhang Y, Ji T, Fu Y, Chen Q, Zhang Q, Li Y, Bian H. β-estradiol adjusts intestinal function via ERβ and GPR30 mediated PI3K/AKT signaling activation to alleviate postmenopausal dyslipidemia. Biochem Pharmacol 2020; 180:114134. [PMID: 32628929 DOI: 10.1016/j.bcp.2020.114134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Decreases in estrogen secretion and estrogen receptor function lead to an increase in the incidence of dyslipidemia and cardiovascular disease (CVD) in postmenopausal women. We previously reported that β-estradiol has a significant regulatory effect on lipids in ApoE-/- mice with bilateral ovariectomy. In the present study, we investigated how β-estradiol regulates intestinal function via estrogen receptors to alleviate postmenopausal dyslipidemia. Ovariectomized ApoE-/- mice were treated with β-estradiol for 90 days, and we found that β-estradiol reduced TC, TG, LDL-c, IL-1β and IL-18 levels in serum and decreased lipid accumulation in the liver. β-estradiol reduced injury and inflammation in the jejunum in ovariectomized mice, and promoted the expression of tight junction-related proteins. Moreover, β-estradiol increased ERα, ERβ, GPR30 and ABCG5 protein expression, and decreased the levels of NPC1L1 and SR-B1 in the jejunum of ovariectomized mice. In Caco-2 cells incubated with cholesterol, β-estradiol up-regulated PI3K/AKT signaling, reduced cholesterol accumulation, suppressed inflammatory signaling, and increased the expression of tight junction-related proteins. ERβ or GPR30 inhibition decreased the protective effect of β-estradiol on cholesterol accumulation, tight junctions, and inflammation in cholesterol incubated Caco-2 cells, while silencing both ERβ and GPR30 completely eliminated the protective effect of β-estradiol. PI3K/AKT inhibition abolished the protective effect of β-estradiol on cholesterol accumulation, tight junction-related protein expression, and inflammation, but had no influence on ERα, ERβ or GPR30 expression in cholesterol incubated Caco-2 cells. Our results provide evidence that β-estradiol regulates intestinal function via ERβ and GPR30 mediated PI3K/AKT signaling activation to alleviate postmenopausal dyslipidemia.
Collapse
Affiliation(s)
- Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
43
|
Salidroside-Mediated Autophagic Targeting of Active Src and Caveolin-1 Suppresses Low-Density Lipoprotein Transcytosis across Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9595036. [PMID: 32685103 PMCID: PMC7333065 DOI: 10.1155/2020/9595036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Subendothelial retention of apolipoprotein B100-containing lipoprotein, such as low-density lipoprotein (LDL), is the initial step of atherogenesis. Activation of autophagy exhibits beneficial effects for the treatment of atherosclerosis. In our previous study, we demonstrated that hyperglycemia suppressed autophagic degradation of caveolin-1, which in turn resulted in acceleration of caveolae-mediated LDL transcytosis across endothelial cells and lipid retention. Therefore, targeting the crossed pathway in autophagy activation and LDL transcytosis interruption may be a promising antiatherosclerotic strategy. In metabolic diseases, including atherosclerosis, salidroside, a phenylpropanoid glycoside compound (3,5-dimethoxyphenyl) methyl-β-glucopyranoside), is the most important compound responsible for the therapeutic activities of Rhodiola. However, whether salidroside suppresses LDL transcytosis to alleviate atherosclerosis has not yet been elucidated. In the present study, we demonstrated that salidroside significantly decreased LDL transcytosis across endothelial cells. Salidroside-induced effects were dramatically blocked by AMPK (adenosine monophosphate-activated protein kinase) inhibitor (compound c, AMPKα siRNA) and by overexpression of exogenous tyrosine-phosphorylated caveolin-1 using transfected cells with phosphomimicking caveolin-1 on tyrosine 14 mutant plasmids (Y14D). Furthermore, we observed that salidroside promoted autophagosome formation via activating AMPK. Meanwhile, the interaction between caveolin-1 and LC3B-II, as well as the interaction between active Src (indicated by the phosphorylation of Src on tyrosine 416) and LC3B-II, was significantly increased, upon stimulation with salidroside. In addition, both bafilomycin A1 (a lysosome inhibitor) and an AMPK inhibitor (compound c) markedly prevented salidroside-induced autophagic degradation of p-Src and caveolin-1. Moreover, the phosphorylation of caveolin-1 on tyrosine 14 was disrupted due to the downregulation of p-Src and caveolin-1, thereby directly decreasing LDL transcytosis by attenuating the number of caveolae on the cell membrane and by preventing caveolae-mediated LDL endocytosis released from the cell membrane. In ApoE−/− mice, salidroside significantly delayed the formation of atherosclerotic lesions. Meanwhile, a significant increase in LC3B, accompanied by attenuated accumulation of the autophagy substrate SQSTM1, was observed in aortic endothelium of ApoE−/− mice. Taken together, our findings demonstrated that salidroside protected against atherosclerosis by inhibiting LDL transcytosis through enhancing the autophagic degradation of active Src and caveolin-1.
Collapse
|
44
|
Ye S, Wang W, Chen X, Deng Y. Sesamin promotes angiogenesis and accelerates wound healing in rats via alleviates TBHP-induced apoptosis in human umbilical vein endothelial cells. Biosci Biotechnol Biochem 2020; 84:887-897. [PMID: 31964241 DOI: 10.1080/09168451.2020.1715200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/29/2019] [Indexed: 12/24/2022]
Abstract
Acute stress induces tissue damage through excessive cellular apoptosis. In our study, the effects of sesamin on apoptosis and wound healing were investigated. The angiogenesis effect of sesamin was evaluated by the abilities of adherence, migration and tube formation in human umbilical vein endothelial cells (HUVECs). Our data demonstrated that treatment with sesamin dose-dependently promoted the proliferation, adherence, migration and enhanced their angiogenic ability in vitro. Moreover, the increased apoptosis in HUVECs, which stimulated by tert-butyl hydroperoxide (TBHP) was significantly attenuated by the sesamin treatment. Furthermore, we revealed that neogenesis of granulation tissue and deposition and remodeling of the collagen matrix were accelerated by the administration of sesamin in our in vivo study. These results confirm that sesamin accelerates wound healing at least partly through its antiapoptotic effects on endothelial cells at the injury site. Thus, sesamin represents a potential therapeutic medicine for vessel injury-related wounds.
Collapse
Affiliation(s)
- Sunzhi Ye
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingbin Deng
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Wen SY, Chen YY, Lu JX, Liang QQ, Shi H, Wu Q, Yao ZH, Zhu Y, Jiang MM. Modulation of hepatic lipidome by rhodioloside in high-fat diet fed apolipoprotein E knockout mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:152690. [PMID: 30389273 DOI: 10.1016/j.phymed.2018.09.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Rhodioloside is a glucoside of tyrosol isolated from Rhodiola rosea. However, its regulating effect on hepatic dyslipidemia of atherogenic mice has rarely been studied. PURPOSE The specific aims of current study included to clarify lipidomic perturbation in liver tissues of apolipoprotein E deficient (apoE-/-) mice fed with high-fat diet, and to examine the effects of rhodioloside against atherosclerosis and dyslipidemia. STUDY DESIGN The comparisons of hepatic lipidome were executed between wide type (WT) mice fed with normal diet (NDC) and apoE-/- mice fed with high-fat diet (Model), WT mice fed with high-fat diet (HFDC) versus the model mice, as well as the model mice versus rhodioloside-treated atherosclerotic mice. METHODS Ultra high performance liquid chromatography coupled with a Q exactive hybrid quadrupole-orbitrap mass spectrometry (UPLC-MS/MS) was employed to provide an unbiased and simultaneous measurement of individual lipid species in liver tissues. RESULTS Multivariate statistical analysis derived from LC-MS spectra revealed that high-fat diet and apoE deficiency caused a series of disturbances on glyerolipid metabolism, glycerophospholipid metabolism and sphingolipid metabolism. Rhodioloside administration showed atheroprotective effects on the apoE-/- mice with regulating the levels of 1 phosphatidylcholine, 2 phosphatidylserines, 5 alkyldiacylglycerols and 3 alkenyldiacylglycerols back to normal. In particular, PC (4:0/15:0) was positively associated with high-density lipoprotein cholesterol in blood, both of which could be ameliorated by rhodioloside. CONCLUSION Our results identified the abnormal hepatic lipids in atherosclerosis progression that could efficiently improved by rhodioloside. These lipids contributed to biological understanding of atherogenic dyslipidemia in liver and could also served as sensitive indicators for drug target screening.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yan-Yan Chen
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jia-Xi Lu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qian-Qian Liang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hong Shi
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology, Shanghai 201203, China.
| | - Zhi-Hong Yao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yan Zhu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Miao-Miao Jiang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
46
|
Alamgeer, Asif H, Sandhu MZA, Aziz M, Irfan HM, Moreno KGT, Junior AG. Ameliorative Effects and Cellular Aspects of Phytoconstituents in Atherosclerosis. Curr Pharm Des 2020; 26:2574-2582. [PMID: 32056518 DOI: 10.2174/1381612826666200214161139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a cardiovascular disease that involves vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis by affecting various factors that are involved in the disease. The present review discusses our current knowledge of the major cellular and molecular mechanisms of phytotherapeutics for the treatment of atherosclerosis. Numerous studies have evaluated the antiatherosclerotic activity of phytoconstituents to provide preliminary evidence of efficacy, but only a few studies have delineated the underlying molecular mechanisms. Plant-derived phytotherapeutics primarily targets abnormal levels of lipoproteins, endothelial dysfunction, smooth muscle cell migration, foam cell development, and atheromatous plaque formation. Nonetheless, the principal mechanisms that are responsible for their therapeutic actions remain unclear. Further pharmacological studies are needed to elucidate the underlying molecular mechanisms of the antiatherosclerotic response to these phytoconstituents.
Collapse
Affiliation(s)
- Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hira Asif
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan,Department of Pharmacy, University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Muhammad Z A Sandhu
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Madiha Aziz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hafiz M Irfan
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Karyne G T Moreno
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
47
|
Shati AA. Salidroside ameliorates diabetic nephropathy in rats by activating renal AMPK/SIRT1 signaling pathway. J Food Biochem 2020; 44:e13158. [PMID: 32030786 DOI: 10.1111/jfbc.13158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/02/2023]
Abstract
This study investigated if the nephroprotective effect of Salidroside T1DM rats involves activation of AMPK/SIRT1. Rats were divided into control or T1DM and treated with vehicle or Salidroside (100 mg/kg) for 56 days. Mesangial cells were cultured in LG or HG media with or without Salidroside (100 µM/L) for 24 hr. Also, HG + Salidroside-treated cells were pre-incubated with EX-527 or compound C (CC) for 1 hr. With reducing glucose levels, Salidroside improved kidney structure/function in the T1DM rat. It also increased GSH and Bcl-2 levels in control and T1DM rats and inhibited ROS, increased activation of AMPK and nuclear SIRT1, and lowered acetylation of P53 and FOXO-1 in control and T1DM rats and in LG and HG-treated cells. These effects were abolished by EX-527 and CC. Also, CC decreased the nuclear levels of SIRT1. In conclusion, Salidroside attenuates DN in T1DM rats by activation of AMPK and subsequently, SIRT1. PRACTICAL APPLICATIONS: This animal and pre-clinical study shows that Salidroside is able to ameliorate DN in T1DM-induced rats and showed that it mainly acts by a hypoglycemic effect and activation of renal AMPK/SIRT1 axis. Given the wide tissue stimulatory effect of AMPK on peripheral glucose utilization, lipogenesis, and other cell signaling pathways, these data are encouraging to investigate the anti-diabetic effect of glycoside in more clinical trials.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, Science College, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
48
|
Chen L, Qin L, Liu X, Meng X. CTRP3 Alleviates Ox-LDL-Induced Inflammatory Response and Endothelial Dysfunction in Mouse Aortic Endothelial Cells by Activating the PI3K/Akt/eNOS Pathway. Inflammation 2020; 42:1350-1359. [PMID: 30887395 DOI: 10.1007/s10753-019-00996-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel, certified, adipokine that beneficially regulates metabolism and inflammation in the cardiovascular system. Atherosclerotic plaque rupturing and secondary thrombosis cause vascular disorders, such as myocardial infarction and unstable angina. However, the underlying role of CTRP3 in atherosclerosis remains unclear. In this study, we aimed to elucidate whether and how CTRP3 ameliorates inflammation and endothelial dysfunction caused by oxidized low-density lipoprotein (ox-LDL). We first confirmed that CTRP3 expression was inhibited in ApoE-/- mice, compared to normal mice. Then, pcDNA-CTRP3 and siCTRP3 were transfected into mouse aortic endothelial cells after ox-LDL stimulation, and we observed that enhanced CTRP3 remarkably downregulated CRP, TNF-α, IL-6, CD40, and CD40L. We also observed that overexpression of CTRP3 elevated cell activity and decreased lactated hydrogenase release, accompanied by a marked reduction in cell apoptosis induced by ox-LDL. Meanwhile, overexpressed CTRP3 caused a decrease in Ang II, ICAM-1, and VCAM-1 expression, and it restored the balance between ET-1 and NO. Mechanism analysis confirmed that incremental CTRP3 upregulated p-PI3K, p-Akt, and p-eNOS expression, indicating that CTRP3 facilitated activation of the PI3K/Akt/eNOS pathway. On the contrary, siCTRP3 exerted the opposite effect to this activation. Blocking these pathways using LY294002 or L-NAME attenuated the protective role of CTRP3. Overall, these results suggest that CTRP3 can efficiently inhibit the inflammatory response and endothelial dysfunction induced by ox-LDL in mouse aortic endothelial cells, perhaps by activating the PI3K/Akt/eNOS pathway, indicating a promising strategy against atherosclerosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Critical Care Medicine, Gansu Provincial Hospital of TCM, No. 418, Guazhou Road, Qilihe District, Lanzhou City, 730050, Gansu, People's Republic of China.
| | - Lijun Qin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, People's Republic of China
| | - Xin Liu
- Department of Rheumatic Osteopathology, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| | - Xiangyun Meng
- Central Laboratory, Gansu Provincial Hospital of TCM, Lanzhou, 730050, Gansu, People's Republic of China
| |
Collapse
|
49
|
Hu R, Wang MQ, Ni SH, Wang M, Liu LY, You HY, Wu XH, Wang YJ, Lu L, Wei LB. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol 2020; 867:172797. [DOI: 10.1016/j.ejphar.2019.172797] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 01/22/2023]
|
50
|
Xie H, Shen CY, Jiang JG. The sources of salidroside and its targeting for multiple chronic diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|