1
|
Zhao T, Heinrich J, Brauer M, Fulman N, Idrose NS, Baumbach C, Buters J, Markevych I, Ritz B, Tham R, Yang BY, Zeng XW, Alashhab S, Gui ZH, Lin LZ, Nowak D, Sadeh M, Singh N, Dong GH, Fuertes E. Urban greenspace under a changing climate: Benefit or harm for allergies and respiratory health? Environ Epidemiol 2025; 9:e372. [PMID: 39957764 PMCID: PMC11826049 DOI: 10.1097/ee9.0000000000000372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
An increasing proportion of the world's population lives in urban settings that have limited greenspace. Urbanization puts pressure on existing greenspace and reduces its access. Climate impacts, including increased temperature and extreme weather events, challenge the maintenance of urban vegetation, reducing its ecosystem services and benefits for human health. Although urban greenspace has been positively associated with numerous health indicators, the evidence for allergies and respiratory health is much less clear and mixed. To address these uncertainties, a workshop with 20 global participants was held in Munich, Germany, in May 2024, focusing on the impact of greenspace-related co-exposures on allergies and respiratory health. This narrative review captures key insights from the workshop, including the roles of urban greenspace in (1) climate change mitigation, (2) interactions with pollen, and (3) emissions of biogenic volatile organic compounds and their byproducts, such as ozone. Additionally, it presents research and stakeholder recommendations from the workshop. Future studies that integrate advanced greenspace exposure assessments and consider the interplay of greenspace with pollen and biogenic volatile organic compounds, along with their relevant byproducts are needed. Increased public awareness and policy actions will also be essential for developing urban greenspace that maximizes health benefits, minimizes risks, and ensures resilience amid a changing climate and rapid urbanization.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Michael Brauer
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA
- University of British Columbia, Vancouver, Canada
| | - Nir Fulman
- Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- GIScience Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany
| | - Nur Sabrina Idrose
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Clemens Baumbach
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Jeroen Buters
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
- Research Group “Health and Quality of Life in a Green and Sustainable Environment,” Strategic Research and Innovation Program for the Development of MU—Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
- Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Rachel Tham
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Department of Medicine, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Bo-Yi Yang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Samer Alashhab
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Maya Sadeh
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Taub Center for Social Policy Studies in Israel, Jerusalem, Israel
| | - Nitika Singh
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- MRC Centre for Environment and Health, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Melaram R, Zhang H, Adefisoye J, Arshad H. The Association of Childhood Allergic Diseases with Prenatal Exposure to Pollen Grains Through At-Birth DNA Methylation. EPIGENOMES 2025; 9:9. [PMID: 40136322 PMCID: PMC11940834 DOI: 10.3390/epigenomes9010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Pollen exposure in early life is shown to be associated with allergy and asthma. DNA methylation (DNAm), an epigenetic marker, potentially reacts to pollen. However, the role of at-birth DNAm between prenatal pollen grain (PPG) exposure and childhood asthma and allergic rhinitis is unknown. METHODS Data in a birth cohort study on the Isle of Wight, UK, were analyzed (n = 236). Newborn DNAm was measured in cord blood or blood spots on Guthrie cards and screened for potential association with PPG exposure using the R package ttScreening. CpGs that passed screening were further assessed for such associations via linear regressions with adjusting covariates included. Finally, DNAm at PPG-associated CpGs were evaluated for their association with asthma and allergic rhinitis using logistic regressions, adjusting for covariates. The impact of cell heterogeneity on the findings was assessed. Statistical significance was set at p < 0.05. RESULTS In total, 42 CpGs passed screening, with 41 remaining statistically significant after adjusting for covariates and cell types (p < 0.05). High PPG exposure was associated with lower DNAm at cg12318501 (ZNF99, β = -0.029, p = 0.032) and cg00929606 (ADM2, β = -0.023, p = 0.008), which subsequently was associated with decreased odds of asthma (OR = 0.11, 95% CI 0.02-0.53, p = 0.006; OR = 0.14, 95% CI 0.02-1.00, p = 0.049). For rhinitis, cg15790214 (HCG11) was shown to play such a role as a mediator (β = -0.027, p ≤ 0.0001; OR = 0.22, 95% CI 0.07-0.72, p = 0.01). CONCLUSIONS The association of PPG exposure with childhood asthma and allergic rhinitis incidence is potentially mediated by DNAm at birth.
Collapse
Affiliation(s)
- Rajesh Melaram
- College of Nursing and Health Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA;
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA;
| | - James Adefisoye
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA;
| | - Hasan Arshad
- David Hide Asthma and Allergy Research Centre, St. Mary’s Hospital, Newport PO30 5TG, UK;
| |
Collapse
|
3
|
Tudela JI, Soria I, Abel-Fernández E, Cantillo JF, Fernández-Caldas E, Subiza JL, Iborra S. Polymerised mite allergoids with glutaraldehyde reduce proteolytic activity and enhance the stability of allergen mixtures: a proof of concept with grass mixtures. FRONTIERS IN ALLERGY 2025; 6:1557650. [PMID: 40071131 PMCID: PMC11893842 DOI: 10.3389/falgy.2025.1557650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Background Polysensitized patients require allergen immunotherapy (AIT) targeting multiple allergens. However, combining allergen extracts can lead to instability and reduced efficacy particularly due to the high proteolytic activity of house dust mite (HDM) allergens. While is known that glutaraldehyde cross-linking may reduce enzymatic activity, its ability to stabilize multi-allergen formulations and protect key allergens from degradation remains unexplored. Objective To evaluate the impact of glutaraldehyde polymerization on the stability and immunogenicity of HDM and grass pollen allergen formulations, addressing proteolytic activity challenges in multi-allergen vaccines. Methods Stability was assessed over 24 months through protein quantification and antigenic activity assays. Proteolytic activity of HDM-containing extracts was measured using Azocoll, and peptide substrate-based enzymatic assays. Grass pollen allergen degradation was evaluated by SDS-PAGE, immunoblotting, and ELISA Immunogenicity was assessed in mice immunized with grass allergoids alone or in combination with glutaraldehyde-polymerised HDM, measuring IgG responses, splenocyte proliferation, and IL-10 production. Results Glutaraldehyde polymerization significantly reduced HDM proteolytic activity (p < 0.0001), achieving reductions of 97.7%, 77.9%, and 89.9% in total protease activity, cysteine protease activity, and serine protease activity, respectively. This inhibition protected grass pollen allergens when mixed with HDM from degradation, ensuring consistent protein content and antigenic activity over 24 months. Mice immunized with grass allergoids alone or combined with polymerised mite extracts showed similar IgG responses and T-cell activation, indicating no compromise in the immune response to grass allergens, with IL-10 secretion confirming preserved regulatory responses. Conclusions Polymerised allergen extracts address the challenges of proteolytic degradation in multi-allergen formulations, offering stable, immunogenic vaccines that maintain efficacy and provide a reliable treatment option for polyallergic patients.
Collapse
Affiliation(s)
| | - Irene Soria
- R&D Department, Inmunotek, Alcalá de Henares, Spain
| | | | | | | | | | - Salvador Iborra
- R&D Department, Fundación Inmunotek, Alcalá de Henares, Spain
| |
Collapse
|
4
|
Zhang L, Du P, Zheng Q, Zhao M, Zhang R, Wang Z, Xu Z, Li X, Thai PK. Exposure to smoking and greenspace are associated with allergy medicine use - A study of wastewaterin 28 cities of China. ENVIRONMENT INTERNATIONAL 2025; 196:109291. [PMID: 39864136 DOI: 10.1016/j.envint.2025.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Allergies have become an important public health issue as their occurrence is reportedly on the rise around the world. Exposure to environmental factors is considered as trigger for allergic diseases. However, there was limited data on the importance of each factor, particularly in China. In this study, we aimed to investigate the association between occurrence of allergic diseases with exposure to multiple environmental factors via wastewater surveillance across 28 cities in China. The surveillance was conducted by measuring biomarkers of proxies of allergic diseases, i.e. antihistamines, asthma drug, and of smoking, i.e. cotinine in wastewater. Data of green space and air quality were also collected. We observed the level of antihistamine use were significantly associated with smoking, green space and pollen but not significant with air pollution. People in Northern China used more antihistamines than their compatriots in Southern China, an observation aligning with previous reporting of more allergy prevalence in the North than the South of China. Our study affirmed that in China smoking is responsible for a rise in allergy and asthma in the population. Meanwhile, selected sensitizing pollens (occurring during summer) could have stronger impact to trigger allergies than other pollens (occurring in winter).
Collapse
Affiliation(s)
- Lingrong Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China.
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Menglin Zhao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China
| | - Ruyue Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zeqiong Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
5
|
Haider W, Pan W, Wang D, Niaz W, Zaman MK, Ullah R, Ullah S, Rafiq M, Yu B, Cong H. Maackiain: A comprehensive review of its pharmacology, synthesis, pharmacokinetics and toxicity. Chem Biol Interact 2025; 405:111294. [PMID: 39477181 DOI: 10.1016/j.cbi.2024.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Maackiain is an important component of some herbs in traditional Chinese medicine (TCM), such as Sophora flavescens Aiton, Spatholobus suberectus Dunn and Paeonia lactiflora Pall. Maackiain belongs to the second largest group of isoflavonoids the pterocarpans that is widespread in several plant genera, for example Maackia, Sophora, Caragana, Trifolium and Millettia. Recently, maackiain has attracting more attention because of its numerous pharmacological properties. This review offers the first extensive overview of maackiain natural isolation sources, pharmacological activities, synthesis, toxicity, and pharmacokinetic properties. The literature search published between 1962 and 2023 were reported by collecting the data from Google Scholar, Science Direct, SpringerLink, Web of Science, PubMed, Wiley Online, China National Knowledge Infrastructure, Scopus and structure search in SciFinder. Finding reveals the broad range of pharmacological activities of maackiain, such as anti-inflammatory, sepsis prevention, anti-cancer, anti-allergic, anti-osteolytic, anti-obesity, nephroprotective, antifungal, neuroprotective, anti-leukemic, antimalarial and inflammasome activation. Based on findings of pharmacokinetic studies, it is observed that maackiain possesses a low level of bioavailability and absorption and a rapid rate of elimination, but maackiain absorption rates in the extract were comparatively much higher than pure forms because of higher solubility and may reduce the metabolism by other ingredients present in the extract. Toxicity investigations revealed that maackiain is non-toxic to the majority of cells and selectively cytotoxic. After witnessing the beneficial pharmacological properties of maackiain, it is believed to be an emerging drug candidate for the treatment of inflammation, allergic, nephroprotection in T2D, depression, or Alzheimer's disease and obesity. However, future research topics should likely to include that elucidates its mechanism of toxicity and in vivo proper tracking of its conducts in drug delivery system. Integrating toxicity and efficiency, as well as structure modification, are critical approaches to enhancing its pharmacological properties and oral bioavailability.
Collapse
Affiliation(s)
- Waqas Haider
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei Pan
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Waqas Niaz
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Kashif Zaman
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Raza Ullah
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shakir Ullah
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles. Qingdao University, Qingdao, 266000, Shandong, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
6
|
González-Pérez R, Galván-Calle CA, Galán T, Poza-Guedes P, Sánchez-Machín I, Enrique-Calderón OM, Pineda F. Molecular Signatures of Aeroallergen Sensitization in Respiratory Allergy: A Comparative Study Across Climate-Matched Populations. Int J Mol Sci 2024; 26:284. [PMID: 39796138 PMCID: PMC11720654 DOI: 10.3390/ijms26010284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Climate change is significantly altering the dynamics of airborne allergens, affecting their seasonality, allergenicity, and geographic distribution, which correlates with increasing rates of allergic diseases. This study investigates aeroallergen sensitization among populations from Tenerife, Spain, and Lima, Peru-two regions with similar climates but distinct socio-economic conditions. Our findings reveal that Spanish individuals, particularly those with asthma, demonstrate higher sensitization levels to a broader range of allergens, especially mites, with 85% of participants reacting to at least one mite allergen. In contrast, Peruvian patients exhibit a narrower spectrum of sensitization. These results highlight the influence of environmental factors, such as pollution and socio-economic disparities, on allergen exposure and immune responses. Moreover, this study underscores the necessity for region-specific diagnostic and therapeutic strategies to effectively address these variations. By elucidating the intricate relationship between climate change, environmental factors, and allergen sensitization, this research offers insights into respiratory allergic conditions, advocating for tailored interventions to mitigate their impact across diverse populations.
Collapse
Affiliation(s)
- Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (P.P.-G.); (I.S.-M.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Instituto de Investigación Sanitaria de Canarias (IISC), 38320 Tenerife, Spain
| | | | - Tania Galán
- Inmunotek SL Laboratories, 28000 Madrid, Spain; (T.G.); (F.P.)
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (P.P.-G.); (I.S.-M.)
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Instituto de Investigación Sanitaria de Canarias (IISC), 38320 Tenerife, Spain
| | - Inmaculada Sánchez-Machín
- Allergy Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain; (P.P.-G.); (I.S.-M.)
- Instituto de Investigación Sanitaria de Canarias (IISC), 38320 Tenerife, Spain
- Allergen Immunotherapy Unit, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | | | - Fernando Pineda
- Inmunotek SL Laboratories, 28000 Madrid, Spain; (T.G.); (F.P.)
| |
Collapse
|
7
|
Ventura R, Bae JS, Kim EH, Kim AY, Oh MH, Kim JH, Yoo SH, Ryu G, Mo JH. Evaluating the Therapeutic Potential of Microneedle Patch Laser With Multiple Wavelengths in Allergic Rhinitis: Insights From an Allergic Rhinitis Mouse Model. Lasers Surg Med 2024; 56:854-864. [PMID: 39563091 DOI: 10.1002/lsm.23862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE There is insufficient evidence to determine the effectiveness of treating allergic rhinitis with a patch laser affix to the skin as opposed to direct intranasal irradiation of the nasal mucosa. We aimed to evaluate the effect of the microneedle patch laser with multiple wavelengths in an allergic rhinitis (AR) mouse model and its underlying mechanism. METHODS The microneedle patch laser was attached to the skin above the mouse's nasal cavity, transmitting light to the nasal mucosa. For 10 days, the microneedle patch laser administered simultaneous exposure to wavelengths of 670, 780, 850, and 910 nm at either 10 or 20 min each day. Multiple allergic parameters were evaluated following the microneedle patch laser treatment. RESULTS Microneedle patch laser treatment decreased allergic symptoms and inhibited OVA-specific IgE levels. Additionally, it significantly reduced eosinophil infiltration, epithelial thickness of the nasal mucosa, and IL-4 cytokine levels. CONCLUSION The light emitted by the microneedle patch laser attached to the skin, penetrated effectively to the nasal mucosa within the nasal cavity, suggesting potential for treating allergic rhinitis in mice and could be extended in clinical applications.
Collapse
Affiliation(s)
- Reiza Ventura
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Jun-Sang Bae
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Eun Hee Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - A Young Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Min Hyuck Oh
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Ji Hye Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Gwanghui Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Hun Mo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
8
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, V: deciphering allergenicity. FRONTIERS IN ALLERGY 2024; 5:1454292. [PMID: 39552700 PMCID: PMC11565521 DOI: 10.3389/falgy.2024.1454292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The Acari Hypothesis posits that acarians, i.e., mites and ticks, are operative agents of allergy. It derived from observations that allergens are molecular elements of acarians or acarian foodstuffs. A corollary of The Hypothesis provides how acarian dietary elements are selected as allergens; namely, a pattern recognition receptor native to the acarian digestive tract complexes with dietary molecules problematic to the acarian. By virtue of its interspecies operability, the receptor then enables not only removal of the dietary elements by the acarian immune system, but also-should such a complex be inoculated into a human-production of an element-specific IgE. Because pattern recognition receptors bind to molecules problematic to the organism from which the receptors originate, it follows that molecules targeted by adaptive IgE, i.e., allergens, must be problematic to acarians. This claim is supported by evidence that host organisms, when infested by acarians, upregulate representative members of allergenic molecular families. Appreciation of the relationship between allergens and acarians provides insight well beyond allergy, shedding light also on the anti-acarian defenses of many living things, especially humans.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV, United States
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Žilka M, Hrabovský M, Dušička J, Zahradníková E, Gahurová D, Ščevková J. Comparative analysis of airborne fungal spore distribution in urban and rural environments of Slovakia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63145-63160. [PMID: 39477828 PMCID: PMC11599331 DOI: 10.1007/s11356-024-35470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
Monitoring airborne fungal spores is crucial for public health and plant production since they belong to important aeroallergens and phytopathogens. Due to different land use, their concentration can differ significantly between urban and rural areas. We monitored their spectrum and quantity on two geographically close sites with a different degree of urbanisation: Bratislava City and Kaplna Village in Slovakia, located 38 km apart. We recorded the spectrum of airborne fungal spores over a year and confirmed the microscopic results by amplicon-based metagenomic analysis. The main spore season of the most frequent genera lasted over a week longer in Kaplna, but its intensity was approximately two-fold higher in Bratislava. This can be possibly connected to the microclimatic conditions of the urban area (especially wind speed and heat island effect) and the lesser use of fungicides. Cladosporium was the dominant genus on both sites, influencing the intensity most significantly. Through statistical analysis of the influence of meteorological parameters on airborne fungal spore levels, we identified a significant relationship with temperature, while the impact of other parameters varied depending on the spore type and release mechanism. Our results show the differences in airborne fungal spore levels between urban and rural areas and highlight the necessity for more monitoring stations in various environments.
Collapse
Affiliation(s)
- Matúš Žilka
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Michal Hrabovský
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Jozef Dušička
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Eva Zahradníková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Dominika Gahurová
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia.
| |
Collapse
|
10
|
Naclerio RM, Ansotegui IJ, Canonica GW, Rouadi P, Zhang L, Murrieta-Aguttes M. Twenty-five years: The fexofenadine clinical experience. World Allergy Organ J 2024; 17:100950. [PMID: 39252789 PMCID: PMC11382105 DOI: 10.1016/j.waojou.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/05/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Allergic rhinitis (AR) and urticaria affect a sizable portion of the population worldwide, resulting in reduced quality-of-life and productivity and increased healthcare costs. Fexofenadine (FEX) is a non-sedating second-generation H1 antihistamine with pronounced efficacy and a very good safety profile, used for the treatment of allergic diseases. In addition to its antihistaminic properties, FEX also has anti-inflammatory effects. FEX has a wide therapeutic window and is not associated with any sedative effects, even at higher than recommended doses. There is a need for an integrated management system for AR and urticaria which includes safe and effective treatment options. An ideal anti-allergic formulation should provide fast relief of symptoms and long-lasting effect without drowsiness. Data from randomized clinical trials show that FEX meets these criteria and is an effective treatment option with a favourable safety profile, improving the quality of life of patients suffering from AR and urticaria.
Collapse
Affiliation(s)
- Robert M Naclerio
- John Hopkins School of Medicine, Department of Otolaryngology-Head and Neck Surgery USA
| | | | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- Asthma & Allergy Unit-IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | - Luo Zhang
- Department Otolaryngology and Neck Surgery Beijing Tong Ren Hospital, Beijing Institute of Otolaryngology, Beijing, China
| | | |
Collapse
|
11
|
Calatayud V, Cariñanos P. Mapping pollen allergenicity from urban trees in Valencia: A tool for green infrastructure planning. ENVIRONMENTAL RESEARCH 2024; 252:118823. [PMID: 38570127 DOI: 10.1016/j.envres.2024.118823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Urban trees provide many benefits to citizens but also have associated disservices such as pollen allergenicity. Pollen allergies affect 40% of the European population, a problem that will be exacerbated with climate change by lengthening the pollen season. The allergenic characteristics of the urban trees and urban parks of the city of Valencia (Spain) have been studied. The Value of Potential Allergenicity (VPA) was calculated for all species. The most abundant allergenic trees with a very high VPA were the cypresses, followed by Platanus x hispanica and species of genera Morus, Acer and Fraxinus, with a high VPA. On the contrary, Citrus x aurantium, Melia azedarach, Washingtonia spp., Brachychiton spp. and Jacaranda mimosifolia were among the most abundant low allergenic trees. VPA was mapped for the city and a hot spot analysis was applied to identify areas of clustering of high and low VPA values. This geostatistical analysis provides a comprehensive representation of the VPA patterns which is very useful for urban green infrastructure planning. The Index of Urban Green Zone Allergenicity (IUGZA) was calculated for the main parks of the city. The subtropical and tropical flora component included many entomophilous species and the lowest share of high and very high allergenic trees in comparison with the Mediterranean and Temperate components. Overall, a diversification of tree species avoiding clusters of high VPA trees, and the prioritization of species with low VPA are good strategies to minimize allergy-related impacts of urban trees on human health.
Collapse
Affiliation(s)
- Vicent Calatayud
- Fundación CEAM, Parque Tecnológico, Charles R. Darwin 14, Paterna, Spain.
| | - Paloma Cariñanos
- Departament of Botany, University of Granada, Granada, Spain; Andalusian Institute for Earth System Research, University of Granada, Spain
| |
Collapse
|
12
|
Leap SR, Soled DR, Sampath V, Nadeau KC. Effects of extreme weather on health in underserved communities. Ann Allergy Asthma Immunol 2024; 133:20-27. [PMID: 38648975 PMCID: PMC11222027 DOI: 10.1016/j.anai.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Increased fossil fuel use has increased carbon dioxide concentrations leading to global warming and climate change with increased frequency and intensity of extreme weather events such as thunderstorms, wildfires, droughts, and heat waves. These changes increase the risk of adverse health effects for all human beings. However, these experiences do not affect everyone equally. Underserved communities, including people of color, the elderly, people living with chronic conditions, and socioeconomically disadvantaged groups, have greater vulnerability to the impacts of climate change. These vulnerabilities are a result of multiple factors such as disparities in health care, lower educational status, and systemic racism. These social inequities are exacerbated by extreme weather events, which act as threat multipliers increasing disparities in health outcomes. It is clear that without human action, these global temperatures will continue to increase to unbearable levels creating an existential crisis. There is now global consensus that climate change is caused by anthropogenic activity and that actions to mitigate and adapt to climate change are urgently needed. The 2015 Paris Accord was the first truly global commitment that set goals to limit further warming. It also aimed to implement equity in action, founded on the principle of common but differentiated responsibilities. Meeting these goals requires individual, community, organizational, national, and global cooperation. Health care professionals, often in the frontline with firsthand knowledge of the health impacts of climate change, can play a key role in advocating for just and equitable climate change adaptation and mitigation policies.
Collapse
Affiliation(s)
- Sotheany R Leap
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Derek R Soled
- Department of Medicine and Pediatrics, Brigham and Women's Hospital, Boston Children's Hospital, and Boston Medical Center, Boston, Massachusetts
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
13
|
Bauer R, Dang HH, Neureiter D, Unger MS, Neuper T, Jensen M, Taliento AE, Strandt H, Gratz I, Weiss R, Sales A, Horejs-Hoeck J. NLRP3 promotes allergic responses to birch pollen extract in a model of intranasal sensitization. Front Immunol 2024; 15:1393819. [PMID: 38933263 PMCID: PMC11199694 DOI: 10.3389/fimmu.2024.1393819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction & Objective Allergic sensitization is an essential step in the development of allergic airway inflammation to birch pollen (BP); however, this process remains to be fully elucidated. Recent scientific advances have highlighted the importance of the allergen context. In this regard, microbial patterns (PAMPs) present on BP have attracted increasing interest. As these PAMPs are recognized by specialized pattern recognition receptors (PRRs), this study aims at investigating the roles of intracellular PRRs and the inflammasome regulator NLRP3. Methods We established a physiologically relevant intranasal and adjuvant-free sensitization procedure to study BP-induced systemic and local lung inflammation. Results Strikingly, BP-sensitized Nlrp3-deficient mice showed significantly lower IgE levels, Th2-associated cytokines, cell infiltration into the lung, mucin production and epithelial thickening than their wild-type counterparts, which appears to be independent of inflammasome formation. Intriguingly, bone-marrow chimera revealed that expression of NLRP3 in the hematopoietic system is required to trigger an allergic response. Conclusion Overall, this study identifies NLRP3 as an important driver of BP-induced allergic immune responses.
Collapse
Affiliation(s)
- Renate Bauer
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| | - Michael Stefan Unger
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Melanie Jensen
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Alice Emma Taliento
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Helen Strandt
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris Gratz
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Angelika Sales
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
14
|
Xu C, Chai D, Zheng P, Qiu R, Pan X, Zhang Y. The Sensitization Differences of Pollen Allergen Components in Patients with Asthma and/or Rhinitis in Southern China. Int Arch Allergy Immunol 2024; 185:821-826. [PMID: 38705139 DOI: 10.1159/000538403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
INTRODUCTION This study aim to analyzed the main pollen allergen components that cause allergic asthma and/or rhinitis and the cross-reactions between the allergen components. METHODS Twenty one allergic rhinitis patients and 23 allergic asthma patients with pollen sensitization from the China Biological Information Repository of Respiratory Diseases were included. All the patients were detected serum pollen allergens components specific immunoglobulin E (sIgE) including Betula verrucosa (Bet v 1, Bet v 2, Bet v 4), Quercus alba (Pla a 1, Pla a 2), Ambrosia elatior (Amb a 1), Artemisia vulgaris (Art v 1, Art v 3, Art v 4), Bermuda grass (Cyn d 1, Cyn d 12), Phleum pratense (Phl p 5, Phl p 1, Phl p 4, Phl p 7, Phl p 12), and cross-reactive carbohydrate determinants. RESULTS In patients with asthma, Phl p 4 had the highest positive rate (60.9%), followed by Phl p 1 (43.5%) and Pla a 2 (34.8%), while in patients with rhinitis, Amb a 1 had the highest positive rate (71.4%), followed by Phl p 4 (61.9%) and Pla a 2 (42.9%). Meanwhile, Phl p 1 (43.5%) in asthma patients was higher than that in rhinitis (4.7%, p = 0.03), while Amb a 1 (71.4%) in rhinitis patients was higher than that in asthma (26.1%, p = 0.03). Interestingly, optimal scale analysis show that the severity of both asthma and rhinitis is related to Bet v 4 (Cronbach's Alpha = 95.0%). CONCLUSIONS In general, Phl p 4 is the main allergenic component in pollen sensitized asthma patients, while Amb a 1 is the main allergenic component in pollen sensitized rhinitis patients. Sensitization to Bet v 4 may lead to more severe symptoms, and this result may be applied in future clinical precise diagnosis.
Collapse
Affiliation(s)
- Chun Xu
- Jiangxi Medical College, Shangrao, China
- Department of Clinical laboratory, The First Affiliated Hospital of Jiangxi Medical College, Shangrao, China
| | - Dandan Chai
- Department of Clinical laboratory, ShangRao People's Hospital, Shangrao, China
| | - Ping Zheng
- Department of Urology, Shangrao Municipal Hospital, Shangrao, China
| | - Rongjun Qiu
- Department of Clinical laboratory, ShangRao People's Hospital, Shangrao, China
| | | | - Yaqiong Zhang
- Jiangxi Medical College, Shangrao, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jiangxi Medical College, Shangrao, China
| |
Collapse
|
15
|
SHIMBO H, FUKAGAWA A, NAKAMURA O, MURAKAMI S, MIURA Y, HATTORI M, DE BEER D, JOUBERT E, YOSHIDA T. Anti-allergic effect of Cyclopia (honeybush) extracts via anti-degranulation activity in a murine allergy model for inhaled antigen. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:241-249. [PMID: 38966058 PMCID: PMC11220329 DOI: 10.12938/bmfh.2023-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 07/06/2024]
Abstract
The anti-allergic effects of extracts prepared from two species of honeybush, Cyclopia genistoides and Cyclopia subternata, were demonstrated in vivo in a murine allergy model for inhaled antigen induced with ovalbumin (OVA) inhalation to mimic pollen allergy. Intake of the extracts increased the production of OVA-specific immunoglobulin (Ig) E (IgE), IgG1, and IgG2a antibodies in serum and significantly suppressed anaphylactic reaction-induced body temperature decline. Moreover, the extracts significantly inhibited antigen-antibody-induced degranulation in RBL-2H3 cells. They also inhibited body temperature decline when the allergic mice were given them after antigen sensitization, indicating that anti-degranulation activity is the major mechanism underlying the anti-allergic effect of Cyclopia extracts. Despite their qualitative and quantitative differences in phenolic composition, the two extracts exhibited similar effects, suggesting that several active compounds might be involved in the activity. Therefore, oral administration of either Cyclopia extract potentially exerts a systemic anti-allergic effect, supporting the increased consumption of honeybush tea for general wellness and improved quality of life.
Collapse
Affiliation(s)
- Hitoshi SHIMBO
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Ayumi FUKAGAWA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Oji NAKAMURA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Shiho MURAKAMI
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Yutaka MIURA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Makoto HATTORI
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| | - Dalene DE BEER
- Plant Bioactives Group, Post-Harvest & Agro-Processing
Technologies Division, Agricultural Research Council, Stellenbosch 7599, South
Africa
- Department of Food Science, Stellenbosch University,
Stellenbosch 7602, South Africa
| | - Elizabeth JOUBERT
- Plant Bioactives Group, Post-Harvest & Agro-Processing
Technologies Division, Agricultural Research Council, Stellenbosch 7599, South
Africa
- Department of Food Science, Stellenbosch University,
Stellenbosch 7602, South Africa
| | - Tadashi YOSHIDA
- Department of Applied Biological Science, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi,
Tokyo 183-8509, Japan
| |
Collapse
|
16
|
王 晓, 丁 佳, 陈 力, 王 洪, 王 学. [Study on allergen components of birch pollen in Beijing area]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:195-199. [PMID: 38433686 PMCID: PMC11233218 DOI: 10.13201/j.issn.2096-7993.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Indexed: 03/05/2024]
Abstract
Objective:To explore the allergen components of birch pollen in the Beijing area and interpret its clinical significance. Methods:A total of 58 patients with birch pollen allergy were included in the cross-sectional study and divided into allergic rhinitis(AR) and allergic asthma(AA) groups according to clinical manifestations. Concentration of birch pollen allergen sIgE, as well as Bet v 1, Bet v 2, Bet v 4 and Bet v 6 sIgE were detected by ImmunoCAP immunolinked immunoassay. Differences of sIgE concentration of birch pollen allergen component in AR and AA were analyzed. Results:There were 44(75.9%) cases of AR and 14(24.1%) cases of AA were enrolled. All the 18 patients with spring pollen allergy were AR patients without AA. There were 40 cases with both spring and autumn pollen allergy, of which 26 cases(65%) were AR and 14 cases(35%) were AA. The sIgE of birch pollen allergen was level 2 or above in all subjects. 94.8% were positive for any four allergen components. 77.6% were mono-sensitized to any allergen component while 17.2% were dual-sensitized. The positive rate of Bet v 1 and/or Bet v 2 was 93.1%. The positive rates of four protein components were: Bet v 1(82.8%), Bet v 2(29.3%), Bet v 6(1.7%), Bet v 4(0%). sIgE of birch pollen was positively correlated with sIgE level of Betv 1(r=0.898, P<0.001). The sIgE concentration of Bet v2 in AA group was significantly higher than that in AR group([4.34±14.35] kUA/L vs [1.56±3.26] kUA/L, P<0.05). There was no significant difference in other components. Conclusion:Bet v 1 is the main allergen component of birch pollen in the Beijing area, and Bet v 1 plus Bet v 2 can diagnose more than 90% of birch pollen allergy.
Collapse
Affiliation(s)
- 晓艳 王
- 首都医科大学附属北京世纪坛医院变态反应科(北京,100038)Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- 过敏性疾病北京市实验室Department of Otolaryngology, Beijing Shijitan Hospital Affiliated to Che Medical University
| | - 佳琪 丁
- 青岛大学附属青岛妇女儿童医院耳鼻喉科Department of Otolaryngology, Qingdao Women and Children's Hospital Affiliated to Qingdao University
| | - 力嘉 陈
- 首都医科大学附属北京世纪坛医院变态反应科(北京,100038)Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - 洪田 王
- 首都医科大学附属北京世纪坛医院变态反应科(北京,100038)Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - 学艳 王
- 首都医科大学附属北京世纪坛医院变态反应科(北京,100038)Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|