1
|
Zhong S, Li B, Chen Q, Zhang J, Cai H, An R, Liu G, Zhou S. Identifying groundwater anthropogenic disturbances and their predominant impact on microbial nitrogen cycling at a former contamination site adjacent to Baiyangdian Lake. WATER RESEARCH 2025; 280:123544. [PMID: 40156973 DOI: 10.1016/j.watres.2025.123544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/07/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Groundwater ecosystems face increasing threat from declining water quality due to intensified urbanization, agricultural, and industrial activities. Accurately identifying anthropogenic disturbances remains challenging, and their effects on microbial nitrogen cycling are still largely unknown. Here, by collecting 64 groundwater samples from an aquifer beneath the Tanghe sewage reservoir in the North China Plain, we conducted a full-spectrum screening of 228 physiochemical indices, 47 nitrogen cycling genes (NCGs) and 2182 metagenome-assembled genomes (MAGs) harboring NCGs. Unmix model identified antibiotic usage, industrial manufacturing, and agricultural practices as the predominant pollution sources, explaining 49.6-92.2 % (averaged 81.0 %) of the variations in aquifer attributes. These activities were primary drivers governing distributions of groundwater NCGs and NCG-hosts, with fragmented denitrification processes being prevalent. Antibiotic usage and industrial activities were probably associated with suppressed nitrogen cycling, while agriculture had a positive effect. Notably, we observed enhanced mutualistic interactions within NCG-hosts and increased enrichment of NCG-antibiotic resistance gene (ARG), NCG-mental resistance gene (MRG), and NCG-ARG-MRG co-hosts under high anthropogenic stresses, suggesting microbial adaptation to optimize nutrient and energy metabolism. This study provided new insight into how groundwater nitrogen cycling responds to anthropogenic disturbances, offering valuable information for developing groundwater management and pollution control strategies.
Collapse
Affiliation(s)
- Sining Zhong
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China
| | - Bin Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| | - Jinzheng Zhang
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Rui An
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Guohong Liu
- Fujian Academy of Agricultural Science, Institute of Resources, Environment and Soil Fertilizer, Fuzhou City, Fujian Province 350003, China
| | - Shungui Zhou
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China
| |
Collapse
|
2
|
Sharifi AR, Mazzaracchio V, Duranti L, Gullo L, Brannetti S, Peyravian M, Kiani MA, Arduini F. Nanopaper Integrated Smart Device: An Opto-Electrochemical Biosensor for Real-Time Dual On-Field Detection of Organophosphorus Pesticides. ACS Sens 2024; 9:6542-6552. [PMID: 39665808 DOI: 10.1021/acssensors.4c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The frequent and excessive use of organophosphorus pesticides in the agriculture industry raises persistent concerns regarding their environmental protection and public health implications. Addressing these issues requires the development of affordable and reliable sensing platforms for on-field monitoring to mitigate their adverse impacts promptly. This study utilizes nanocellulose papers (bacterial and TEMPO-oxidized) combined with butyrylcholinesterase to create a novel reagent-free and orthogonal nanobioplatform featuring smart opto-electrochemical dual outputs. An integrated nano-PAD, preloaded with enzymes and enzymatic substrates, is fabricated using wax-printing and screen-printing technologies. The nano-PAD measures opto-electroactive products, specifically indoxyl and thiocholine, whose concentrations correlate directly with the enzymatic inhibition caused by paraoxon, used as the organophosphate model. To enhance user convenience and meet the requirements for smart real-time point-of-need detection, integration of the nano-PAD with a smartphone-operated miniaturized potentiostat and a self-developed portable smart optical reader is achieved. The developed bioanalytical platform, further supported by a self-developed Android application, enables accurate and efficient quantification of dual signals in real time. The system covers a wide detection range of paraoxon (20-100 ppb) and demonstrates reliable recovery levels (ranging from 98 to 107%) in a real matrix, specifically wastewater. Given these demonstrated capabilities, this innovative biosensing strategy holds substantial potential for practical application in environmental surveillance, facilitating timely and informed environmental management decisions, particularly in resource-limited settings where traditional analytical tools are inaccessible.
Collapse
Affiliation(s)
- Amir Reza Sharifi
- Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Vincenzo Mazzaracchio
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Leonardo Duranti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Ludovica Gullo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Simone Brannetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Mohammad Peyravian
- Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Mohammad Ali Kiani
- Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
- SENSE4MED, via Bitonto 139, Rome 00133, Italy
| |
Collapse
|
3
|
He Y, Liu L, Wang Q, Dong X, Huang J, Jia X, Peng X. Bio-degraded of sulfamethoxazole by microbial consortia without addition nutrients: Mineralization, nitrogen removal, and proteomic characterization. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133558. [PMID: 38262313 DOI: 10.1016/j.jhazmat.2024.133558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Sulfamethoxazole (SMX) is widely employed as an antibiotic, while its residue in environment has become a common public concern. Using 100 mg/L SMX as the sole nutrient source, the acclimated sludge obtained by this study displayed an excellent SMX degradation performance. The addition of SMX resulted in significant microbiological differentiation within the acclimated sludge. Microbacterium (6.6%) was identified as the relatively dominant genera in metabolism group that used SMX as sole carbon source. Highly expressed proteins from this strain strongly suggested its essential role in SMX degradation, while the degradation of SMX by other strains (Thaurea 78%) in co-metabolism group appeared to also rely on this strain. The interactions of differentially expressed proteins were primarily involved in metabolic pathways including TCA cycle and nitrogen metabolism. It is concluded that the sulfonamides might serve not only as the carbon source but also as the nitrogen source in the reactor. A total of 24 intermediates were identified, 13 intermediates were newly reported. The constructed pathway suggested the mineralizing and nitrogen conversion ability towards SMX. Batch experiments also proved that the acclimated sludge displayed ability to biodegrade other sulfonamides, including SM2 and SDZ and SMX-N could be removed completely.
Collapse
Affiliation(s)
- Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Zhang Y, Bao J, Du J, Mao Q, Cheng B. Comprehensive metagenomic and enzyme activity analysis reveals the inhibitory effects and potential toxic mechanism of tetracycline on denitrification in groundwater. WATER RESEARCH 2023; 247:120803. [PMID: 37922638 DOI: 10.1016/j.watres.2023.120803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The widespread use of tetracycline (TC) inevitably leads to its increasing emission into groundwater. However, the potential risks of TC to denitrification in groundwater remain unclear. In this study, the effects of TC on denitrification in groundwater were systematically investigated at both the protein and gene levels from the electron behavior aspect for the first time. The results showed that increasing TC from 0 to 10 µg·L-1 decreased the nitrate removal rate from 0.41 to 0.26 mg·L-1·h-1 while enhancing the residual nitrite concentration from 0.52 mg·L-1 to 50.60 mg·L-1 at the end of the experiment. From a macroscopic view, 10 µg·L-1 TC significantly inhibited microbial growth and altered microbial community structure and function in groundwater, which induced the degeneration of denitrification. From the electron behavior aspect (the electron production, electron transport and electron consumption processes), 10 µg·L-1 TC decreased the concentration of electron donors (nicotinamide adenine dinucleotide, NADH), electron transport system activity, and denitrifying enzyme activities at the protein level. At the gene level, 10 µg·L-1 TC restricted the replication of genes related to carbon metabolism, the electron transport system and denitrification. Moreover, discrepant inhibitory effects of TC on individual denitrification steps, which led to the accumulation of nitrite, were observed in this study. These results provide the information that is necessary for evaluating the potential environmental risk of antibiotics on groundwater denitrification and bring more attention to their effects on geochemical nitrogen cycles.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
5
|
Hu Y, Guo J, Wang W, He Y, Li Z. Unveiling different antibiotic degradation mechanisms on dual reaction center catalysts with nitrogen vacancies via peroxymonosulfate activation. CHEMOSPHERE 2023; 332:138788. [PMID: 37119923 DOI: 10.1016/j.chemosphere.2023.138788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Metal-nitrogen-site catalysts are widely recognized as effective heterogeneous catalysts in peroxymonosulfate (PMS)-based advanced oxidation processes. However, the selective oxidation mechanism for organic pollutants is still contradictory. In this work, manganese-nitrogen active centers and tunable nitrogen vacancies were synchronously constructed on graphitic carbon nitride (LMCN) through l-cysteine-assisted thermal polymerization to reveal different antibiotic degradation mechanisms. Benefiting from the synergism of manganese-nitrogen bond and nitrogen vacancies, the LMCN catalyst exhibited excellent catalytic activity for the degradation of tetracycline (TC) and sulfamethoxazole (SMX) antibiotics with first-order kinetic rate constants of 0.136 min-1 and 0.047 min-1, which were higher than those of other catalysts. Electron transfer dominated TC degradation at low redox potentials, while electron transfer and high-valent manganese (Mn (V)) were responsible for SMX degradation at high redox potentials. Further experimental studies unveiled that the pivotal role of nitrogen vacancies is to promote electron transfer pathway and Mn(V) generation, while nitrogen-coordinated manganese as the primary catalytic active site determines Mn(V) generation. In addition, the antibiotic degradation pathways were proposed and the toxicity of byproducts was analyzed. This work provides an inspiring idea for the controlled generation of reactive oxygen species by targeted activation of PMS.
Collapse
Affiliation(s)
- Youyou Hu
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China.
| | - Jialin Guo
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Yanqing He
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Zhengkui Li
- School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Chen C, Laverman AM, Roose-Amsaleg C, Regimbeau G, Hanna K. Fate and transport of tetracycline and ciprofloxacin and impact on nitrate reduction activity in coastal sediments from the Seine Estuary, France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5749-5757. [PMID: 35982390 DOI: 10.1007/s11356-022-22564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Fluoroquinolones and tetracyclines are frequently detected antibiotics in aquatic sediments. In this study, the transport of ciprofloxacin (CIP) and tetracycline (TET) was investigated in sediments from the Seine Estuary (France), under nitrate reducing conditions. Dynamic flow experiments showed that although TET and CIP strongly interacted with the sediment components through adsorption and (bio)-chemical transformation, they kept their antimicrobial activities. Less nitrate reduction was observed during the first period of breakthrough, while TET and CIP were absent in the column effluent. Batch experiments with freeze-dried vs fresh sediments showed that adsorption and abiotic degradation are the major removal processes, while microbe-driven transformation is of less importance. Whereas TET is to a large extent chemically transformed and little adsorbed in the sediment, CIP was less transformed and more adsorbed, most likely due to the great reactivity of TET with redox-active mineral surfaces. Our findings show the strong capacity of natural sediment to retain and transform antibiotics, while still maintaining their antimicrobial activity or inhibitory effect of nitrate reducing activity.
Collapse
Affiliation(s)
- Chen Chen
- Univ Rennes, CNRS, ECOBIO UMR 6553, F-35000, Rennes, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | | | | | | | - Khalil Hanna
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France.
| |
Collapse
|
7
|
Bai Y, Wang Z, Lens PNL, Zhussupbekova A, Shvets IV, Huang Z, Ma J, Wu G, Zhan X. Role of iron(II) sulfide in autotrophic denitrification under tetracycline stress: Substrate and detoxification effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158039. [PMID: 35981590 DOI: 10.1016/j.scitotenv.2022.158039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Autotrophic denitrification using inorganic compounds as electron donors has gained increasing attention in the field of wastewater treatment due to its numerous advantages, such as no need for exogenous organic carbon, low energy input, and low sludge production. Tetracycline (TC), a refractory contaminant, is often found coexisting with nutrients (NO3- and PO43-) in wastewater, which can negatively affect the biological nutrient removal process because of its biological toxicity. However, the performance of autotrophic denitrification under TC stress has rarely been reported. In this study, the effects of TC on autotrophic denitrification with thiosulfate (Na2S2O3) and iron (II) sulfide (FeS) as the electron donors were investigated. With Na2S2O3 as the electron donor, TC slowed down the nitrate removal rate, which decreased from 1.32 to 0.18 d-1, when TC concentration increased from 0 mg/L to 50 mg/L. When TC concentration was higher than 2 mg/L, nitrite reduction was seriously inhibited, leading to nitrite accumulation. With FeS as the electron donor, nitrate removal was much more efficient under TC-stressed conditions, and no distinct nitrite accumulation was observed when the initial TC concentration was as high as 10 mg/L, indicating the effective detoxification of FeS. The detoxification effects in the FeS autotrophic denitrification system mainly resulted from the rapid adsorption of TC by FeS and effective degradation of TC, as proven by a relatively higher living biomass area. This study offers new insights into the response of sulfur-based autotrophic denitrifiers to TC stress and demonstrates that the FeS-based autotrophic denitrification process is a promising technology for the treatment of wastewater containing emerging contaminants and nutrients.
Collapse
Affiliation(s)
- Yang Bai
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland
| | - Zhongzhong Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland
| | - Piet N L Lens
- Department of Microbiology, National University of Ireland, Galway, Galway H91 TK33, Ireland
| | | | - Igor V Shvets
- CRANN, School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Zhuangsong Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangxue Wu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
8
|
Effect of dissolved silicate on the degradation of sulfamethoxazole by nZVI@D201 nanocomposite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Li M, Chen Y, Feng Y, Li X, Ye L, Jiang J. Ecological Responses of Maize Rhizosphere to Antibiotics Entering the Agricultural System in an Area with High Arsenicals Geological Background. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13559. [PMID: 36294139 PMCID: PMC9603512 DOI: 10.3390/ijerph192013559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal(loid)s can promote the spread and enrichment of antibiotic resistance in the environmental ecosystem through a co-selection effect. Little is known about the ecological effects of entering antibiotics into the environment with long-term metal(loid)s' resistance profiles. Here, cow manure containing oxytetracycline (OTC) or sulfadiazine (SA) at four concentrations (0 (as control), 1, 10, and 100 mg/kg) was loaded to a maize cropping system in an area with high a arsenicals geological background. Results showed that exogenous antibiotics entering significantly changed the nutrient conditions, such as the concentration of nitrate nitrogen, ammonium nitrogen, and available phosphorus in the maize rhizosphere soil, while total arsenic and metals did not display any differences in antibiotic treatments compared with control. Antibiotics exposure significantly influenced nitrate and nitrite reductase activities to reflect the inhibition of denitrification rates but did not affect the soil urease and acid phosphatase activities. OTC treatment also did not change soil dehydrogenase activities, while SA treatment posed promotion effects, showing a tendency to increase with exposure concentration. Both the tested antibiotics (OTC and SA) decreased the concentration of arsenite and arsenate in rhizosphere soil, but the inhibition effects of the former were higher than that of the latter. Moreover, antibiotic treatment impacted arsenite and arsenate levels in maize root tissue, with positive effects on arsenite and negative effects on arsenate. As a result, both OTC and SA treatments significantly increased bioconcentration factors and showed a tendency to first increase and then decrease with increasing concentration. In addition, the treatments decreased translocation capacity of arsenic from roots to shoots and showed a tendency to increase translocation factors with increasing concentration. Microbial communities with arsenic-resistance profiles may also be resistant to antibiotics entering.
Collapse
Affiliation(s)
- Mengli Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yongshan Chen
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Ying Feng
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiaofeng Li
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Lili Ye
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Jinping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
10
|
Yu X, Jin X, Wang N, Yu Y, Zhu X, Chen M, Zhong Y, Sun J, Zhu L. Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: Mechanism and risk assessment using environmental metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128244. [PMID: 35032952 DOI: 10.1016/j.jhazmat.2022.128244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The threat caused by the misuse of antibiotics to ecology and human health has been aroused an extensive attention. Developing cost-effective techniques for removing antibiotics needs to put on the agenda. In current research, the degradation mechanism of sulfamethoxazole (SMX) by sulfidated nanoscale zerovalent iron (S-nZVI) driven persulfate, together with the potential risk of intermediates were studied. The degradation of SMX followed a pseudo-first order kinetics reaction with kobs at 0.1176 min-1. Both SO4•- and •OH were responsible for the degradation of SMX, and SO4•- was the predominant free radical. XPS analysis demonstrated that reduced sulfide species promoted the conversion of Fe (III) to Fe (II), resulting in the higher transformation rate of SMX. Six intermediates products were generated through hydroxylation, dehydration condensation, nucleophilic reaction, and hydrolysis. The risk of intermediates products is subsequently assessed using E. coli as a model microorganism. After E.coli exposure to intermediates for 24 h, the upmetabolism of carbohydrate, nucleotide, citrate acid cycle and downmetabolism of glutathione, sphingolipid, galactose by metabolomics analysis identified that SMX was effectively detoxified by oxidation treatment. These findings not only clarified the superiority of S-nZVI/persulfate, but also generated a novel insight into the security of advanced oxidation processes.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Nan Wang
- Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Meiqin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Mupindu P, Zhao YG, Wang X, Hu Y. Effect of sulfamethoxazole on nitrate removal by simultaneous heterotrophic aerobic denitrification. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10716. [PMID: 35415858 DOI: 10.1002/wer.10716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The increase in mariculture activities worldwide has not only led to a rise of nitrogen compounds in the ecosystem but has also intensified the accumulation of antibiotics in both terrestrial and marine environments. This study focused on the effect of typical antibiotics, specifically sulfamethoxazole (SMX) on nitrate removal from mariculture wastewater by aerobic denitrification process; an aerobic denitrification system feeding with 148.2 mg/L COD, 8.59 mg/L nitrate, 0.72 mg/L nitrite, and 4.75 mg/L ammonium was set up. The hydraulic retention time (HRT) was 8 h. As the aerobic bioreactor started up successfully without SMX dosage, an excellent removal of ammonium, nitrite, and nitrate was achieved at 91.35%, 93.33%, and 88.51%, respectively; the corresponding effluent concentrations were 0.41 mg/L, 0.048 mg/L, and 0.96 mg/L. At the influent SMX doses of 0, 1, 5, and 10 mg/L, the COD removal reached 96.91%, 96.27%, 88.69%, and 85.89%, resulting in effluent concentrations of 4.53, 5.45, 17.38, and 20.6 mg/L, respectively. Nitrification was not inhibited by SMX dosage. However, aerobic denitrification was inhibited by 10 mg/L SMX. Proteobacteria was the most abundant phylum, and surprisingly its abundance increased with the increase in SMX concentration. An excellent SMX degradation was noted at initial SMX dosages of 1, 5, and 10 mg/L; the removal rate was 100%,100%, and 99.8%, respectively. The SMX degrading genera Comamonas sp., Acinetobacter sp., and Thauera sp. are of great validity to wastewater engineers because they have demonstrated efficiency in simultaneous heterotrophic aerobic denitrification and antibiotic degradation as well as COD removal. PRACTITIONER POINTS: Nitrification was not inhibited by increase in SMX dosage. An increase in SMX dosage inhibited aerobic denitrification. COD removal was not affected by increased SMX dosage. Comamonas, Acinetobacter, and Thauera had high efficiency in COD removal and SMX degradation.
Collapse
Affiliation(s)
- Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yubo Hu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Zhang R, Xu X, Jia D, Lyu Y, Hu J, Chen Q, Sun W. Sediments alleviate the inhibition effects of antibiotics on denitrification: Functional gene, microbial community, and antibiotic resistance gene analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150092. [PMID: 34520908 DOI: 10.1016/j.scitotenv.2021.150092] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Both antibiotics and sediments can affect the denitrification in aquatic systems. However, little is known how antibiotics influence the denitrification in the presence of sediments. Here, the effects of antibiotics (sulfamethoxazole, tetracycline and ofloxacin) on denitrification in the absence and presence of sediments were investigated. The influencing mechanisms were revealed by quantifying the denitrification functional genes (DNGs), 16S-seq of bacteria, and antibiotic resistance genes (ARGs). The results showed that the presence of antibiotics inhibited NO3-N reduction by decreasing the abundances of narG, nirK, nosZ, total DNGs, and denitrifying bacteria. However, the inhibition effect was alleviated by sediments, which promoted the growth of bacteria and decreased the selective pressure of antibiotics as the vector of bacteria and antibiotics, thus increasing the abundances of denitrifying bacteria and all the DNGs. Partial least-squares path model disclosed that antibiotics had negative effects on bacteria, ARGs and DNGs, while sediments had negative effects on ARGs but positive effects on bacteria and DNGs. The network analysis further revealed the close relation of the genera Bacillus, Acinetobacter, and Enterobacter with the ARGs and DNGs. The findings are helpful to understand the denitrification in antibiotic-polluted natural waters.
Collapse
Affiliation(s)
- Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Dantong Jia
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
13
|
Apreja M, Sharma A, Balda S, Kataria K, Capalash N, Sharma P. Antibiotic residues in environment: antimicrobial resistance development, ecological risks, and bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3355-3371. [PMID: 34773239 DOI: 10.1007/s11356-021-17374-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The overuse of antibiotics and their disposal without processing are leading the environment and its inhabitants towards a serious health emergency. There is abundance of diverse antibiotic resistance genes and bacteria in environment, which demands immediate attention for the effective removal of antibiotics. There are physical and chemical methods for removal, but the generation of toxic byproducts has directed the efforts towards bioremediation for eco-friendly and sustainable elimination of antibiotics from the environment. Various effective and reliable bioremediation approaches have been used, but still antibiotic residues pose a major global threat. Recent developments in molecular and synthetic biology might offer better solution for engineering of microbe-metabolite biodevices and development of novel strains endowed with desirable properties. This review summarizes the impact of antibiotics on environment, mechanisms of resistance development, and different bioremediation approaches.
Collapse
Affiliation(s)
- Mansi Apreja
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Aarjoo Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Sanjeev Balda
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Kirti Kataria
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Chen C, Yin G, Hou L, Liu M, Jiang Y, Zheng D, Gao D, Liu C, Zheng Y, Han P. Effects of sulfamethoxazole on coupling of nitrogen removal with nitrification in Yangtze Estuary sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116382. [PMID: 33387786 DOI: 10.1016/j.envpol.2020.116382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Coupling of nitrogen removal processes with nitrification (NRn) are vital synergistic nitrogen elimination mechanisms in aquatic environments. However, the effects of antibiotics on NRn are not well known. In the present work, 20-day continuous-flow experiments combined with 15N tracing techniques and quantitative PCR were performed to simulate the impact of sulfamethoxazole (SMX, a sulfonamide antibiotic) with near in situ concentration on NRn processes in sediments of Yangtze Estuary. Results showed that SMX with near in situ concentration significantly decreased NRn, NRw (uncoupling of nitrogen removal processes with nitrification) and actual nitrogen removal rates via inhibiting nitrogen transformation functional genes (AOB, narG, nirS, nosZ) and anammox 16S rRNA gene, while the coupling links between nitrification and nitrogen removal processes were not broken by the exposure. The proportion of NRn in total nitrogen removal processes decreased by approximately 10% with SMX addition, due to the different inhibition on AOB, denitrifying genes and anammox 16S rRNA gene. N2O production and nitrite accumulation remarkably increased with SMX addition under simultaneous nitrification and denitrification, and they strongly correlated with each other. The more severely inhibition on nirS gene (13.6-19.8%) than Nitrospira nxrB gene (0.3-8.2%) revealed that the increased nitrite accumulation with SMX addition mainly occurred in heterotrophic denitrification, suggesting that the increased N2O production was dominated by the heterotrophic nitrite reduction. Moreover, we estimated that the ratio of external inorganic N eliminated by actual nitrogen removal can upgrade to 6.4-7.4% under circumstances of no inhibition by SMX. This study revealed the effects of SMX with near in situ concentration on NRn processes and illustrated the microbial mechanism on functional genes level. Our results highlighted the inhibitory effects of SMX on NRn may contribute to reactive N retention and N2O production in estuarine and coastal ecosystems.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yinghui Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Dongsheng Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Cheng Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
15
|
Wang F, Gao J, Zhai W, Cui J, Liu D, Zhou Z, Wang P. Effects of antibiotic norfloxacin on the degradation and enantioselectivity of the herbicides in aquatic environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111717. [PMID: 33396048 DOI: 10.1016/j.ecoenv.2020.111717] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics are currently extensively used in human medicine, animal farming, agriculture and aquaculture, and their residue has become a global environmental problem. However, the effects of antibiotic on other pollutants in aquatic environment are still poorly understood. In this study, the influences of norfloxacin on the residue, degradation and distribution of the herbicides (simazine, atrazine, terbuthylazine, acetochlor and metolachlor) and the enantioselectivity of acetochlor in sediment and water-sediment microcosm system were investigated. Sediment was spiked with norfloxacin and water was contaminated by herbicides to simulate environmental pollution. The amounts of herbicides in water and sediment samples were analyzed within 30 days of cultivation. The results showed that norfloxacin could significantly inhibit the dissipation, lengthen the half-lives and enhance the residues of herbicides in sediment. Take simazine as an example, its half-life significantly increased from 16.1 days to 19.3 days and its residual percentage grew from 24.2% to 30.4% when sediment was contaminated with 5 mg·kg-1 norfloxacin. However, only acetochlor degradation was significantly inhibited by norfloxacin in water-sediment microcosm and the distribution of the herbicides were not affected. Enantioselective degradation of acetochlor was observed both in control and norfloxacin-treated water-sediment system, with R-acetochlor preferential elimination, suggesting the co-existence of norfloxacin had very limited influence on the enantioselectivity. The findings indicated that co-contamination with norfloxacin could increase the persistence of herbicides in aquatic environment, thus increasing the environmental risks to aquatic organisms.
Collapse
Affiliation(s)
- Fang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Pesticide, China Agricultural University, Beijing 100193, China; Department of Environmental Science and Engineering, School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Pesticide, China Agricultural University, Beijing 100193, China
| | - Wangjing Zhai
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Pesticide, China Agricultural University, Beijing 100193, China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Pesticide, China Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Pesticide, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Pesticide, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Pesticide, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Yang Y, Chen Y, Zhang G, Sun J, Guo L, Jiang M, Ou B, Zhang W, Si H. Transcriptomic Analysis of Staphylococcus aureus Under the Stress Condition Caused by Litsea cubeba L. Essential Oil via RNA Sequencing. Front Microbiol 2020; 11:1693. [PMID: 33013718 PMCID: PMC7509438 DOI: 10.3389/fmicb.2020.01693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 01/31/2023] Open
Abstract
Litsea cubeba L. essential oil (LCEO) is a natural essential oil with considerable antimicrobial activity, and it can gradually replace some chemical additives in the food industry. However, the genetic evidences of stress response of bacteria under sub-lethal treatment with LCEO is limited. To this end, transcriptomic analysis of Staphylococcus aureus 29213 under a low concentration of LCEO was performed. Bacterial RNA samples were extracted from 1/4 MIC (0.07 μL/mL) of LCEO-treated and non-treated S. aureus 29213. The transcriptional results were obtained by RNA sequencing (RNA-Seq). After treated with LCEO of S. aureus 29213, 300, and 242 genes were significantly up and down-regulated. Up-regulated genes were mainly related to cell membrane (wall) stress stimulon including genes related to two-component regulatory system (VraS), histidine metabolism (hisABCD etc.) and L-lysine biosynthesis (thrA, lysC, asd etc.). Significant differences were also founded between LCEO-treated and non-treated groups in peptidoglycan biosynthesis related pathways. Down-regulated genes were related to nitrogen metabolism (NarGHIJ etc.), carotenoid biosynthesis (all) and pyruvate metabolism (phdA, pflB, pdhC etc.) of S. aureus 29213 in an LCEO-existing environment compared to the control. At the same time, we confirmed that LCEO can significantly affect the staphyloxanthin level of S. aureus 29213 for the first time, which is closely related to the redox state of S. aureus 29213. These evidences expanded the knowledge of stress response of S. aureus 29213 strain under sub-lethal concentration of LCEO.
Collapse
Affiliation(s)
- Yunqiao Yang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Yunru Chen
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Junying Sun
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Lei Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Mingsheng Jiang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Bingming Ou
- College of Life Science, Zhaoqing University, Zhaoqing, China
| | - Weiyu Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Zhang F, Yang L, Wang H. Co-occurrence characteristics of antibiotics and estrogens and their relationships in a lake system affected by wastewater. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1322-1333. [PMID: 33016441 DOI: 10.1002/jeq2.20128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics and estrogens are recognized as emerging contaminants in the water environment because of their potentially adverse effects on aquatic ecosystems. The concentrations of four steroid estrogens (17α-estradiol, 17β-estradiol, estrone, and estriol) and eight antibiotics (norfloxacin, levofloxacin, ciprofloxacin, enrofloxacin, metronidazole, sulfapyridine, doxycycline, and sulfamethoxazole) in the Chaohu Lake basin in Anhui province, China, were analyzed along with adjacent wastewater. The levels of the target antibiotics and estrogens were below detection limits (not detected [nd])-89.86 and nd-118.09 ng L-1 , respectively, in the lake water. All of the target antibiotics and estrogens were detected in sediment, and the concentrations ranged widely (nd-35,544 and nd-16,344 ng kg-1 , respectively). Antibiotics and estrogens varied spatially in the study area and mostly came from untreated wastewater. Antibiotics and estrogens were associated with water parameters such as pH and total nitrogen. A significant positive correlation was observed between estriol and levofloxacin concentrations (r = .65; p < .01), indicating that levofloxacin from the same source might have inhibited the microbiological degradation of estriol in the surface water. Overall, the estrogens pose a more severe risk than antibiotics to the Chaohu Lake system. However, co-occurrence of antibiotics may affect the fate of estrogens in the same lake media. More attention should be given to estrogens than to antibiotics in wastewater-affected lake systems.
Collapse
Affiliation(s)
- Fengsong Zhang
- Key Lab. of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Zhongke-Ji'an Institute for Eco-Environmental Sciences, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Jian, 343000, China
| | - Linsheng Yang
- Key Lab. of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaxin Wang
- National Plateau Wetlands Research Center, Southwest Forestry Univ., Kunming, 650224, China
| |
Collapse
|
18
|
Li Y, Zhao R, Wang L, Niu L, Wang C, Hu J, Wu H, Zhang W, Wang P. Silver nanoparticles and Fe(III) co-regulate microbial community and N 2O emission in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135712. [PMID: 31785899 DOI: 10.1016/j.scitotenv.2019.135712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
The effects of environmental concentration silver nanoparticles (ecAgNPs) on microbial communities and the nitrogen cycling in river sediments remain largely uncharacterized. As a fundamental component of sediments, Fe(III) can interact with AgNPs and participate in nitrogen transformation processes. N2O is an important intermediate in nitrogen transformation processes and can be a potent greenhouse gas with significant environmental effects. However, the impacts of the co-existence of AgNPs and Fe(III) on microbial communities and N2O emission in river sediments are still unclear. In the present study, mesocosm experiments were conducted to assess the changes of microbial communities and N2O emission in response to the co-existence of AgNPs and environmental concentration Fe(III). Our results revealed that the microbial community diversity and N2O emission in river sediments responded differently to ecAgNPs (0.05 mg/kg) and high-polluting concentration AgNPs (hcAgNPs, 5 mg/kg), which was further regulated by the environmental concentration Fe(III) (1 mg/g and 10 mg/g). After ecAgNPs treatments, a marked increase was observed in microbial diversity compared to hcAgNPs treatments, regardless of the Fe(III) concentration in the sediment. The β-NTI index indicated that AgNPs had stronger impacts on phylogenetic distance of bacterial communities in sediments containing 1 mg/g Fe(III) than that containing 10 mg/g Fe(III). In sediments containing 1 mg/g Fe(III), ecAgNPs did not affect N2O emission, but hcAgNPs significantly inhibited the emission of N2O. However, in sediments containing 10 mg/g Fe(III), N2O emission was significantly stimulated upon exposure to ecAgNPs, but the inhibition effect of hcAgNPs was barely observed. Functional prediction and real-time PCR analyses indicated that AgNPs and Fe(III) predominantly affected N2O emissions by affecting the abundance of the nirK gene. Our results provide new insights into the ecological impacts of the co-existence of environmental concentration AgNPs and Fe(III) in altering microbial communities and nitrogen transformation functions in river sediments.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ruiqi Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Jiaxin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hainan Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
19
|
Sun F, Liu H, Wang H, Shu D, Chen T, Zou X, Huang F, Chen D. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134293. [PMID: 31514027 DOI: 10.1016/j.scitotenv.2019.134293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Natural iron-bearing minerals have been proven to be effective for activating H2O2 to produce OH, which can be used to degrade organic pollutants. In this study, the performance of siderite to degrade sodium sulfadiazine via catalytic H2O2 degradation was investigated at different solution pH values from 3 to 9. An interesting discovery was made: the performance of the siderite-H2O2 system was excellent under acidic, neutral, and even alkaline conditions. The influence of various factors (e.g. initial concentration, anions, natural organic matters, etc.) on the system under different pH conditions was investigated, which confirmed that siderite exhibited an excellent catalytic performance. By combining EPR characterization with scavenger research, it was proposed that dissolved iron (Fe2+) mainly initiated the homogenous Fenton reaction to degrade pollutants under acidic conditions, while structural Fe2+ species present in siderite triggered Fenton-like reactions under neutral or even alkaline conditions. From the SEM and XPS characterizations, oxidation and dissolution of Fe2+ on the surface were also observed, confirming our inference concerning the different reaction mechanisms. The experimental findings show that this siderite-H2O2 system can be used in solutions with pH values from 3 to 9 and that siderite plays a positive role in soil and groundwater remediation when H2O2 is used as an oxidant.
Collapse
Affiliation(s)
- Fuwei Sun
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Hanlin Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Daobing Shu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fangju Huang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
20
|
Bílková Z, Malá J, Hrich K. Fate and behaviour of veterinary sulphonamides under denitrifying conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133824. [PMID: 31422336 DOI: 10.1016/j.scitotenv.2019.133824] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are among the most widely administered drugs in the growing animal food industry. Of all the antibiotics approved for agriculture, sulphonamides are of particular interest. Their spectrum of activity is broad, affecting gram-positive, gram-negative, and many protozoal organisms, and they have been used for the treatment of a wide variety of animals. Animal manure is one of primary sources of soil contamination by sulphonamides. As they have a low soil sorption potential and are therefore highly mobile in soil, they can be transported to groundwater. In the present study, papers dealing with the fate and behaviour of veterinary sulphonamides under denitrifying conditions often arising in the subsurface are reviewed. Veterinary sulphonamide-exposed conditions can result in either inhibition or stimulation of the denitrification process owing to their toxicity or stress for denitrifiers. The effect of sulphonamides on individual denitrification steps is unbalanced, which can cause accumulation of process intermediates (dinitrogen oxide, nitrites). Although research results related to veterinary sulphonamide biodegradation in a nitratereducing environment show great variety, they indicate that these compounds are biodegradable under denitrifying conditions, that their biodegradation fits the first-order kinetics model, and that microbial action is the main mechanism of their dissipation. Regarding biodegradation pathways, research to date has only focused on sulfamethoxazole. Its degradation is driven by the presence of nitrous acid, which is formed from nitrites generated by the denitrification process as an intermediate product. Nevertheless, sulfamethoxazole degradation is abiotic, meaning that it does not participate in the denitrifying metabolism. For the formation of sulfamethoxazole transformation products, including its nitro, nitroso and desamino derivatives, the presence of the primary aromatic amine group is key. As this functional group is common for all sulphonamides, it can be assumed that these transformation products are also involved in the degradation pathways of other sulphonamides.
Collapse
Affiliation(s)
- Zuzana Bílková
- Brno University of Technology, Faculty of Civil Engineering, Institute of Chemistry, Žižkova 17, 602 00 Brno, Czech Republic.
| | - Jitka Malá
- Brno University of Technology, Faculty of Civil Engineering, Institute of Chemistry, Žižkova 17, 602 00 Brno, Czech Republic.
| | - Karel Hrich
- Brno University of Technology, Faculty of Civil Engineering, Institute of Chemistry, Žižkova 17, 602 00 Brno, Czech Republic.
| |
Collapse
|
21
|
Zhou LJ, Li J, Zhang Y, Kong L, Jin M, Yang X, Wu QL. Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109511. [PMID: 31386941 DOI: 10.1016/j.ecoenv.2019.109511] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/22/2019] [Accepted: 07/30/2019] [Indexed: 05/24/2023]
Abstract
Antibiotics have become a global public concern because of their extensively usage and high toxicity on aquatic organisms, especially leading to the widespread of antibiotic resistance genes. The objective of this study was to evaluate the occurrence, spatial distribution and ecological risks of multi-classes commonly used human and veterinary antibiotics in both aqueous and sedimentary phases of 65 shallow lakes in the lower-middle reaches of the Yangtze River, China. In the target area, antibiotic concentrations in most of lakes (<20 ng/L in the water of 22 lakes and <20 ng/g in the sediments of 43 lakes) were generally lower than those documented in previous studies in China and other countries, and these differences were probably due to less pollutant sources, high temperatures and heavy rainfall in summer. The concentrations of antibiotics in water (>100 ng/L) or sediments (>100 ng/g) of nine lakes, such as Dianshan Lake, Ge Lake and Ce Lake, were comparable to those in rivers and lakes that were seriously polluted by urban and livestock wastewater in China. The Taihu lakes showed relatively higher antibiotic concentrations, followed by the Huaihe River lakes, Poyang lakes and Dongting lakes. The composition of antibiotics showed that agricultural source might be the main source of antibiotics in most of the lakes in the lower-middle reaches of the Yangtze River basin, China. The pseudo distribution coefficient (P-Kd) and significant relationship between antibiotics and environmental factors in the present study suggested the spatial of antibiotics in the lakes might be affected by antibiotics' physiochemical properties and environmental factors. The environmental risk assessment results showed that in general, sulfamethoxazole (SMX), erythromycin (ETM) and ofloxacin (OFX) in the surface water could pose medium risks to algae or bacteria in the aquatic ecosystem, while antibiotics ETM, roxithromycin (RTM), enrofloxacin (EFX) and sulfadiazine (SDZ) in the sediment might pose medium risks to algae or bacteria populations. High potential risk might occur in winter in most lakes due to lower water storage and less degradation. Overall, our study reveals the pollution trends and potential sources of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin.
Collapse
Affiliation(s)
- Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jie Li
- College of Resources and Environmental Sciences, Central China Agricultural University, Wuhan 430070, China
| | - Yongdong Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Lingyang Kong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Plateau Lake Ecology and Global Change, School of Tourism & Geography, Yunnan Normal University, Kunming, 650500, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangdong Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Center for Education and Science, University of Chinese Academy of Sciences, 100049, China.
| |
Collapse
|
22
|
Zou H, He JT, He BN, Lao TY, Liu F, Guan XY. Sensitivity assessment of denitrifying bacteria against typical antibiotics in groundwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1570-1579. [PMID: 31407763 DOI: 10.1039/c9em00275h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of antibiotics on nitrate denitrification in groundwater have acquired growing concern. Denitrification is a microbially mediated process. The effects of antibiotics on denitrification were mainly reflected in denitrifying bacteria. However, little is known about the relationship between antibiotics and denitrifying bacteria. Based on this, both direct antimicrobial susceptibility testing and microbial batch-culture experiments were conducted to assess the influences of typical antibiotics on denitrifying groundwater bacteria, mainly Pseudomonas (46.17%). Denitrifying bacteria, screened from a long-term groundwater denitrification environment, were tested for sensitivity to five typical antibiotics in groundwater: sulfamethoxazole (SMX), erythromycin (ERY), enrofloxacin (ENR), clindamycin (CLI), and tetracycline (TCY). The results showed that the sensitivity of denitrifying bacteria to antibiotics is mainly related to the type and concentration of antibiotics. For antibiotic types, the order of sensitivity by quantitative assessment is ENR > TCY > SMX > ERY > CLI. Fluoroquinolones (FQs) represented by ENR were selected to explore their concentration effects. The influences on denitrifying bacteria were divided into the high concentration effect (500 μg L-1 to 100 mg L-1) and the low concentration effect (100 ng L-1 to 10 μg L-1) with about 100 μg L-1 as a boundary. Exposure to high concentrations had significant inhibitory effects on bacterial growth and exhibited dose dependency, especially for ciprofloxacin (CIP). The low concentration effect was independent of concentration, which may be stimulation or inhibition. The stimulation mainly occurred due to ENR-exposure. For inhibitory effects, Lomefloxacin (LOM) was more effective than other FQs. Especially for inhibition at ng-level exposure, LOM and norfloxacin (NOR) exposures led to the highest and lowest inhibition rates, respectively.
Collapse
Affiliation(s)
- Hua Zou
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Zhou LJ, Han P, Yu Y, Wang B, Men Y, Wagner M, Wu QL. Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. WATER RESEARCH 2019; 159:444-453. [PMID: 31125804 DOI: 10.1016/j.watres.2019.05.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The abilities of three phylogenetically distant ammonia oxidizers, Nitrososphaera gargensis, an ammonia-oxidizing archaeon (AOA); Nitrosomomas nitrosa Nm90, an ammonia-oxidizing bacterium (AOB); and Nitrospira inopinata, the only complete ammonia oxidizer (comammox) available as a pure culture, to biotransform seven sulfonamides (SAs) were investigated. The removals and protein-normalized biotransformation rate constants indicated that the AOA strain N. gargensis exhibited the highest SA biotransformation rates, followed by N. inopinata and N. nitrosa Nm90. The transformation products (TPs) of sulfadiazine (SDZ), sulfamethazine (SMZ) and sulfamethoxazole (SMX) and the biotransformation mechanisms were evaluated. Based on the analysis of the TP formulas and approximate structures, it was found that during biotransformation, i) the AOA strain carried out SA deamination, hydroxylation, and nitration; ii) the AOB strain mainly performed SA deamination; and iii) the comammox isolate participated only in deamination reactions. It is proposed that deamination was catalyzed by deaminases while hydroxylation and nitration were mediated by nonspecific activities of the ammonia monooxygenase (AMO). Additionally, it was demonstrated that among the three ammonia oxidizers, only AOB contributed to the formation of pterin-SA conjugates. The biotransformation of SDZ, SMZ and SMX occurred only when ammonia oxidation was active, suggesting a cometabolic transformation mechanism. Interestingly, SAs could also be transformed by hydroxylamine, an intermediate of ammonia oxidation, suggesting that in addition to enzymatic conversions, a microbially induced abiotic mechanism contributes to SA transformation during ammonia oxidation. Overall, using experiments with pure cultures, this study provides important insights into the roles played by ammonia oxidizers in SA biotransformation.
Collapse
Affiliation(s)
- Li-Jun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Ping Han
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Yaochun Yu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Baozhan Wang
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yujie Men
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; The Comammox Research Platform of the University of Vienna, Austria; Department of Biotechnology, Chemistry and Bioscience, Aalborg University, Denmark
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Wang M, Xiong W, Zou Y, Lin M, Zhou Q, Xie X, Sun Y. Evaluating the net effect of sulfadimidine on nitrogen removal in an aquatic microcosm environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1010-1019. [PMID: 31091633 DOI: 10.1016/j.envpol.2019.02.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/22/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics enter into aquatic pond sediments by wastewater and could make detrimental effects on microbial communities. In this study, we examined the effects of sulfadimidine on nitrogen removal when added to experimental pond sediments. We found that sulfadimidine increased the number of sulfadimidine resistant bacteria and significantly increased the abundance of sul2 at the end of the incubation time (ANOVA test at Tukey HSD, P < 0.05). In addition, sulfadimidine decreased the N2O reduction rate as well as the amount of nitrate reduction. Pearson correlation analysis revealed that the N2O reduction rate was significantly and negatively correlated with narG (r = -0.679, P < 0.05). In contrast, we found a significant positive correlation between the amount of nitrate reduction and the abundance of narG (r = 0.609, P < 0.05) and nirK (r = 0.611, P < 0.05). High-throughput sequencing demonstrated that Actinobacteria, Euryarchaeota, Gemmatimonadetes, Nitrospirae, Burkholderiaceae (a family of Proteobacteria), and Thermoanaerobaculaceae (a family of Firmicutes) decreased with sulfadimidine exposure. In sediments, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonbacteraeota, Euryarchaeota, Firmicutes, Gemmatimonadetes, and Spirochaetesat may play key roles in nitrogen transformation. Overall, the study exhibited a net effect of antibiotic exposure regarding nitrogen removal in an aquatic microcosm environment through a combination of biochemical pathways and molecular pathways, and draws attention to controlling antibiotic pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Mei Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yong Zou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Manxia Lin
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Qin Zhou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Xiying Xie
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
25
|
Alcalde RE, Michelson K, Zhou L, Schmitz EV, Deng J, Sanford RA, Fouke BW, Werth CJ. Motility of Shewanella oneidensis MR-1 Allows for Nitrate Reduction in the Toxic Region of a Ciprofloxacin Concentration Gradient in a Microfluidic Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2778-2787. [PMID: 30673286 DOI: 10.1021/acs.est.8b04838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Subsurface environments often contain mixtures of contaminants in which the microbial degradation of one pollutant may be inhibited by the toxicity of another. Agricultural settings exemplify these complex environments, where antimicrobial leachates may inhibit nitrate bioreduction, and are the motivation to address this fundamental ecological response. In this study, a microfluidic reactor was fabricated to create diffusion-controlled concentration gradients of nitrate and ciprofloxacin under anoxic conditions in order to evaluate the ability of Shewanella oneidenisis MR-1 to reduce the former in the presence of the latter. Results show a surprising ecological response, where swimming motility allow S. oneidensis MR-1 to accumulate and maintain metabolic activity for nitrate reduction in regions with toxic ciprofloxacin concentrations (i.e., 50× minimum inhibitory concentration, MIC), despite the lack of observed antibiotic resistance. Controls with limited nutrient flux and a nonmotile mutant (Δ flag) show that cells cannot colonize antibiotic rich microenvironments, and this results in minimal metabolic activity for nitrate reduction. These results demonstrate that under anoxic, nitrate-reducing conditions, motility can control microbial habitability and metabolic activity in spatially heterogeneous toxic environments.
Collapse
Affiliation(s)
- Reinaldo E Alcalde
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Kyle Michelson
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Emily V Schmitz
- McKetta Department of Chemical Engineering , University of Texas at Austin , 200 E Dean Keeton St , Austin , Texas 78712 , United States
| | - Jinzi Deng
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , 1206 W Gregory Dr , Urbana , Illinois 61801 United States
| | - Robert A Sanford
- Department of Geology , University of Illinois at Urbana-Champaign , 1301 West Green Street , Urbana , Illinois 61801 , United States
| | - Bruce W Fouke
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , 1206 W Gregory Dr , Urbana , Illinois 61801 United States
- Department of Geology , University of Illinois at Urbana-Champaign , 1301 West Green Street , Urbana , Illinois 61801 , United States
- Department of Microbiology , University of Illinois at Urbana-Champaign , 601 South Goodwin Avenue , Urbana , Illinois 61801 , United States
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| |
Collapse
|
26
|
D'Alessio M, Durso LM, Miller DN, Woodbury B, Ray C, Snow DD. Environmental fate and microbial effects of monensin, lincomycin, and sulfamethazine residues in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:60-68. [PMID: 30529942 DOI: 10.1016/j.envpol.2018.11.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The impact of commonly-used livestock antibiotics on soil nitrogen transformations under varying redox conditions is largely unknown. Soil column incubations were conducted using three livestock antibiotics (monensin, lincomycin and sulfamethazine) to better understand the fate of the antibiotics, their effect on nitrogen transformation, and their impact on soil microbial communities under aerobic, anoxic, and denitrifying conditions. While monensin was not recovered in the effluent, lincomycin and sulfamethazine concentrations decreased slightly during transport through the columns. Sorption, and to a limited extent degradation, are likely to be the primary processes leading to antibiotic attenuation during leaching. Antibiotics also affected microbial respiration and clearly impacted nitrogen transformation. The occurrence of the three antibiotics as a mixture, as well as the occurrence of lincomycin alone affected, by inhibiting any nitrite reduction, the denitrification process. Discontinuing antibiotics additions restored microbial denitrification. Metagenomic analysis indicated that Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi were the predominant phyla observed throughout the study. Results suggested that episodic occurrence of antibiotics led to a temporal change in microbial community composition in the upper portion of the columns while only transient changes occurred in the lower portion. Thus, the occurrence of high concentrations of veterinary antibiotic residues could impact nitrogen cycling in soils receiving wastewater runoff or manure applications with potential longer-term microbial community changes possible at higher antibiotic concentrations.
Collapse
Affiliation(s)
- Matteo D'Alessio
- University of Nebraska-Lincoln, Water Sciences Laboratory, 202 Water Sciences Laboratory, 1840 North 37th Street, Lincoln, NE, 68583-0844, USA; University of Nebraska-Lincoln, Nebraska Water Center, 2021 Transformation Drive, Suite 3220, Lincoln, NE, 68583-0979, USA.
| | - Lisa M Durso
- USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus, Lincoln, NE, 68583, USA
| | - Daniel N Miller
- USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus, Lincoln, NE, 68583, USA
| | - Brian Woodbury
- USDA, U.S. Meat Animal Waste Management Center, Clay Center, NE, 68933, USA
| | - Chittaranjan Ray
- University of Nebraska-Lincoln, Nebraska Water Center, 2021 Transformation Drive, Suite 3220, Lincoln, NE, 68583-0979, USA
| | - Daniel D Snow
- University of Nebraska-Lincoln, Water Sciences Laboratory, 202 Water Sciences Laboratory, 1840 North 37th Street, Lincoln, NE, 68583-0844, USA
| |
Collapse
|
27
|
Shan J, Yang P, Rahman MM, Shang X, Yan X. Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N 2O release in rice fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:788-796. [PMID: 30031312 DOI: 10.1016/j.envpol.2018.07.061] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Effects of antibiotics on the transformation of nitrate and the associated N2O release in paddy fields are obscure. Using soil slurry experiments combined with 15N tracer techniques, the influence of tetracycline and sulfamethazine (applied alone and in combination) on the denitrification, anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to ammonium (DNRA) and N2O release rates in the paddy soil were investigated, while genes related to nitrate reduction and antibiotic resistance were quantified to explore the microbial mechanisms behind the antibiotics' effects. The potential rates of denitrification, anammox, and DNRA were significantly (p < 0.05) reduced, which were mainly attributed to the inhibitory effects of the antibiotics on nitrate-reducing microbes. However, the N2O release rates were significantly (p < 0.05) stimulated by the antibiotic treatments (0.6-6000 μg kg-1 soil dry weight), which were caused by the different inhibition effects of antibiotics on N2O production and N2O reduction as suggest by the changes in abundance of nirS (nitrite reduction step) and nosZ (N2O reduction to N2 step) genes. Antibiotic resistance gene (tetA, tetG, sulI, and sulIII) abundances were significantly (p < 0.05) increased under high antibiotic exposure concentrations (>600 μg kg-1 soil dry weight). Our results suggest that the widespread occurrence of antibiotics in paddy soils may pose significant eco-environmental risks (nitrate accumulation and greenhouse effects) by altering nitrate transformation processes.
Collapse
Affiliation(s)
- Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Pinpin Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - M Mizanur Rahman
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Xiaoxia Shang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
28
|
Liu J, Yang L, Hou Y, Soteyome T, Zeng B, Su J, Li L, Li B, Chen D, Li Y, Wu A, Shirtliff ME, Harro JM, Xu Z, Peters BM. Transcriptomics Study on Staphylococcus aureus Biofilm Under Low Concentration of Ampicillin. Front Microbiol 2018; 9:2413. [PMID: 30425687 PMCID: PMC6218852 DOI: 10.3389/fmicb.2018.02413] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is one of the representative foodborne pathogens which forms biofilm. Antibiotics are widely applied in livestock husbandry to maintain animal health and productivity, thus contribute to the dissemination of antimicrobial resistant livestock and human pathogens, and pose a significant public health threat. Effect of antibiotic pressure on S. aureus biofilm formation, as well as the mechanism, remains unclear. In this study, the regulatory mechanism of low concentration of ampicillin on S. aureus biofilm formation was elucidated. The viability and biomass of biofilm with and without 1/4 MIC ampicillin treatment for 8 h were determined by XTT and crystal violet straining assays, respectively. Transcriptomics analysis on ampicillin-induced and non-ampicillin-induced biofilms were performed by RNA-sequencing, differentially expressed genes identification and annotation, GO functional and KEGG pathway enrichment. The viability and biomass of ampicillin-induced biofilm showed dramatical increase compared to the non-ampicillin-induced biofilm. A total of 530 differentially expressed genes (DEGs) with 167 and 363 genes showing up- and down-regulation, respectively, were obtained. Upon GO functional enrichment, 183, 252, and 21 specific GO terms in biological process, molecular function and cellular component were identified, respectively. Eight KEGG pathways including "Microbial metabolism in diverse environments", "S. aureus infection", and "Monobactam biosynthesis" were significantly enriched. In addition, "beta-lactam resistance" pathway was also highly enriched. In ampicillin-induced biofilm, the significant up-regulation of genes encoding multidrug resistance efflux pump AbcA, penicillin binding proteins PBP1, PBP1a/2, and PBP3, and antimicrobial resistance proteins VraF, VraG, Dlt, and Aur indicated the positive response of S. aureus to ampicillin. The up-regulation of genes encoding surface proteins ClfB, IsdA, and SasG and genes (cap5B and cap5C) which promote the adhesion of S. aureus in ampicillin induced biofilm might explain the enhanced biofilm viability and biomass.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yuchao Hou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Bingbing Zeng
- Zhuhai Encode Medical Engineering Co., Ltd., Zhuhai, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Aiwu Wu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Janette M. Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Brian M. Peters
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
29
|
Tahrani L, Mehri I, Reyns T, Anthonissen R, Verschaeve L, Khalifa ABH, Loco JV, Abdenaceur H, Mansour HB. UPLC-MS/MS analysis of antibiotics in pharmaceutical effluent in Tunisia: ecotoxicological impact and multi-resistant bacteria dissemination. Arch Microbiol 2017; 200:553-565. [PMID: 29230492 DOI: 10.1007/s00203-017-1467-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/23/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
The UPLC MS/MS analysis showed the presence of the two antibiotics in the pharmaceutical industry discharges during 3 months; norfloxacin and spiramycin which were quantified with the mean concentrations of 226.7 and 84.2 ng mL-1, respectively. Sixteen resistant isolates were obtained from the pharmaceutical effluent and identified by sequencing. These isolates belong to different genera, namely Citrobacter, Acinetobacter, Pseudomonas, Delftia, Shewanella, and Rheinheimera. The antibiotic resistance phenotypes of these isolates were determined (27 tested antibiotics-discs). All the studied isolates were found resistant to amoxicillin and gentamicin, and 83.33% of isolates were resistant to ciprofloxacin. Multiple antibiotic resistances were revealed against β-lactams, quinolones, and aminoglycosides families. Our overall results suggest that the obtained bacterial isolates may constitute potential candidates for bioremediation and can be useful for biotechnological applications. Genotoxic effects were assessed by a battery of biotests; the pharmaceutical wastewater was genotoxic according to the bacterial Vitotox test and micronuclei test. Genotoxicity was also evaluated by the comet test; the tail DNA damages reached 38 and 22% for concentrated sample (10×) and non-concentrated sample (1×), respectively. However, the histological sections of kidney and liver's mice treated by pharmaceutical effluent showed normal histology and no visible structural effects or alterations as cytolysis, edema, or ulcerative necrosis were observed. Residual antibiotics can reach water environment through wastewater and provoke dissemination of the antibiotics resistance and induce genotoxic effects.
Collapse
Affiliation(s)
- Leyla Tahrani
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Research Unit of Analysis and Process Applied to the Environment, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", Monastir University, 5100, Monastir, Tunisia
| | - Ines Mehri
- Laboratoire Traitement et recyclage des eaux, Centre de recherche et technologie des eaux, Borj Cedria, Tunisia
| | - Tim Reyns
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Roel Anthonissen
- Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Luc Verschaeve
- Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Joris Van Loco
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Hassen Abdenaceur
- Laboratoire Traitement et recyclage des eaux, Centre de recherche et technologie des eaux, Borj Cedria, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environment, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", Monastir University, 5100, Monastir, Tunisia.
| |
Collapse
|
30
|
Cinti S, Minotti C, Moscone D, Palleschi G, Arduini F. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens Bioelectron 2017; 93:46-51. [DOI: 10.1016/j.bios.2016.10.091] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 10/26/2016] [Indexed: 01/23/2023]
|
31
|
Chen QQ, Wu WD, Zhang ZZ, Xu JJ, Jin RC. Inhibitory effects of sulfamethoxazole on denitrifying granule properties: Short- and long-term tests. BIORESOURCE TECHNOLOGY 2017; 233:391-398. [PMID: 28288432 DOI: 10.1016/j.biortech.2017.02.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
The broad-spectrum antibiotic sulfamethoxazole (SMX) was chosen to assess its short- and long-term effects on denitrifying granules. The SMX concentration and pre-exposure time in batch testing influenced the denitrifying granule activity. In the continuous-flow experiments, no inhibitory effects on the upflow anaerobic sludge blanket performance were observed at SMX concentrations up to 100mgL-1, probably because of functional redundancy and long-term acclimation. The specific denitrifying activity first decreased to a minimum of 49.3% and then recovered to a level comparable to the initial level as the SMX concentration increased. The changing trend of the extracellular polymer content was consistent with the specific denitrifying activity throughout the process, and relatively high EPS loss ratios (maximum loss of 61.8%) were observed. Additionally, the diameter of the denitrifying granules monophonically increased to a final value of 35.0%. This research provided the application of denitrifying granules to treat wastewater that contained antibiotic.
Collapse
Affiliation(s)
- Qian-Qian Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Wen-Di Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Zao-Zao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia-Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
32
|
Rudrashetti AP, Jadeja NB, Gandhi D, Juwarkar AA, Sharma A, Kapley A, Pandey RA. Microbial population shift caused by sulfamethoxazole in engineered-Soil Aquifer Treatment (e-SAT) system. World J Microbiol Biotechnol 2017; 33:121. [PMID: 28523623 DOI: 10.1007/s11274-017-2284-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/11/2017] [Indexed: 12/01/2022]
Abstract
The engineered-Soil Aquifer Treatment (e-SAT) system was exploited for the biological degradation of Sulfamethoxazole (SMX) which is known to bio-accumulate in the environment. The fate of SMX in soil column was studied through laboratory simulation for a period of 90 days. About 20 ppm SMX concentration could be removed in four consecutive cycles in e-SAT. To understand the microbial community change and biological degradation of SMX in e-SAT system, metagenomic analysis was performed for the soil samples before (A-EBD) and after SMX exposure (B-EBD) in the e-SAT. Four bacterial phyla were found to be present in both the samples, with sample B-EBD showing increased abundance for Actinobacteria, Bacteroidetes, Firmicutes and decreased Proteobacterial abundance compared to A-EBD. The unclassified bacteria were found to be abundant in B-EBD compared to A-EBD. At class level, classes such as Bacilli, Negativicutes, Deltaproteobacteria, and Bacteroidia emerged in sample B-EBD owing to SMX treatment, while Burkholderiales and Nitrosomonadales appeared to be dominant at order level after SMX treatment. Furthermore, in response to SMX treatment, the family Nitrosomonadaceae appeared to be dominant. Pseudomonas was the most dominating bacterial genus in A-EBD whereas Cupriavidus dominated in sample B-EBD. Additionally, the sulfur oxidizing bacteria were enriched in the B-EBD sample, signifying efficient electron transfer and hence organic molecule degradation in the e-SAT system. Results of this study offer new insights into understanding of microbial community shift during the biodegradation of SMX.
Collapse
Affiliation(s)
| | - Niti B Jadeja
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Deepa Gandhi
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Asha A Juwarkar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Abhinav Sharma
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Atya Kapley
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - R A Pandey
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| |
Collapse
|
33
|
Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med 2017; 105:48-67. [PMID: 27989792 PMCID: PMC5401802 DOI: 10.1016/j.freeradbiomed.2016.12.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors.
Collapse
Affiliation(s)
- Carl D Koch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bruce A Freeman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
34
|
Sun M, Ye M, Liu K, Schwab AP, Liu M, Jiao J, Feng Y, Wan J, Tian D, Wu J, Li H, Hu F, Jiang X. Dynamic interplay between microbial denitrification and antibiotic resistance under enhanced anoxic denitrification condition in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:583-591. [PMID: 28082131 DOI: 10.1016/j.envpol.2016.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/22/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Mixed contamination of nitrate and antibiotics/antibiotic-resistant genes (ARGs) is an emerging environmental risk to farmland soil. This is the first study to explore the role of excessive anthropogenic nitrate input in the anoxic dissipation of soil antibiotic/ARGs. During the initial 10 days of incubation, the presence of soil antibiotics significantly inhibited NO3- dissipation, N2O production rate, and denitrifying genes (DNGs) abundance in soil (p < 0.05). Between days 10 and 30, by contrast, enhanced denitrification clearly prompted the decline in antibiotic contents and ARG abundance. Significantly negative correlations were detected between DNGs and ARGs, suggesting that the higher the DNG activity, the more dramatic is the denitrification and the greater are the antibiotic dissipation and ARG abundance. This study provides crucial knowledge for understanding the mutual interaction between soil DNGs and ARGs in the enhanced anoxic denitrification condition.
Collapse
Affiliation(s)
- Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kuan Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Arthur P Schwab
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 88743, USA
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Da Tian
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
35
|
Yin G, Hou L, Liu M, Zheng Y, Li X, Lin X, Gao J, Jiang X, Wang R, Yu C. Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments. CHEMOSPHERE 2017; 171:118-125. [PMID: 28012383 DOI: 10.1016/j.chemosphere.2016.12.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Denitrification is a dominant reactive nitrogen removal pathway in most estuarine and coastal ecosystems, and plays a significant role in regulating N2O release. Although multiple antibiotics residues are widely detected in aquatic environment, combined effects of antibiotics on denitrification remain indistinct. In this work, 5 classes of antibiotics (sulfonamides, chloramphenicols, tetracyclines, macrolides, and fluoroquinolones) were selected to conduct orthogonal experiments in order to explore their combined effects on denitrification. 15N-based denitrification and N2O release rates were determined in the orthogonal experiments, while denitrifying functional genes were examined to illustrate the microbial mechanism of the combined antibiotics effect. Denitrification rates were inhibited by antibiotics treatments, and synergistic inhibition effect was observed for multiple antibiotics exposure. Different classes of antibiotics had different influence on N2O release rates, but multiple antibiotics exposure mostly led to stimulatory effect. Abundances of denitrifying functional genes were inhibited by multiple antibiotics exposure due to the antimicrobial properties, and different inhibition on denitrifiers may be the major mechanism for the variations of N2O release rates. Combined effects of antibiotics on denitrification may lead to nitrate retention and N2O release in estuarine and coastal ecosystems, and consequently cause cascading environmental problems, such as greenhouse effects and hyper-eutrophication.
Collapse
Affiliation(s)
- Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaofei Li
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Xianbiao Lin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Xiaofen Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Rong Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Chendi Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
36
|
Dinh QT, Moreau-Guigon E, Labadie P, Alliot F, Teil MJ, Blanchard M, Chevreuil M. Occurrence of antibiotics in rural catchments. CHEMOSPHERE 2017; 168:483-490. [PMID: 27863369 DOI: 10.1016/j.chemosphere.2016.10.106] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
The transfer of 23 antibiotics from domestic and hospital sources was investigated in two elementary river watersheds receiving wastewater treatment plant (WWTP) discharges, in relation with the hydrological cycle and seasonal conditions. Antibiotic concentrations in the effluent of a WWTP treating wastewaters from both hospital and domestic sources (18-12 850 ng L-1) were far higher than those from domestic sources exclusively (3-550 ng L-1). In rivers, upstream of the WWTP discharges, fluoroquinolones only were found at low concentrations (≤10 ng L-1). Their presence might be explained by transfer from contaminated agricultural fields located on the river banks. Immediately downstream of the WWTP discharge, antibiotic occurrence increased strongly with mean concentrations up to 1210 ng L-1 for ofloxacin and 100% detection frequencies for vancomycin, sulfamethoxazole, trimethoprim and three fluoroquinolones. Dilution processes during high-flow periods led to concentrations 14 times lower than during low-flow periods. Downstream of the discharge, the antibiotic dissipation rate from the water column was higher for fluoroquinolones, in relation with their high sorption upon suspended matter and sediment. Only five antibiotics (vancomycin and four fluoroquinolones ciprofloxacin, norfloxacin, ofloxacin and enoxacin) were partly distributed (11%-36%) in the particulate phase. Downstream of the discharge, antibiotic contents in sediment ranged from 1700 to 3500 ng g-1 dry weight, fluoroquinolones accounting for 97% of the total.
Collapse
Affiliation(s)
- Quoc Tuc Dinh
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005, Paris, France; CARE, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City (VNU-HCM), 268 Ly Thuong Kiet St, Dist. 10, Ho Chi Minh City, Viet Nam
| | - Elodie Moreau-Guigon
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005, Paris, France.
| | - Pierre Labadie
- UMR 5805 EPOC, LPTC Research Group, CNRS-Université de Bordeaux, 351 cours de la Libération, 33405, Talence, France
| | - Fabrice Alliot
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005, Paris, France
| | - Marie-Jeanne Teil
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005, Paris, France
| | - Martine Blanchard
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005, Paris, France
| | - Marc Chevreuil
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005, Paris, France
| |
Collapse
|
37
|
Obimakinde S, Fatoki O, Opeolu B, Olatunji O. Veterinary pharmaceuticals in aqueous systems and associated effects: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3274-3297. [PMID: 27752951 DOI: 10.1007/s11356-016-7757-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Environmental studies have shown that pharmaceuticals can contaminate aqueous matrices, such as groundwater, surface water, sediment as well as aquatic flora and fauna. Effluents from sewage and wastewater treatment plants, pharmaceutical industries and hospitals have been implicated in such contamination. Recent studies have however revealed significant concentrations of pharmaceuticals in wastewater from animal facilities in proximal aquatic habitats. Furthermore, epidemiological studies have shown a consistent positive correlation between exposure to some drugs of veterinary importance and increased adverse effects in aquatic biota largely due to induction of endocrine disruption, antibiotic resistance, neurotoxicity, genotoxicity and oxidative stress. The aquatic habitats and associated biota are important in the maintenance of global ecosystem and food chain. For this reason, anything that compromises the integrity and functions of the aquatic environment may lead to major upset in the world's ecosystems. Therefore, knowledge about this route of exposure cannot be neglected and monitoring of their occurrence in the environment is required. This review focuses on scientific evidence that link the presence of pharmaceuticals in aqueous matrices to animal production facilities and presents means to reduce the occurrence of veterinary pharmaceutical residues in the aquatic habitats.
Collapse
Affiliation(s)
- Samuel Obimakinde
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa.
| | - Olalekan Fatoki
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| | - Beatrice Opeolu
- Department of Environmental and Occupational Health, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| | - Olatunde Olatunji
- Department of Chemistry, Cape Peninsula University of Technology, Zonnebloem, Cape Town, 8000, South Africa
| |
Collapse
|
38
|
Li J, Wang F, Meng L, Han M, Guo Y, Sun C. Controlled synthesis of BiVO 4 /SrTiO 3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal. J Colloid Interface Sci 2017; 485:116-122. [DOI: 10.1016/j.jcis.2016.07.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
39
|
Dinh Q, Moreau-Guigon E, Labadie P, Alliot F, Teil MJ, Blanchard M, Eurin J, Chevreuil M. Fate of antibiotics from hospital and domestic sources in a sewage network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:758-766. [PMID: 27693143 DOI: 10.1016/j.scitotenv.2016.09.118] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 05/21/2023]
Abstract
Investigation of domestic and hospital effluents in a sewage system of an elementary watershed showed that antibiotics belonging to eight classes were present with concentrations ranging from <LOQ to 50μgL-1. The compounds most often detected in the effluents were the fluoroquinolones (79-100%), the sulfonamides (86-100%) and the macrolides (79-86%). Vancomycin, strictly reserved for hospital use in France, was detected exclusively in the hospital effluent, supporting its pertinent use as a marker of hospital discharge. Beta-lactams, which are among the most frequently consumed compounds, were rarely detected in the effluents, due to their rapid hydrolysis. Out of 23 antibiotics used in veterinary and human medicine, fourteen were quantified in both the wastewater treatment plant (WWTP) input and output: erythromycin, amoxicillin, tetracycline, trimethoprim, ormethoprim, sulfamethoxazole, vancomycin and seven quinolones (flumequine, enrofloxacin, enoxacin, ofloxacin, lomefloxacin, norfloxacin and ciprofloxacin). Antibiotic concentrations in the hospital effluent (from 0.04 to 17.9μgL-1) were ten times higher than those measured in the domestic effluent (from 0.03 to 1.75μgL-1), contributing to 90% of the antibiotic inputs to the WWTP. Some molecules such as sulfamethoxazole, erythromycin and trimethoprim displayed higher concentrations after wastewater treatment due to deconjugation of their metabolites, which restores the parent molecules. For other compounds, the antibiotic elimination showed discrepancies depending on their physicochemical properties. For fluoroquinolones, the apparent removal processes were mainly based on adsorption mechanisms, followed by settling, leading to sludge contamination (from 13 to 18,800μgkg-1 dry weight).
Collapse
Affiliation(s)
- QuocTuc Dinh
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005 Paris, France; CARE, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City (VNU-HCM), 268 Ly ThuongKiet St, Dist. 10, Ho Chi Minh City, Vietnam
| | - Elodie Moreau-Guigon
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005 Paris, France.
| | - Pierre Labadie
- UMR 5805 EPOC, LPTC research group, CNRS-Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France
| | - Fabrice Alliot
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005 Paris, France
| | - Marie-Jeanne Teil
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005 Paris, France
| | - Martine Blanchard
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005 Paris, France
| | - Joelle Eurin
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005 Paris, France
| | - Marc Chevreuil
- EPHE, PSL Research University, UMR 7619 METIS (UPMC Univ. Paris 06/CNRS/EPHE), F-75005 Paris, France
| |
Collapse
|
40
|
Rodríguez-Escales P, Sanchez-Vila X. Fate of sulfamethoxazole in groundwater: Conceptualizing and modeling metabolite formation under different redox conditions. WATER RESEARCH 2016; 105:540-550. [PMID: 27676388 DOI: 10.1016/j.watres.2016.09.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Degradation of emerging organic compounds in saturated porous media is usually postulated as following simple low-order models. This is a strongly oversimplified, and in some cases plainly incorrect model, that does not consider the fate of the different metabolites. Furthermore, it does not account for the reversibility in the reaction observed in a few emerging organic compounds, where the parent is recovered from the metabolite. One such compound is the antibiotic sulfamethoxazole (SMX). In this paper, we first compile existing experimental data to formulate a complete model for the degradation of SMX in aquifers subject to varying redox conditions, ranging from aerobic to iron reducing. SMX degrades reversibly or irreversibly to a number of metabolites that are specific of the redox state. Reactions are in all cases biologically mediated. We then propose a mathematical model that reproduces the full fate of dissolved SMX subject to anaerobic conditions and that can be used as a first step in emerging compound degradation modeling efforts. The model presented is tested against the results of the batch experiments of Barbieri et al. (2012) and Nödler et al. (2012) displaying a non-monotonic concentration of SMX as a function of time under denitrification conditions, as well as those of Mohatt et al. (2011), under iron reducing conditions.
Collapse
Affiliation(s)
- Paula Rodríguez-Escales
- Hydrogeology Group (UPC-CSIC), Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
| | - Xavier Sanchez-Vila
- Hydrogeology Group (UPC-CSIC), Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
| |
Collapse
|
41
|
Yin G, Hou L, Liu M, Zheng Y, Li X, Lin X, Gao J, Jiang X. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:265-272. [PMID: 27105162 DOI: 10.1016/j.envpol.2016.04.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Nitrate overload is an important driver of water pollution in most estuarine and coastal ecosystems, and thus nitrate reduction processes have attracted considerable attention. Antibiotics contamination is also an emerging environmental problem in estuarine and coastal regions as a result of growing production and usage of antibiotics. However, the effects of antibiotics on nitrate reduction remain unclear in these aquatic ecosystems. In this study, continuous-flow experiments were conducted to examine the effects of thiamphenicol (TAP, a common chloramphenicol antibiotic) on nitrate reduction and greenhouse gas N2O release. Functional genes involved in nitrogen transformation were also quantified to explore the microbial mechanisms of the TAP influence. Production of N2 were observed to be inhibited by TAP treatment, which implied the inhibition effect of TAP on nitrate reduction processes. As intermediate products of nitrogen transformation processes, nitrite and N2O were observed to accumulate during the incubation. Different TAP inhibition effects on related functional genes may be the microbial mechanism for the changes of nutrient fluxes, N2 fluxes and N2O release rates. These results indicate that the antibiotics residues in estuarine and coastal ecosystems may contribute to nitrate retention and N2O release, which could be a major factor responsible for eutrophication and greenhouse effects.
Collapse
Affiliation(s)
- Guoyu Yin
- College of Geographical Sciences, East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| | - Min Liu
- College of Geographical Sciences, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- College of Geographical Sciences, East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiaofei Li
- College of Geographical Sciences, East China Normal University, Shanghai 200241, China
| | - Xianbiao Lin
- College of Geographical Sciences, East China Normal University, Shanghai 200241, China
| | - Juan Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xiaofen Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| |
Collapse
|
42
|
Tahrani L, Van Loco J, Ben Mansour H, Reyns T. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia. JOURNAL OF WATER AND HEALTH 2016; 14:208-13. [PMID: 27105406 DOI: 10.2166/wh.2015.224] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.
Collapse
Affiliation(s)
- Leyla Tahrani
- Biotechnology and Bio Geo Resources Valorisation Laboratory (LBVBGR- LR11ES31), High Institute of Biotechnology - BioTechPole, Sidi Thabet BP-66, 2020 Sidi Thabet, Ariana-Manouba University, Manouba, Tunisia E-mail:
| | - Joris Van Loco
- Laboratory of Chemical Residues and Contaminants, Direction of Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Hedi Ben Mansour
- Biotechnology and Bio Geo Resources Valorisation Laboratory (LBVBGR- LR11ES31), High Institute of Biotechnology - BioTechPole, Sidi Thabet BP-66, 2020 Sidi Thabet, Ariana-Manouba University, Manouba, Tunisia E-mail:
| | - Tim Reyns
- Laboratory of Chemical Residues and Contaminants, Direction of Food, Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
43
|
Roose-Amsaleg C, Laverman AM. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4000-12. [PMID: 26150293 DOI: 10.1007/s11356-015-4943-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/22/2015] [Indexed: 05/12/2023]
Abstract
Antibiotic use in the early 1900 vastly improved human health but at the same time started an arms race of antibiotic resistance. The widespread use of antibiotics has resulted in ubiquitous trace concentrations of many antibiotics in most environments. Little is known about the impact of these antibiotics on microbial processes or "non-target" organisms. This mini-review summarizes our knowledge of the effect of synthetically produced antibiotics on microorganisms involved in biogeochemical cycling. We found only 31 articles that dealt with the effects of antibiotics on such processes in soil, sediment, or freshwater. We compare the processes, antibiotics, concentration range, source, environment, and experimental approach of these studies. Examining the effects of antibiotics on biogeochemical processes should involve environmentally relevant concentrations (instead of therapeutic), chronic exposure (versus acute), and monitoring of the administered antibiotics. Furthermore, the lack of standardized tests hinders generalizations regarding the effects of antibiotics on biogeochemical processes. We investigated the effects of antibiotics on biogeochemical N cycling, specifically nitrification, denitrification, and anammox. We found that environmentally relevant concentrations of fluoroquinolones and sulfonamides could partially inhibit denitrification. So far, the only documented effects of antibiotic inhibitions were at therapeutic doses on anammox activities. The most studied and inhibited was nitrification (25-100 %) mainly at therapeutic doses and rarely environmentally relevant. We recommend that firm conclusions regarding inhibition of antibiotics at environmentally relevant concentrations remain difficult due to the lack of studies testing low concentrations at chronic exposure. There is thus a need to test the effects of these environmental concentrations on biogeochemical processes to further establish the possible effects on ecosystem functioning.
Collapse
Affiliation(s)
- Céline Roose-Amsaleg
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR 7619 Metis, 4 place Jussieu, 75005, Paris, France.
| | - Anniet M Laverman
- Université de Rennes 1, UMR 6553 Ecobio, 35042, Rennes Cedex, France
| |
Collapse
|
44
|
Laverman AM, Cazier T, Yan C, Roose-Amsaleg C, Petit F, Garnier J, Berthe T. Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13702-13709. [PMID: 25663374 DOI: 10.1007/s11356-015-4159-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Antibiotics and antibiotic resistance genes have shown to be omnipresent in the environment. In this study, we investigated the effect of vancomycin (VA) on denitrifying bacteria in river sediments of a Waste Water Treatment Plant, receiving both domestic and hospital waste. We exposed these sediments continuously in flow-through reactors to different VA concentrations under denitrifying conditions (nitrate addition and anoxia) in order to determine potential nitrate reduction rates and changes in sedimentary microbial community structures. The presence of VA had no effect on sedimentary nitrate reduction rates at environmental concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community structures was observed (determined by polymerase chain reaction-denaturing gradient gel electrophoresis). The bacterial and denitrifying community structure within the sediment changed upon VA exposure indicating a selection of a non-susceptible VA population.
Collapse
|
45
|
Xi X, Wang M, Chen Y, Yu S, Hong Y, Ma J, Wu Q, Lin Q, Xu X. Adaption of the microbial community to continuous exposures of multiple residual antibiotics in sediments from a salt-water aquacultural farm. JOURNAL OF HAZARDOUS MATERIALS 2015; 290:96-105. [PMID: 25746569 DOI: 10.1016/j.jhazmat.2015.02.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Residual antibiotics from aquacultural farming may alter microbial community structure in aquatic environments in ways that may adversely or positively impact microbially-mediated ecological functions. This study investigated 26 ponds (26 composited samples) used to produce fish, razor clam and shrimp (farming and drying) and 2 channels (10 samples) in a saltwater aquacultural farm in southern China to characterize microbial community structure (represented by phospholipid fatty acids) in surface sediments (0-10 cm) with long-term exposure to residual antibiotics. 11 out of 14 widely-used antibiotics were quantifiable at μg kg(-1) levels in sediments but their concentrations did not statistically differ among ponds and channels, except norfloxacin in drying shrimp ponds and thiamphenicol in razor clam ponds. Concentrations of protozoan PLFAs were significantly increased in sediments from razor clam ponds while other microbial groups were similar among ponds and channels. Both canonical-correlation and stepwise-multiple-regression analyses on microbial community and residual antibiotics suggested that roxithromycin residuals were significantly related to shifts in microbial community structure in sediments. This study provided field evidence that multiple residual antibiotics at low environmental levels from aquacultural farming do not produce fundamental shifts in microbial community structure.
Collapse
Affiliation(s)
- Xiuping Xi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshan Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Shen Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Youwei Hong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Ma
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoyin Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
46
|
Rico A, Van den Brink PJ. Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:630-641. [PMID: 24061054 DOI: 10.1016/j.scitotenv.2013.08.063] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 06/02/2023]
Abstract
Aquaculture production constitutes one of the main sources of pollution with veterinary medicines into the environment. About 90% of the global aquaculture production is produced in Asia and the potential environmental risks associated with the use of veterinary medicines in Asian aquaculture have not yet been properly evaluated. In this study we performed a probabilistic risk assessment for eight different aquaculture production scenarios in Asia by combining up-to-date information on the use of veterinary medicines and aquaculture production characteristics. The ERA-AQUA model was used to perform mass balances of veterinary medicinal treatments applied to aquaculture ponds and to characterize risks for primary producers, invertebrates, and fish potentially exposed to chemical residues through aquaculture effluents. The mass balance calculations showed that, on average, about 25% of the applied drug mass to aquaculture ponds is released into the environment, although this percentage varies with the chemical's properties, the mode of application, the cultured species density, and the water exchange rates in the aquaculture pond scenario. In general, the highest potential environmental risks were calculated for parasitic treatments, followed by disinfection and antibiotic treatments. Pangasius catfish production in Vietnam, followed by shrimp production in China, constitute possible hot-spots for environmental pollution due to the intensity of the aquaculture production and considerable discharge of toxic chemical residues into surrounding aquatic ecosystems. A risk-based ranking of compounds is provided for each of the evaluated scenarios, which offers crucial information for conducting further chemical and biological field and laboratory monitoring research. In addition, we discuss general knowledge gaps and research priorities for performing refined risk assessments of aquaculture medicines in the near future.
Collapse
Affiliation(s)
- Andreu Rico
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
47
|
Roose-Amsaleg C, Yan C, Hoang AM, Laverman AM. Chronic exposure of river sediments to environmentally relevant levels of tetracycline affects bacterial communities but not denitrification rates. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1467-1478. [PMID: 24105062 DOI: 10.1007/s10646-013-1133-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
The effects of tetracycline (TC) at chronic sub-inhibitory exposure concentrations on benthic denitrification rates and bacterial communities were explored. River sediments were continuously exposed to different TC concentrations (0.5, 20 and 10,000 μg L(-1)) for 2 weeks in flow-through reactors allowing denitrification and bacterial growth conditions. Bacterial communities were fingerprinted by Denaturing Gradient Gel Electrophoresis of 16S rRNA gene amplification products. Cultivable denitrifiers enriched from the sediment were tested for TC resistance (2-128 mg L(-1)). Denitrification rates were unaffected by exposure to TC, regardless of concentration. In contrast, the bacterial community composition changed significantly from sub-inhibitory (ng-μg L(-1)) to therapeutic (mg L(-1)) exposure concentrations. Furthermore the cultivable denitrifiers showed a high TC sensitivity (<4 mg L(-1)). Maintenance of efficient benthic denitrification rates, even at the highest level of TC exposure most likely originated from an adaptation of the autochthonous bacterial community where dominant species become those that acquire, or already have resistance to antibiotics.
Collapse
Affiliation(s)
- Céline Roose-Amsaleg
- Université Pierre et Marie Curie, UMR 7619 Sisyphe, Box 123, 75005, Paris Cedex 05, France,
| | | | | | | |
Collapse
|