1
|
Bolla M, Pettinato M, Ferrari PF, Fabiano B, Perego P. Polyhydroxyalkanoates production from laboratory to industrial scale: A review. Int J Biol Macromol 2025; 310:143255. [PMID: 40250686 DOI: 10.1016/j.ijbiomac.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Environmental issues related to fossil-based plastics are getting the attention of the media and legislative authorities, addressing the need to improve the plastics' design, collection, and circular economy. In this regard, polyhydroxyalkanoates (PHAs) represent a promising alternative to the conventional polymers, given their biological origin, biodegradability, and biocompatibility. To date, their commercialization covers only a little percentage of the biodegradable plastic application, mainly due to their high cost. However, new production strategies are being investigated and patented, enhancing the PHA market competitiveness. This review tries to fill the gap about the critical investigation on innovative and up-to-date process strategies in PHA production field, deeply evaluating them from a plant-engineering point of view. Several aspects are considered regarding the reduction of the production costs and the increase in the overall PHA productivity and recovery. Among them, the feeding of pre-treated carbon sources derived from food and agro-industrial wastes, the use of mixed microbial cultures as convenient substitutes to the pure ones, and optimized downstream processes are widely discussed. The overlook of the topic is completed by evaluating the innovative technologies existing at pilot and industrial scale, able to achieve improved production yields. Finally, PHA economic and market current conditions are investigated.
Collapse
Affiliation(s)
- Maria Bolla
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Bruno Fabiano
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
2
|
Correa-Galetote D, Serrano A, Ciudad G, Pinto-Ibieta F. Optimisation of the biological production of levulinic acid in a mixed microbial culture fed with synthetic grape pomace. Front Bioeng Biotechnol 2024; 12:1398110. [PMID: 38798952 PMCID: PMC11116726 DOI: 10.3389/fbioe.2024.1398110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Levulinic acid (LA) is a polymer with a vast industrial application range and can be co-produced as a minor by-product during the biological production of polyhydroxyalkanoates (PHA). However, the influence of key parameters as tools for favouring the production of LA over PHA is still unclear. In this study, we investigated how several critical operational conditions, i.e., carbon-nitrogen ratio (C/N), organic loading rate (OLR) and airflow, can be optimised to favour LA accumulation over PHA production by a mixed microbial culture (MMC), using synthetic grape pomace (GP) hydrolysate as the substrate. The results showed that it was possible to direct the MMC towards LA accumulation instead of PHA. The maximum LA yield was 2.7 ± 0.2 g LA/(L·d) using a C/N of 35, an airflow of 5 L/min and an OLR of 4 g sCOD/(L·d). The OLR and, to a lesser extent, the C/N ratio were the main factors significantly and positively correlated with the biological synthesis of LA.
Collapse
Affiliation(s)
- David Correa-Galetote
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, Granada, Spain
- Instituto de Investigación del Agua, Universidad de Granada, Granada, Spain
| | - Antonio Serrano
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, Granada, Spain
- Instituto de Investigación del Agua, Universidad de Granada, Granada, Spain
| | - Gustavo Ciudad
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Investigación Biotecnologica aplicada al Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Fernanda Pinto-Ibieta
- Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
3
|
Wang L, Cui YW. Simultaneous treatment of epichlorohydrin wastewater and polyhydroxyalkanoate recovery by halophilic aerobic granular sludge highly enriched by Halomonas sp. BIORESOURCE TECHNOLOGY 2024; 391:129951. [PMID: 37914058 DOI: 10.1016/j.biortech.2023.129951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The treatment of epichlorohydrin (ECH) wastewater exists chances for achieving cleaner production. This study initially employed moderately halophilic aerobic granular sludge (HAGS) to treat ECH wastewater, and the resulting HAGS was utilized to recover polyhydroxyalkanoate (PHA). During the acclimation process of HAGS, the chemical oxygen demand removal efficiency stabilized at 70 %. Moreover, due to the high enrichment of Halomonas sp. (relative abundance of 86 ± 0.50 %), the maximum PHA content of wasted HAGS was 52.67 wt% in the fermentation process. Simultaneously, the utilization of nuclear magnetic resonance spectroscopy (1H and 13C spectra) and fourier transform infrared spectroscopy for the structural analysis of polymers revealed that polyhydroxybutyrate was the predominant substance extracted from HAGS. In this study, the innovative use of highly enriched HAGS for treating ECH wastewater and simultaneously recovering PHA not only enables the efficient biological treatment of ECH wastewater but also realizes resource recovery of ECH wastewater.
Collapse
Affiliation(s)
- Ling Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Rajvanshi J, Sogani M, Kumar A, Arora S, Syed Z, Sonu K, Gupta NS, Kalra A. Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162441. [PMID: 36858235 DOI: 10.1016/j.scitotenv.2023.162441] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plastic waste from fossil-based sources, including single-use packaging materials, is continuously accumulating in landfills, and leaching into the environment. A 2021 UN Environment Programme (UNEP) report suggests that the plastic pollution is likely to be doubled by 2030, posing a major challenge to the environment and the overall global plastic waste management efforts. The use of biobased plastics such as polyhydroxyalkanoates (PHAs) as a biodegradable substitute for petroleum-based plastics could be a feasible option to combat this issue which may further result in much lower carbon emissions and energy usage in comparison to conventional plastics as additional advantages. Though recent years have seen the use of microbes as biosynthetic machinery for biobased plastics, using various renewable feedstocks, the scaled-up production of such materials is still challenging. The current study outlays applications of biobased plastics, potential microorganisms producing biobased plastics such as Cupriavidus necator, Bacillus sp., Rhodopseudomonas palustris, microalgae, and mixed microbial cultures, and inexpensive and renewable resources as carbon substrates including industrial wastes. This review also provides deep insights into the operational parameters, challenges and mitigation, and future opportunities for maximizing the production of biobased plastic products. Finally, this review emphasizes the concept of biorefinery as a sustainable and innovative solution for biobased plastic production for achieving a circular bioeconomy.
Collapse
Affiliation(s)
- Jayana Rajvanshi
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India
| | - Monika Sogani
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India.
| | - Anu Kumar
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, Rajasthan, India
| | - Zainab Syed
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India
| | - Kumar Sonu
- Department of Mechanical Engineering, Kashi Institute of Technology, Varanasi, 221307, Uttar Pradesh, India
| | - Nishan Sen Gupta
- Department of Biosciences, Manipal University Jaipur, 303007, Rajasthan, India
| | - Aakanksha Kalra
- Dr. B. Lal Institute of Biotechnology, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, Rajasthan, India
| |
Collapse
|
5
|
Yukesh Kannah R, Dinesh Kumar M, Kavitha S, Rajesh Banu J, Kumar Tyagi V, Rajaguru P, Kumar G. Production and recovery of polyhydroxyalkanoates (PHA) from waste streams - A review. BIORESOURCE TECHNOLOGY 2022; 366:128203. [PMID: 36330969 DOI: 10.1016/j.biortech.2022.128203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Polyhydroxyalkanoates (PHA) are the more attractive sustainable green plastic, and it has the potential to replace petroleum-based plastics (PBP) in the global market. Recently, most of the developed and developing countries have banned the use of traditional PBP. This increases the demand for green plastic production and positively impacts the global market. Producing green plastic from various waste streams such as whey, animal, and crude glycerol will be eco-friendly and cost-effective. However, the factors influencing the environmental sustainability of PHA production from different waste streams are still unclear. This review could be reinforced concrete to researchers to gather deep knowledge on techno-economic analysis, life-cycle assessment, environmental and ecological risks caused during PHA production from different waste streams.
Collapse
Affiliation(s)
- R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamilnadu 627007 India; Department of Environmental and Sustainable Engineering, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - M Dinesh Kumar
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamilnadu 627007 India; Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamilnadu 627007 India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - P Rajaguru
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Optimization of Propagation Medium for Enhanced Polyhydroxyalkanoate Production by Pseudomonas oleovorans. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyhydroxyalkanoates (PHAs) represent a promising alternative to commercially used petroleum-based plastics. Pseudomonas oleovorans is a natural producer of medium-chain-length PHA (mcl-PHA) under cultivation conditions with nitrogen limitation and carbon excess. Two-step cultivation appears to be an efficient but more expensive method of PHA production. Therefore, the aim of this work was to prepare a minimal synthetic medium for maximum biomass yield and to optimize selected independent variables by response surface methodology (RSM). The highest biomass yield (1.71 ± 0.04 g/L) was achieved in the optimized medium containing 8.4 g/L glucose, 5.7 g/L sodium ammonium phosphate and 35.4 mM phosphate buffer. Under these conditions, both carbon and nitrogen sources were completely consumed after 48 h of the cultivation and the biomass yield was 1.7-fold higher than in the conventional medium recommended by the literature. This approach demonstrates the possibility of using two-stage PHA cultivation to obtain the maximum amount of biomass and PHA.
Collapse
|
7
|
Tamang P, Nogueira R. Valorisation of waste cooking oil using mixed culture into short- and medium-chain length polyhydroxyalkanoates: Effect of concentration, temperature and ammonium. J Biotechnol 2021; 342:92-101. [PMID: 34688787 DOI: 10.1016/j.jbiotec.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
The production of polyhydroxyalkanoates (PHAs) from waste cooking oil (WCO) by a mixed culture was investigated in the present study at increasing WCO concentrations, temperature and ammonium availability. The PHA production was done in two steps: in the first step, a mixed culture was enriched in PHA-accumulating bacteria from activated sludge in a sequencing batch reactor operated in a feast-famine mode and in the second step the PHA accumulation by the enriched mixed culture was assessed in a batch reactor. In the enrichment step, two substrates, WCO and nonanoic acid were used for enrichment and in the PHA accumulation step only WCO was used. It was not possible to enrich a mixed culture in PHA-accumulating bacteria using WCO as substrate due to the development of filamentous bacteria causing foam formation and bulking in the reactor. However, our results showed that the mixed culture continuously fed with nonanoic acid was enriched in PHA-accumulating bacteria. This enriched culture accumulated both scl- and mcl-PHA using WCO as substrate. The maximum PHA accumulation capacity of this mixed culture from WCO was 38.2% cdw. Increasing the temperature (30-40 ℃) or WCO concentrations (5-20 g/l) increased the PHA accumulation capacity of the mixed culture and the ratios of scl-PHA to mcl-PHA. The presence of ammonium increased PHA accumulation (21.9% cdw) compared to the complete absence of ammonium (5.8% cdw). The thermal characterization of the PHA exhibited the advantageous properties of both scl- and mcl-PHA, i.e., higher melting temperature (152-172 ℃) similar to scl-PHA and a lower degree of crystallinity (12%) similar to mcl-PHA. This is the first study to report the potential of open mixed culture to produce scl- and mcl-PHA from WCO and thus contributing to the understanding of sustainable polymer production.
Collapse
Affiliation(s)
- Pravesh Tamang
- Leibniz Universität Hannover, Institute of Sanitary Engineering and Waste Management, Welfengarten 1, 30167 Hannover, Germany.
| | - Regina Nogueira
- Leibniz Universität Hannover, Institute of Sanitary Engineering and Waste Management, Welfengarten 1, 30167 Hannover, Germany.
| |
Collapse
|
8
|
Virseda-Berdices A, Brochado-Kith O, Díez C, Hontañon V, Berenguer J, González-García J, Rojo D, Fernández-Rodríguez A, Ibañez-Samaniego L, Llop-Herrera E, Olveira A, Perez-Latorre L, Barbas C, Rava M, Resino S, Jiménez-Sousa MA. Blood microbiome is associated with changes in portal hypertension after successful direct-acting antiviral therapy in patients with HCV-related cirrhosis. J Antimicrob Chemother 2021; 77:719-726. [PMID: 34888660 DOI: 10.1093/jac/dkab444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with a significant decrease in hepatic venous pressure gradient (HVPG) have a considerable reduction of liver complications and higher survival after HCV eradication. OBJECTIVES To evaluate the association between the baseline blood microbiome and the changes in HVPG after successful direct-acting antiviral (DAA) therapy in patients with HCV-related cirrhosis. METHODS We performed a prospective study in 32 cirrhotic patients (21 HIV positive) with clinically significant portal hypertension (HVPG ≥10 mmHg). Patients were assessed at baseline and 48 weeks after HCV treatment completion. The clinical endpoint was a decrease in HVPG of ≥20% or HVPG <12 mmHg at the end of follow-up. Bacterial 16S ribosomal DNA was sequenced using MiSeq Illumina technology, inflammatory plasma biomarkers were investigated using ProcartaPlex immunoassays and the metabolome was investigated using GC-MS. RESULTS During the follow-up, 47% of patients reached the clinical endpoint. At baseline, those patients had a higher relative abundance of Corynebacteriales and Diplorickettsiales order, Diplorickettsiaceae family, Corynebacterium and Aquicella genus and Undibacterium parvum species organisms and a lower relative abundance of Oceanospirillales and Rhodospirillales order, Halomonadaceae family and Massilia genus organisms compared with those who did not achieve the clinical endpoint according to the LEfSe algorithm. Corynebacteriales and Massilia were consistently found within the 10 bacterial taxa with the highest differential abundance between groups. Additionally, the relative abundance of the Corynebacteriales order was inversely correlated with IFN-γ, IL-17A and TNF-α levels and the Massilia genus with glycerol and lauric acid. CONCLUSIONS Baseline-specific bacterial taxa are related to an HVPG decrease in patients with HCV-related cirrhosis after successful DAA therapy.
Collapse
Affiliation(s)
- Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Díez
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Victor Hontañon
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan González-García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Luis Ibañez-Samaniego
- Servicio de Aparato Digestivo, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain
| | - Elba Llop-Herrera
- Departamento de Gastroenterología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain
| | - Antonio Olveira
- Servicio de Aparato Digestivo, Hospital Universitario La Paz, Madrid, Spain
| | - Leire Perez-Latorre
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario 'Gregorio Marañón', Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Marta Rava
- Unidad de la Cohorte de la Red de Investigación en Sida (CoRIS), Centro Nacional de Epidemiologia (CNE), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Angeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
9
|
Heo S, Liu YQ. Dependence of poly-β-hydroxybutyrate accumulation in sludge on biomass concentration in SBRs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149138. [PMID: 34346384 DOI: 10.1016/j.scitotenv.2021.149138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The combination of wastewater treatment with polyhydroxyalkanoate production has attracted increasing interest in the context of the circular economy. Recent studies have thus attempted to optimize the conditions for polyhydroxyalkanoate accumulation in sludge when treating wastewater. The effects of biomass concentration and sludge morphologies in reactors on PHB storage, however, were neglected in the literature. Therefore, in this study settling time and organic loading rate were manipulated to adjust sludge morphology and biomass concentration in sequential batch reactors (SBRs) to investigate their influence on PHB storage in the feast phase. Our study shows that reducing settling times in SBRs from 10 to 0 min under organic loading rate of 3 g L-1 d-1 resulted in the decrease in biomass concentration at steady states from 4.2 to 1.0 g L-1 and the change of sludge morphology from well-settled granules to poorly settled pinpoint flocs, but PHB content in sludge at the end of feast phase increased from 7.7 to 26.7%. The well-fitted regression lines between PHB content, SRT, feast/famine and food/microorganisms ratios and biomass concentration under different settling times suggest that PHB was highly dependent on biomass concentration but independent on sludge morphology. Under settling time of 0 min, the increase in OLR from 3 to 7.5 g L-1 d-1 resulted in an increased biomass concentration from 1.0 to 2.1 g L-1 and an increase in PHB content from 26.7 to 33.8%. The batch and fed-batch experiments with different biomass concentrations also showed the influence of biomass concentration on PHB accumulation in sludge. The conclusion of the dependence of PHB content on biomass concentration under a fixed OLR and varied OLRs drawn from this study enables sludge PHB content as high as possible by adjusting biomass concentration in SBRs apart from the selective enriching strategies for PHB accumulating organisms when treating VFA-rich wastewater.
Collapse
Affiliation(s)
- Seongbong Heo
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
10
|
Pinto-Ibieta F, Serrano A, Cea M, Ciudad G, Fermoso FG. Beyond PHA: Stimulating intracellular accumulation of added-value compounds in mixed microbial cultures. BIORESOURCE TECHNOLOGY 2021; 337:125381. [PMID: 34120059 DOI: 10.1016/j.biortech.2021.125381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
This review compiled and analyzed the operational conditions (dissolved oxygen, feast and famine ratio, sequential batch reactor cycle length, organic loading rate (OLR), pH, C/N, and temperature) established during the feast and famine culture strategy for the mixed microbial cultures (MMC) selection to understand how these variables could affect the synthesis of polyhydroxyalkanoates, polyglucose, triacylglycerides, levulinic acid and adipic acid from non-fermented substrates. According to the reported information, the dissolved oxygen has a greater impact on the type and amount of produced compound. In a lesser extent, the OLR and the cycle length were identified to have an impact on the accumulation of polyhydroxyalkanoates, whose accumulation was favored at lower OLR and longer cycle lengths. Thereby, the information of this work will allow the design of future strategies for the simultaneous accumulation of compounds of interest other than the polyhydroxyalkanoates or understand the operational conditions that would optimize the polyhydroxyalkanoates production.
Collapse
Affiliation(s)
- F Pinto-Ibieta
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
| | - A Serrano
- Instituto de la Grasa. Consejo Superior de Investigaciones Científicas. Campus Universitario Pablo de Olavide- Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain.
| | - M Cea
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - G Ciudad
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Instituto del Medio Ambiente (IMA), Universidad de La Frontera, Avenida Francisco Salazar #01145, Temuco, Chile
| | - F G Fermoso
- Instituto de la Grasa. Consejo Superior de Investigaciones Científicas. Campus Universitario Pablo de Olavide- Ed. 46, Ctra. de Utrera, km. 1, Seville 41013, Spain
| |
Collapse
|
11
|
Ballerstedt H, Tiso T, Wierckx N, Wei R, Averous L, Bornscheuer U, O’Connor K, Floehr T, Jupke A, Klankermayer J, Liu L, de Lorenzo V, Narancic T, Nogales J, Perrin R, Pollet E, Prieto A, Casey W, Haarmann T, Sarbu A, Schwaneberg U, Xin F, Dong W, Xing J, Chen GQ, Tan T, Jiang M, Blank LM. MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:99. [PMID: 34458054 PMCID: PMC8380104 DOI: 10.1186/s12302-021-00536-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/31/2021] [Indexed: 05/16/2023]
Abstract
This article introduces the EU Horizon 2020 research project MIX-UP, "Mixed plastics biodegradation and upcycling using microbial communities". The project focuses on changing the traditional linear value chain of plastics to a sustainable, biodegradable based one. Plastic mixtures contain five of the top six fossil-based recalcitrant plastics [polyethylene (PE), polyurethane (PUR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS)], along with upcoming bioplastics polyhydroxyalkanoate (PHA) and polylactate (PLA) will be used as feedstock for microbial transformations. Consecutive controlled enzymatic and microbial degradation of mechanically pre-treated plastics wastes combined with subsequent microbial conversion to polymers and value-added chemicals by mixed cultures. Known plastic-degrading enzymes will be optimised by integrated protein engineering to achieve high specific binding capacities, stability, and catalytic efficacy towards a broad spectrum of plastic polymers under high salt and temperature conditions. Another focus lies in the search and isolation of novel enzymes active on recalcitrant polymers. MIX-UP will formulate enzyme cocktails tailored to specific waste streams and strives to enhance enzyme production significantly. In vivo and in vitro application of these cocktails enable stable, self-sustaining microbiomes to convert the released plastic monomers selectively into value-added products, key building blocks, and biomass. Any remaining material recalcitrant to the enzymatic activities will be recirculated into the process by physicochemical treatment. The Chinese-European MIX-UP consortium is multidisciplinary and industry-participating to address the market need for novel sustainable routes to valorise plastic waste streams. The project's new workflow realises a circular (bio)plastic economy and adds value to present poorly recycled plastic wastes where mechanical and chemical plastic recycling show limits.
Collapse
Affiliation(s)
- Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Research Center Jülich, Wilhelm Johnen Straße, 52428 Jülich, Germany
| | - Ren Wei
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Luc Averous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Uwe Bornscheuer
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kevin O’Connor
- BiOrbic Bioeconomy SFI Research Centre, UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tilman Floehr
- everwave GmbH, Strüverweg 116, 52070 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering, Aachen Process Technology (AVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Jürgen Klankermayer
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Luo Liu
- College of Life Science and Technology (CLST), Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang District, Beijing, 100029 PR China
| | - Victor de Lorenzo
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - Tanja Narancic
- BiOrbic Bioeconomy SFI Research Centre, UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juan Nogales
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - Rémi Perrin
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Biological Research Center (CIB-CSIC), 28040 Madrid, Spain
| | - William Casey
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thomas Haarmann
- AB Enzymes GmbH, Feldbergstraße 78, 64293 Darmstadt, Germany
| | - Alexandru Sarbu
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Ulrich Schwaneberg
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Jiamin Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing, 100190 PR China
| | - Guo-Qiang Chen
- School of Life Sciences (SLS), Tsinghua University, Beijing, 100084 PR China
| | - Tianwei Tan
- College of Life Science and Technology (CLST), Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang District, Beijing, 100029 PR China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road, Nanjing, 211816 PR China
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
12
|
De Donno Novelli L, Moreno Sayavedra S, Rene ER. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. BIORESOURCE TECHNOLOGY 2021; 331:124985. [PMID: 33819906 DOI: 10.1016/j.biortech.2021.124985] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.
Collapse
Affiliation(s)
- Laura De Donno Novelli
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Sarah Moreno Sayavedra
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands.
| |
Collapse
|
13
|
Lhamo P, Behera SK, Mahanty B. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Biotechnol J 2021; 16:e2100136. [PMID: 34132046 DOI: 10.1002/biot.202100136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
Microbial polyhydroxyalkanoates (PHAs) produced using renewable resources could be the best alternative for conventional plastics. Despite their incredible potential, commercial production of PHAs remains very low. Nevertheless, sincere attempts have been made by researchers to improve the yield and economic viability of PHA production by utilizing low-cost agricultural or industrial wastes. In this context, the use of efficient microbial culture or consortia, adoption of experimental design to trace ideal growth conditions, nutritional requirements, and intervention of metabolic engineering tools have gained significant attention. This review has been structured to highlight the important microbial sources for PHA production, use of conventional and non-conventional substrates, product optimization using experimental design, metabolic engineering strategies, and global players in the commercialization of PHA in the past two decades. The challenges about PHA recovery and analysis have also been discussed which possess indirect hurdle while expanding the horizon of PHA-based bioplastics. Selection of appropriate microorganism and substrate plays a vital role in improving the productivity and characteristics of PHAs. Experimental design-based bioprocess, use of metabolic engineering tools, and optimal product recovery techniques are invaluable in this dimension. Optimization strategies, which are being explored in isolation, need to be logically integrated for the successful commercialization of microbial PHAs.
Collapse
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
14
|
Bhatia SK, Otari SV, Jeon JM, Gurav R, Choi YK, Bhatia RK, Pugazhendhi A, Kumar V, Rajesh Banu J, Yoon JJ, Choi KY, Yang YH. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. BIORESOURCE TECHNOLOGY 2021; 326:124733. [PMID: 33494006 DOI: 10.1016/j.biortech.2021.124733] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Biowaste management is a challenging job as it is high in nutrient content and its disposal in open may cause a serious environmental and health risk. Traditional technologies such as landfill, bio-composting, and incineration are used for biowaste management. To gain revenue from biowaste researchers around the world focusing on the integration of biowaste management with other commercial products such as volatile fatty acids (VFA), biohydrogen, and bioplastic (polyhydroxyalkanoates (PHA)), etc. PHA production from various biowastes such as lignocellulosic biomass, municipal waste, waste cooking oils, biodiesel industry waste, and syngas has been reported successfully. Various nutrient factors i.e., carbon and nitrogen source concentration and availability of dissolved oxygen are crucial factors for PHA production. This review is an attempt to summarize the recent advancements in PHA production from various biowaste, its downstream processing, and other challenges that need to overcome making bioplastic an alternate for synthetic plastic.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sachin V Otari
- Department of Biotechnology, Shivaji University, Vidyanagar Kolhapur 416004, Maharashtra, India
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
15
|
Goyal S, Hernández NB, Cochran EW. An update on the future prospects of glycerol polymers. POLYM INT 2021. [DOI: 10.1002/pi.6209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shailja Goyal
- Department of Chemical and Biological Engineering Iowa State University Ames IA USA
| | - Nacú B Hernández
- Department of Chemical and Biological Engineering Iowa State University Ames IA USA
| | - Eric W Cochran
- Department of Chemical and Biological Engineering Iowa State University Ames IA USA
| |
Collapse
|
16
|
Yadav B, Chavan S, Atmakuri A, Tyagi RD, Drogui P. A review on recovery of proteins from industrial wastewaters with special emphasis on PHA production process: Sustainable circular bioeconomy process development. BIORESOURCE TECHNOLOGY 2020; 317:124006. [PMID: 32889176 DOI: 10.1016/j.biortech.2020.124006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The economy of the polyhydroxyalkanoate (PHA) production process could be supported by utilising the different by-products released simultaneously during its production. Among these, proteins are present in high concentrations in liquid stream which are released after the cell disruption along with PHA granules. These microbial proteins can be used as animal feed, adhesive material and in manufacturing of bioplastics. The recycling of the protein containing liquid stream also serves as a promising approach to maintain circular bioeconomy in the route. For this aim, it is important to obtain good yield and limit the drawbacks of protein recovery processes and associated costs. The review focuses on recycling of the liquid stream generated during acid/thermal-alkali treatment for PHA production that would close the gap in linear economy and attain circularity in the process. Examples to recover proteins from other industrial waste streams along with their applications have also been discussed.
Collapse
Affiliation(s)
- Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Anusha Atmakuri
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada.
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
17
|
Rončević Z, Bajić B, Vlajkov V, Dodić S, Grahovac J, Jokić A, Dodić J. Optimisation of xanthan production on glycerol-based medium using response surface methodology. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00062-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Thermo-Mechanical Properties of a Wood Fiber Insulation Board Using a Bio-Based Adhesive as a Binder. BUILDINGS 2020. [DOI: 10.3390/buildings10090152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of the present study was to develop a low-density thermal insulation board using wood fibers and a bio-based adhesive as a binder, which was prepared from a crude glycerol and citric acid mixture. The physical and mechanical properties of insulation boards manufactured using two ratios of crude glycerol and citric acid (1:0.66 and 1:1 mol/mol) and two adhesive contents (14% and 20%) were evaluated. The results show that the insulation boards with a range of density between 332 to 338 kg m−3 present thermal conductivity values between 0.064 W/m-K and 0.066 W/m-K. The effect of adhesive content was very significant for certain mechanical properties (tensile strength perpendicular to surface and compressive strength). The tensile strength (internal bond) increased between 20% and 36% with the increased adhesive content. In contrast, the compressive strength decreased between 7% and 15%. The thermo-mechanical properties obtained of insulation boards such as thermal conductivity, traverse strength, tensile strength parallel and perpendicular to surface, and compressive strength are in accordance with the requirements of the American Society for Testing and Materials C208-12 standard for different uses. The results confirm the potential of crude glycerol and citric acid mixture to be used as an adhesive in the wood fiber insulation boards’ manufacturing for sustainability purposes.
Collapse
|
19
|
Utilization of biodiesel waste in the development of botanical-based floating tablet formulation against early stages of mosquitoes. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42768-020-00041-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P, Ravikumar Y, Zabed HM, Qi X. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review. BIORESOURCE TECHNOLOGY 2020; 306:123132. [PMID: 32220472 DOI: 10.1016/j.biortech.2020.123132] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are inevitably a key biopolymer that has the potential to replace the conventional petrochemical based plastics that pose jeopardy to the environment globally. Even then the reach of PHA in the common market is so restricted. The economy of PHA is such that, even after several attempts the overall production cost seems to be high and this very factor surpasses PHAs usage when compared to the conventional polymers. The major focus of the review relies on the synthesis of PHA from Mixed Microbial Cultures (MMCs), through a 3-stage process most probably utilizing feedstocks from waste streams or models that mimic them. Emphasis was given to the works carried out in the past decade and their coherence with each and every individual criteria (Aeration, Substrate and bioprocess parameters) such that to understand their effect in enhancing the overall production of PHA.
Collapse
Affiliation(s)
- Poorna Chandrika Sabapathy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Katharina Meixner
- University of Natural Resources and Life Sciences, Vienna, Austria; Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
| | - Parthiban Anburajan
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
21
|
Kucera D, Novackova I, Pernicova I, Sedlacek P, Obruca S. Biotechnological Production of Poly(3-Hydroxybutyrate- co-4-Hydroxybutyrate- co-3-Hydroxyvalerate) Terpolymer by Cupriavidus sp. DSM 19379. Bioengineering (Basel) 2019; 6:bioengineering6030074. [PMID: 31455023 PMCID: PMC6783845 DOI: 10.3390/bioengineering6030074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
The terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 4-hydroxybutyrate (4HB) was produced employing Cupriavidus sp. DSM 19379. Growth in the presence of γ-butyrolactone, ε-caprolactone, 1,4-butanediol, and 1,6-hexanediol resulted in the synthesis of a polymer consisting of 3HB and 4HB monomers. Single and two-stage terpolymer production strategies were utilized to incorporate the 3HV subunit into the polymer structure. At the single-stage cultivation mode, γ-butyrolactone or 1,4-butanediol served as the primary substrate and propionic and valeric acid as the precursor of 3HV. In the two-stage production, glycerol was used in the growth phase, and precursors for the formation of the terpolymer in combination with the nitrogen limitation in the medium were used in the second phase. The aim of this work was to maximize the Polyhydroxyalkanoates (PHA) yields with a high proportion of 3HV and 4HB using different culture strategies. The obtained polymers contained 0–29 mol% of 3HV and 16–32 mol% of 4HB. Selected polymers were subjected to a material properties analysis such as differential scanning calorimetry (DSC), thermogravimetry, and size exclusion chromatography coupled with multi angle light scattering (SEC-MALS) for determination of the molecular weight. The number of polymers in the biomass, as well as the monomer composition of the polymer were determined by gas chromatography.
Collapse
Affiliation(s)
- Dan Kucera
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
- Material Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Iva Pernicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
- Material Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Petr Sedlacek
- Material Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
- Material Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
22
|
Hassan EA, Abd‐Alla MH, Zohri AA, Ragaey MM, Ali SM. Production of butanol and polyhydroxyalkanoate from industrial waste by Clostridium beijerinckiiASU10. INTERNATIONAL JOURNAL OF ENERGY RESEARCH 2019; 43:3640-3652. [DOI: 10.1002/er.4514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/26/2019] [Indexed: 09/02/2023]
Affiliation(s)
- Elhagag Ahmed Hassan
- Botany and Microbiology Department, Faculty of ScienceAssiut University Assiut Egypt
| | | | | | - Marwa M. Ragaey
- Botany Department, Faculty of ScienceNew Valley University El‐Kharja Egypt
| | - Shimaa Mohamed Ali
- Botany Department, Faculty of ScienceNew Valley University El‐Kharja Egypt
| |
Collapse
|
23
|
Pokój T, Klimiuk E, Ciesielski S. Interactive effect of crude glycerin concentration and C:N ratio on polyhydroxyalkanoates accumulation by mixed microbial cultures modelled with Response Surface Methodology. WATER RESEARCH 2019; 156:434-444. [PMID: 30947043 DOI: 10.1016/j.watres.2019.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 05/26/2023]
Abstract
Response Surface Methodology (RSM) was used to investigate how the crude glycerin concentration and the carbon to nitrogen (C:N) ratio in the culture medium affect four indicators of polyhydroxyalkanoates (PHAs) accumulation by mixed microbial cultures (MMC): the observed coefficient of active-biomass yield (Yobs,BA), the observed coefficient of PHA yield (Yobs,PHA), the PHA content in biomass (XPHA) and the volumetric productivity (PrV). The C:N ratio had the largest effect on Yobs,BA and Yobs,PHA. When the C:N ratio was increased, Yobs,BA decreased and Yobs,PHA increased, regardless of the concentration of crude glycerin in the culture medium. The C:N ratio also had the largest effect on the PHA content, whereas volumetric productivity was strongly affected by both the C:N ratio and the crude glycerin concentration. The optimal conditions for PHA accumulation were a crude glycerin concentration of 8954 mg COD/L with a C:N ratio of 15.9 mg C/mg N-NH4, which gave a Yobs,BA of 0.29 mg CODBA/mg COD, a Yobs,PHA of 0.28 mg CODPHA/mg COD, a XPHA of 55.6% VSS and a PrV of 757.3 mg CODPHA/L⋅d (550.0 mg PHA/L⋅d). The accumulated PHAs consisted mainly of 3-hydroxybutyrate. By using RSM, it was possible to predict crude glycerin concentrations and C:N ratios not tested here that will allow desirable values of PHA content in biomass or PHA productivity, which can be useful for designing PHA production with MMC.
Collapse
Affiliation(s)
- Tomasz Pokój
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, 10-719, Olsztyn, Poland.
| | - Ewa Klimiuk
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, 10-719, Olsztyn, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, 10-719, Olsztyn, Poland
| |
Collapse
|
24
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
25
|
An Overview of Recent Research in the Conversion of Glycerol into Biofuels, Fuel Additives and other Bio-Based Chemicals. Catalysts 2018. [DOI: 10.3390/catal9010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The depletion of fossil fuels has heightened research and utilization of renewable energy such as biodiesel. However, this has thrown up another challenge of significant increase in its byproduct, glycerol. In view of the characteristics and potentials of glycerol, efforts are on the increase to convert it to higher-value products, which will in turn improve the overall economics of biodiesel production. These high-value products include biofuels, oxygenated fuel additives, polymer precursors and other industrial bio-based chemicals. This review gives up-to-date research findings in the conversion of glycerol to the above high-value products, with a special focus on the performance of the catalysts used and their challenges. The specific products reviewed in this paper include hydrogen, ethanol, methanol, acetin, glycerol ethers, solketal, acetal, acrolein, glycerol carbonate, 1,3-propanediol, polyglycerol and olefins.
Collapse
|
26
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018; 54:547-568. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/11/2025]
|
27
|
Liu C, Zhang R, Yang H, Zhang J, Wang H, Chang L, Zhan Y, Xu Q. Investigating the performance of an anaerobic baffled bioreactor for the biodegradation of alkaline-surfactant-polymer in oilfield water. ENVIRONMENTAL TECHNOLOGY 2018; 39:2669-2678. [PMID: 28818028 DOI: 10.1080/09593330.2017.1364304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The anaerobic baffled reactor (ABR) was used to treat alkaline-surfactant-polymer (ASP) flooding wastewater in the Daqing oilfield. With the ABR, hydraulic retention time (HRT)was reduced from 72 to 24 h, the bioreactor purification capability gradually improved. After the ABR running for 100 days, the removal rate of raw oil, suspended solid and surfactant reached 99.8%, 94.4% and 50%, respectively; alkali, polymer and viscosity were removed at a rate of about 16%, 7% and 20%, respectively. There were 39 kinds of organic materials detected by GCMS in the original water sample, while only 12 kinds of organics were left in the ABR outfall. The above results showed that the anaerobic, facultative anaerobic and aerobic compartment of ABR have strong capability of biodegrading petroleum pollution matter. Pyrosequencing analysis of the 16S rRNA indicated that Acinetobacter, Arcobacter, Pseudomonas and Paracoccus were the dominant bacteria genera present in the ABR reactor, among them Acinetobacter was the dominant species in the bacterial community.
Collapse
Affiliation(s)
- Changli Liu
- a College of Life Sciences , Northeast Forestry University , Harbin , People's Republic of China
| | - Rongshu Zhang
- a College of Life Sciences , Northeast Forestry University , Harbin , People's Republic of China
| | - Hongyi Yang
- a College of Life Sciences , Northeast Forestry University , Harbin , People's Republic of China
| | - Jie Zhang
- a College of Life Sciences , Northeast Forestry University , Harbin , People's Republic of China
| | - Hongwei Wang
- a College of Life Sciences , Northeast Forestry University , Harbin , People's Republic of China
| | - Le Chang
- a College of Life Sciences , Northeast Forestry University , Harbin , People's Republic of China
| | - Yuanlong Zhan
- a College of Life Sciences , Northeast Forestry University , Harbin , People's Republic of China
| | - Qijiang Xu
- a College of Life Sciences , Northeast Forestry University , Harbin , People's Republic of China
| |
Collapse
|
28
|
Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing. Appl Environ Microbiol 2018; 84:AEM.01469-18. [PMID: 30030226 DOI: 10.1128/aem.01469-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 11/20/2022] Open
Abstract
Cell growth and polyhydroxyalkanoate (PHA) biosynthesis are two key traits in PHA production from lignin or its derivatives. However, the links between them remain poorly understood. Here, the transcription levels of key genes involved in PHA biosynthesis were tracked in Pseudomonas putida strain A514 grown on vanillic acid as the sole carbon source under different levels of nutrient availability. First, enoyl-coenzyme A (CoA) hydratase (encoded by phaJ4) is stress induced and likely to contribute to PHA synthesis under nitrogen starvation conditions. Second, much higher expression levels of 3-hydroxyacyl-acyl carrier protein (ACP) thioesterase (encoded by phaG) and long-chain fatty acid-CoA ligase (encoded by alkK) under both high and low nitrogen (N) led to the hypothesis that they likely not only have a role in PHA biosynthesis but are also essential to cell growth. Third, 40 mg/liter PHA was synthesized by strain AphaJ4C1 (overexpression of phaJ4 and phaC1 in strain A514) under low-N conditions, in contrast to 23 mg/liter PHA synthesized under high-N conditions. Under high-N conditions, strain AalkKphaGC1 (overexpression of phaG, alkK, and phaC1 in A514) produced 90 mg/liter PHA with a cell dry weight of 667 mg/liter, experimentally validating our hypothesis. Finally, further enhancement in cell growth (714 mg/liter) and PHA titer (246 mg/liter) was achieved in strain Axyl_alkKphaGC1 via transcription level optimization, which was regulated by an inducible strong promoter with its regulator, XylR-PxylA, from the xylose catabolic gene cluster of the A514 genome. This study reveals genetic features of genes involved in PHA synthesis from a lignin derivative and provides a novel strategy for rational engineering of these two traits, laying the foundation for lignin-consolidated bioprocessing.IMPORTANCE With the recent advances in processing carbohydrates in lignocellulosics for bioproducts, almost all biological conversion platforms result in the formation of a significant amount of lignin by-products, representing the second most abundant feedstock on earth. However, this resource is greatly underutilized due to its heterogeneity and recalcitrant chemical structure. Thus, exploiting lignin valorization routes would achieve the complete utilization of lignocellulosic biomass and improve cost-effectiveness. The culture conditions that encourage cell growth and polyhydroxyalkanoate (PHA) accumulation are different. Such an inconsistency represents a major hurdle in lignin-to-PHA bioconversion. In this study, we traced and compared transcription levels of key genes involved in PHA biosynthesis pathways in Pseudomonas putida A514 under different nitrogen concentrations to unveil the unusual features of PHA synthesis. Furthermore, an inducible strong promoter was identified. Thus, the molecular features and new genetic tools reveal a strategy to coenhance PHA production and cell growth from a lignin derivative.
Collapse
|
29
|
Impact of Organic Acids Supplementation to Hardwood Spent Sulfite Liquor as Substrate for the Selection of Polyhydroxyalkanoates-Producing Organisms. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4030058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effectiveness of polyhydroxyalkanoates (PHAs) production process from a waste stream is determined by the selection of a suitable mixed microbial culture (MMC). In this work, a feedstock from the paper industry, hardwood spent sulfite liquor (HSSL), supplemented with short-chain organic acids (SCOAs) to simulate a fermented effluent, was used as substrate to enrich a MMC in PHA-storing microorganisms. A stable culture was quickly established, and during the accumulation step the selected MMC reached a maximum PHA content of 34.6% (3HB:3HV-76:24). The bacterial community was analyzed through FISH analysis. Bacteria belonging to the four main classes were identified: Betaproteobacteria (44.7 ± 2.7%), Alphaproteobacteria (13.6 ± 1.3%) and Gammaproteobacteria (2.40 ± 1.1%) and Bacteroidetes (9.20 ± 3.8%). Inside the Betaproteobacteria class, Acidovorax (71%) was the dominant genus.
Collapse
|
30
|
Ntaikou I, Koumelis I, Tsitsilianis C, Parthenios J, Lyberatos G. Comparison of yields and properties of microbial polyhydroxyalkanoates generated from waste glycerol based substrates. Int J Biol Macromol 2018; 112:273-283. [DOI: 10.1016/j.ijbiomac.2018.01.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/22/2022]
|
31
|
Burniol-Figols A, Varrone C, Le SB, Daugaard AE, Skiadas IV, Gavala HN. Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia. WATER RESEARCH 2018; 136:180-191. [PMID: 29505919 DOI: 10.1016/j.watres.2018.02.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Crude glycerol is an important by-product of the biodiesel industry, which can be converted into volatile fatty acids (VFA) and/or 1,3-propanediol (1,3-PDO) by fermentation. In this study, a selective conversion of VFA to polyhydroxyalkanoates (PHA) was attained while leaving 1,3-PDO in the supernatant by means of mixed microbial consortia selection strategies. The process showed highly reproducible results in terms of PHA yield, 0.99 ± 0.07 Cmol PHA/Cmol S (0.84 g COD PHA/g COD S), PHA content (76 ± 3.1 g PHA/100 g TSS) and 1,3-PDO recovery (99 ± 2.1%). The combined process had an ultimate yield from crude glycerol of 0.19 g COD PHA and 0.42 g COD 1,3-PDO per g of input COD. The novel enrichment strategy applied for selectively transforming fermentation by-products into a high value product (PHA) demonstrates the significance of the enrichment process for targeting specific bio-transformations and could potentially prove valuable for other biotechnological applications as well.
Collapse
Affiliation(s)
- Anna Burniol-Figols
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Cristiano Varrone
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Simone Balzer Le
- SINTEF, Materials and Chemistry, Dept. of Biotechnology and Nanomedicine, Postboks 4760 Torgarden, 7465, Trondheim, Norway
| | - Anders Egede Daugaard
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Ioannis V Skiadas
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Hariklia N Gavala
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
32
|
Furst AL, Smith MJ, Francis MB. New Techniques for the Generation and Analysis of Tailored Microbial Systems on Surfaces. Biochemistry 2018; 57:3017-3026. [DOI: 10.1021/acs.biochem.8b00324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ariel L. Furst
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew J. Smith
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| |
Collapse
|
33
|
Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Polyhydroxyalkanoates (PHA), the only group of “bioplastics” sensu stricto, are accumulated by various prokaryotes as intracellular “carbonosomes”. When exposed to exogenous stress or starvation, presence of these microbial polyoxoesters of hydroxyalkanoates assists microbes to survive.
“Bioplastics” such as PHA must be competitive with petrochemically manufactured plastics both in terms of material quality and manufacturing economics. Cost-effectiveness calculations clearly show that PHA production costs, in addition to bioreactor equipment and downstream technology, are mainly due to raw material costs. The reason for this is PHA production on an industrial scale currently relying on expensive, nutritionally relevant “1st-generation feedstocks”, such as like glucose, starch or edible oils. As a way out, carbon-rich industrial waste streams (“2nd-generation feedstocks”) can be used that are not in competition with the supply of food; this strategy not only reduces PHA production costs, but can also make a significant contribution to safeguarding food supplies in various disadvantaged parts of the world. This approach increases the economics of PHA production, improves the sustainability of the entire lifecycle of these materials, and makes them unassailable from an ethical perspective.
In this context, our EU-funded projects ANIMPOL and WHEYPOL, carried out by collaborative consortia of academic and industrial partners, successfully developed PHA production processes, which resort to waste streams amply available in Europe. As real 2nd-generation feedstocks”, waste lipids and crude glycerol from animal-processing and biodiesel industry, and surplus whey from dairy and cheese making industry were used in these processes. Cost estimations made by our project partners determine PHA production prices below 3 € (WHEYPOL) and even less than 2 € (ANIMPOL), respectively, per kg; these values already reach the benchmark of economic feasibility.
The presented studies clearly show that the use of selected high-carbon waste streams of (agro)industrial origin contributes significantly to the cost-effectiveness and sustainability of PHA biopolyester production on an industrial scale.
Collapse
|
34
|
A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 2018; 102:2117-2127. [DOI: 10.1007/s00253-018-8788-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
|
35
|
Catalytic conversion of glycerol to lactic acid over graphite-supported nickel nanoparticles and reaction kinetics. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Burniol-Figols A, Varrone C, Daugaard AE, Le SB, Skiadas IV, Gavala HN. Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1,3-propanediol to PHA in mixed microbial consortia. WATER RESEARCH 2018; 128:255-266. [PMID: 29107910 DOI: 10.1016/j.watres.2017.10.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/24/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Crude glycerol, a by-product from the biodiesel industry, can be converted by mixed microbial consortia into 1,3-propanediol (1,3-PDO) and volatile fatty acids. In this study, further conversion of these main products into polyhydroxyalkanoates (PHA) was investigated with the focus on 1,3-PDO. Two different approaches for the enrichment of PHA accumulating microbial consortia using an aerobic dynamic feeding strategy were applied. With the first approach, where nitrogen was present during the whole cycle, no net production of PHA from 1,3-PDO was observed in the fermented effluent, not even in a nitrogen-limited PHA accumulation assay. Nevertheless, experiments in synthetic substrates revealed that the conversion of 1,3-PDO to PHA was possible under nitrogen limiting conditions. Thus, a different enrichment strategy was formulated where nitrogen was limited during the feast phase to stimulate the storage response. Nitrogen was still supplied during the famine phase. With the latter strategy, a net production of PHA from 1,3-PDO was observed at a yield of 0.24 Cmol PHA/Cmol 1,3-PDO. The overall yield from the fermented effluent was 0.42 Cmol PHA/Cmol substrate. Overall, the PHA yield from 1,3-PDO seemed to be limited, similarly to when using glycerol as a substrate, by a decarboxylation step and accumulation of other storage polymers such as glycogen, and possibly, lipid inclusions.
Collapse
Affiliation(s)
- Anna Burniol-Figols
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Cristiano Varrone
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Anders Egede Daugaard
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Danish Polymer Center, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Simone Balzer Le
- SINTEF, Materials and Chemistry, Dept. Biotechnology and Nanomedicine, Postboks 4760 Sluppen, 7465, Trondheim, Norway
| | - Ioannis V Skiadas
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Pilot Plant, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark
| | - Hariklia N Gavala
- Technical University of Denmark (DTU), Dept. of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, Søltofts Plads, Building 229, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
37
|
Freches A, Lemos PC. Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: Effect of OLR and cycle length. N Biotechnol 2017; 39:22-28. [DOI: 10.1016/j.nbt.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/06/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
38
|
Highly complex substrates lead to dynamic bacterial community for polyhydroxyalkanoates production. ACTA ACUST UNITED AC 2017; 44:1215-1224. [DOI: 10.1007/s10295-017-1951-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/05/2017] [Indexed: 01/03/2023]
Abstract
Abstract
Mixed microbial cultures (MMC) and waste/surplus substrates, as hardwood spent sulfite liquor, are being used to decrease polyhydroxyalkanoates’ (PHA) production costs. The process involves two or three steps, being the selection step a crucial one. For the industrial implementation of this strategy, reactor stability in terms of both performance and microbial community presence has to be considered. A long-term operation of a sequencing batch reactor under feast/famine conditions was performed along with microbial community identification/quantification using FISH and DGGE. The community was found to be extremely dynamic, dominated by Alphaproteobacteria, with Paracoccus and Rhodobacter present, both PHA-storing microorganisms. 16S rRNA gene clone library further revealed that side populations’ non-PHA accumulators were able to strive (Agrobacterium, Flavobacteria, and Brachymonas). Nevertheless, reactor performance in terms of PHA storage was stable during operation time. The monitoring of the MMC population evolution provided information on the relation between community structure and process operation.
Collapse
|
39
|
Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol 2017; 37:24-38. [DOI: 10.1016/j.nbt.2016.05.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/30/2022]
|
40
|
Lam W, Wang Y, Chan PL, Chan SW, Tsang YF, Chua H, Yu PHF. Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. ENVIRONMENTAL TECHNOLOGY 2017; 38:1779-1791. [PMID: 28387154 DOI: 10.1080/09593330.2017.1316316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
In this study, seven strains of bacteria with polyhydroxyalkanoates (PHA)-producing ability (i.e. Bacillus cereus, Pseudomonas putida, Bacillus pumilus, Pseudomona huttiensis, Yersinia frederiksenii, Aeromonas ichthiosmia, and Sphingopyxis terrae) were isolated from various waste treatment plants in Hong Kong. Simultaneous wastewater treatment and PHA accumulation were successfully achieved in the bioreactors using isolated bacteria from different sludges. At the organic loading less than 13,000 ppm, more than 95% of chemical oxygen demand (COD) was removed by the isolated strains before the decrease of PHA accumulation. In addition, more than 95% of nitrogen removal was achieved by all isolated strains. In the bioreactors inoculated with single strains, the highest yields of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxyvalerate) (PHV) were obtained in A. ichthiosmia (84 mg PHB/g) and B. cereus (69 mg/g), respectively. For the mixed culture, the highest yields of PHB and PHV were increased by 55% and 45% in the system inoculated with B. pumilus and A. ichthiosmia. The biologically synthesized PHA also showed the potential applications in drug delivery and tissue engineering. PHA-nanoparticles loaded with pyrene were successfully prepared by recombinant Escherichia coli. The results of in vitro drug release and biocompatibility tests revealed that nanoparticles could be used as safer dray carriers with high loading capacity and efficiency. After 20 days, the cells successfully grew on 90% of the PHA-aortic valve.
Collapse
Affiliation(s)
- Wai Lam
- a SGS Hong Kong Ltd , Hong Kong
| | - Yujie Wang
- b Faculty of Environmental Science and Engineering , Guangdong University of Technology , Guangzhou , People's Republic of China
| | - Pui Ling Chan
- c Department of Applied Science, School for Higher and Professional Education (Chai Wan) , Chai Wan , Hong Kong
| | - Shun Wan Chan
- d Faculty of Science and Technology , Technological and Higher Education Institute of Hong Kong , Tsing Yi , Hong Kong
| | - Yiu Fai Tsang
- e Department of Science and Environmental Studies , The Education University of Hong Kong , Tai Po , Hong Kong
- f Guizhou Academy of Sciences , Guiyang , People's Republic of China
| | - Hong Chua
- d Faculty of Science and Technology , Technological and Higher Education Institute of Hong Kong , Tsing Yi , Hong Kong
| | - Peter Hoi Fu Yu
- d Faculty of Science and Technology , Technological and Higher Education Institute of Hong Kong , Tsing Yi , Hong Kong
| |
Collapse
|
41
|
Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2017; 4:bioengineering4020055. [PMID: 28952534 PMCID: PMC5590474 DOI: 10.3390/bioengineering4020055] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.
Collapse
|
42
|
Abbondanzi F, Biscaro G, Carvalho G, Favaro L, Lemos P, Paglione M, Samorì C, Torri C. Fast method for the determination of short-chain-length polyhydroxyalkanoates (scl-PHAs) in bacterial samples by In Vial-Thermolysis (IVT). N Biotechnol 2017; 39:29-35. [PMID: 28591645 DOI: 10.1016/j.nbt.2017.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/02/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
A new method based on the GC-MS analysis of thermolysis products obtained by treating bacterial samples at a high temperature (above 270°C) has been developed. This method, here named "In-Vial-Thermolysis" (IVT), allowed for the simultaneous determination of short-chain-length polyhydroxyalkanoates (scl-PHA) content and composition. The method was applied to both single strains and microbial mixed cultures (MMC) fed with different carbon sources. The IVT procedure provided similar analytical performances compared to previous Py-GC-MS and Py-GC-FID methods, suggesting a similar application for PHA quantitation in bacterial cells. Results from the IVT procedure and the traditional methanolysis method were compared; the correlation between the two datasets was fit for the purpose, giving a R2 of 0.975. In search of further simplification, the rationale of IVT was exploited for the development of a "field method" based on the titration of thermolyzed samples with sodium hydrogen carbonate to quantify PHA inside bacterial cells. The accuracy of the IVT method was fit for the purpose. These results lead to the possibility for the on-line measurement of PHA productivity. Moreover, they allow for the fast and inexpensive quantification/characterization of PHA for biotechnological process control, as well as investigation over various bacterial communities and/or feeding strategies.
Collapse
Affiliation(s)
- F Abbondanzi
- Interdepartmental Centre for Industrial Research Energy-Environment (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy.
| | - G Biscaro
- Chemistry Department "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| | - G Carvalho
- UCIBIO, REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - L Favaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Italy
| | - P Lemos
- LAQV REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M Paglione
- National Research Council (CNR), Institute of Atmospheric Sciences and Climate (ISAC), Via Gobetti 101, Bologna, Italy
| | - C Samorì
- Interdepartmental Centre for Industrial Research Energy-Environment (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Chemistry Department "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| | - C Torri
- Interdepartmental Centre for Industrial Research Energy-Environment (CIRI EA), University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Chemistry Department "Giacomo Ciamician", University of Bologna, via Selmi 2, Bologna, Italy
| |
Collapse
|
43
|
Jiang LL, Zhou JJ, Quan CS, Xiu ZL. Advances in industrial microbiome based on microbial consortium for biorefinery. BIORESOUR BIOPROCESS 2017; 4:11. [PMID: 28251041 PMCID: PMC5306255 DOI: 10.1186/s40643-017-0141-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/13/2017] [Accepted: 01/29/2017] [Indexed: 01/09/2023] Open
Abstract
One of the important targets of industrial biotechnology is using cheap biomass resources. The traditional strategy is microbial fermentations with single strain. However, cheap biomass normally contains so complex compositions and impurities that it is very difficult for single microorganism to utilize availably. In order to completely utilize the substrates and produce multiple products in one process, industrial microbiome based on microbial consortium draws more and more attention. In this review, we first briefly described some examples of existing industrial bioprocesses involving microbial consortia. Comparison of 1,3-propanediol production by mixed and pure cultures were then introduced, and interaction relationships between cells in microbial consortium were summarized. Finally, the outlook on how to design and apply microbial consortium in the future was also proposed.
Collapse
Affiliation(s)
- Li-Li Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| | - Jin-Jie Zhou
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| | - Chun-Shan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Minzu University, Liaohe West Road 18, Jinzhou New District, Dalian, 116600 Liaoning Province China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| |
Collapse
|
44
|
Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, Alekseeva A, Eisele G, Cosentino C, Adani F. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:201. [PMID: 28852422 PMCID: PMC5567430 DOI: 10.1186/s13068-017-0888-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/12/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. RESULTS The optimized acidogenic process resulted in an OA production of 151 g kg-1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg-1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg-1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg-1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙105 kDa with a low polydispersity index, i.e. 1.4. CONCLUSIONS This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.
Collapse
Affiliation(s)
- Bianca Colombo
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Francesca Favini
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Giuliana D’Imporzano
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michele Pognani
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Anna Alekseeva
- Centro Alta Tecnologia Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni Srl, Via Colombo 81, 20133 Milan, Italy
| | - Giorgio Eisele
- Centro Alta Tecnologia Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni Srl, Via Colombo 81, 20133 Milan, Italy
| | - Cesare Cosentino
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via Colombo 81, 20133 Milan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
45
|
Arcanjo MRA, Silva IJ, Rodríguez-Castellón E, Infantes-Molina A, Vieira RS. Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.02.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Kourmentza C, Kornaros M. Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: The effect of pH and carbon source. BIORESOURCE TECHNOLOGY 2016; 222:388-398. [PMID: 27744164 DOI: 10.1016/j.biortech.2016.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Mixed microbial cultures that undergo successful enrichment, following eco-biotechnological approaches, to form a community dominant in polyhydroxyalkanoates (PHA) forming bacteria, represent an attractive economic alternative towards the production of those biopolymers. In the present study, an enriched mixed culture was investigated for the production of PHA at different initial pH values under non-controlled conditions in order to minimize process control and operational costs. Short-chain fatty acids were provided as PHA precursors and they were tested as sole carbon sources and as mixtures under nitrogen deficiency. By the obtained kinetic and stoichiometric parameters it was shown that at an initial pH value of 6.90 PHA production was favored. Butyrate was characterized as the preferred carbon source, whereas simultaneous feeding led to increased rates and yields when butyrate and acetate were present.
Collapse
Affiliation(s)
- C Kourmentza
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
| | - M Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| |
Collapse
|
47
|
Bhattacharya S, Dubey S, Singh P, Shrivastava A, Mishra S. Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry. Bioengineering (Basel) 2016; 3:bioengineering3040034. [PMID: 28952596 PMCID: PMC5597277 DOI: 10.3390/bioengineering3040034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/11/2016] [Accepted: 11/24/2016] [Indexed: 11/16/2022] Open
Abstract
Crude glycerol is generated as a by-product during transesterification process and during hydrolysis of fat in the soap-manufacturing process, and poses a problem for waste management. In the present approach, an efficient process was designed for simultaneous production of 0.2 g/L extracellular ε-polylysine and 64.6% (w/w) intracellular polyhydroxyalkanoate (PHA) in the same fermentation broth (1 L shake flask) utilizing Jatropha biodiesel waste residues as carbon rich source by marine bacterial strain (Bacillus licheniformis PL26), isolated from west coast of India. The synthesized ε-polylysine and polyhydroxyalkanoate PHA by Bacillus licheniformis PL26 was characterized by thermogravimetric analysis (TGA), differential scanning colorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and 1H Nuclear magnetic resonance spectroscopy (NMR). The PHA produced by Bacillus licheniformis was found to be poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV). The developed process needs to be statistically optimized further for gaining still better yield of both the products in an efficient manner.
Collapse
Affiliation(s)
- Sourish Bhattacharya
- Process Design and Engineering Cell, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| | - Sonam Dubey
- Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| | - Priyanka Singh
- DTU BIOSUSTAIN, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark.
| | - Anupama Shrivastava
- Research & Product Development, Algallio Biotech Private Limited, Vadodara 390020, India.
| | - Sandhya Mishra
- Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| |
Collapse
|
48
|
Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process. Sci Rep 2016; 6:30766. [PMID: 27485896 PMCID: PMC4971467 DOI: 10.1038/srep30766] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/08/2016] [Indexed: 11/29/2022] Open
Abstract
Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.
Collapse
|
49
|
Liu C, Liu D, Qi Y, Zhang Y, Liu X, Zhao M. The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12966-12975. [PMID: 26996908 DOI: 10.1007/s11356-016-6345-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
The main objective of this work was to investigate the influence of different oxygen supply patterns on poly-β-hydroxybutyrate (PHB) yield and bacterial community diversity. The anaerobic-aerobic (A/O) sequencing batch reactors (SBR1) and feast-famine (F/F) SBR2 were used to cultivate activated sludge to produce PHB. The mixed microbial communities were collected and analyzed after 3 months cultivation. The PHB maximum yield was 64 wt% in SBR1 and 53 wt% in SBR2. Pyrosequencing analysis 16S rRNA gene of two microbial communities indicated there were nine and four bacterial phyla in SBR1 and SBR2, respectively. Specifically, Proteobacteria (36.4 % of the total bacterial community), Actinobacteria (19.7 %), Acidobacteria (14.1 %), Firmicutes (4.4 %), Bacteroidetes (1.7 %), Cyanobacteria/Chloroplast (1.5 %), TM7 (0.8 %), Gemmatimonadetes (0.2 %), and Nitrospirae (0.1 %) were present in SBR1. Proteobacteria (94.2 %), Bacteroidetes (2.9 %), Firmicutes (1.9 %), and Actinobacteria (0.7 %) were present in SBR2. Our results indicated the SBR1 fermentation system was more stable than that of SBR2 for PHB accumulation.
Collapse
Affiliation(s)
- Changli Liu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Di Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Yingjie Qi
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Ying Zhang
- Key laboratory of forest plant ecology, ministry of education, Northeast Forestry University, Harbin, 150040, China
| | - Xi Liu
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
50
|
Plácido J, Capareda S. Conversion of residues and by-products from the biodiesel industry into value-added products. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0100-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|