1
|
Zhu J, Li X, Wang Y, Gu X, Wang H, Ma J, Huang Y. Organic sulfur-driven denitrification pretreatment for enhancing autotrophic nitrogen removals from thiourea-containing wastewater: performance and microbial mechanisms. WATER RESEARCH 2025; 282:123753. [PMID: 40319779 DOI: 10.1016/j.watres.2025.123753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Thiourea (CH4N2S) is a widely used industrial reagent and is frequently detected in both sewage and industrial wastewater. However, treating thiourea-containing wastewater remains challenging due to its toxicity, high ammonium concentration, and low C/N ratio. In this study, a novel integrated autotrophic-heterotrophic denitrification (IAHD)- completely autotrophic nitrogen removal over nitrite (CANON) process was developed. The degradation pathway of toxic compounds, nitrogen, and sulfur release and transformation, as well as variations in functional genes were comprehensively examined. The results show that by incorporating an IAHD unit, prior to CANON, toxic thiourea was effectively degraded by the recycled nitrate from CANON. The released sulfur and organic carbon served as electron donors facilitating efficient NO3--N reduction. The optimal thiourea/NO3--N ratio for IAHD operation was determined to be 4:1 (m:m), achieving NO3- and thiourea removal efficiencies of 90 % and 99 %, respectively. Additionally, NH4+-N and SO42--S concentrations increased by 199.9 mg/L and 201.9 mg/L, respectively. Approximately 53.3 % of thiourea was converted into high-molecular-weight biological metabolites in the IAHD unit, which were subsequently and completely degraded in the CANON unit, where a robust nitrite-shunt and anammox process occurred. 16S rRNA amplicon sequencing revealed that Thiobacillus (with a relative abundance of 39.9 %) was the dominant genera in the IAHD unit, followed by Arenimonas (10.8 %) and norank_o_1013-28-CG33 (12.4 %), indicating that sulfur autotrophic denitrification was the primary pathway for thiourea degradation. Metagenomic analysis further confirmed that thiourea, acting as an electron donor, stimulated the expression of key functional genes involved in denitrification, sulfur oxidation, dissimilatory nitrate reduction, hydrolytic oxidation, and amino acid synthesis and transport pathways. These processes contributed to the active biological transformation of carbon, nitrogen and sulfur in the IAHD unit. This study demonstrates that implementing a prior autotrophic-heterotrophic denitrification unit effectively degrades toxic thiourea, thereby ensuring the subsequent nitrogen removal performance of CANON. This approach offers a new paradigm for the treatment of thiourea-containing wastewater, promoting a more efficient and low-carbon process.
Collapse
Affiliation(s)
- Jiheng Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
2
|
Zhang Y, Wang Q, Rogers MJ, He J. Autotrophic denitrification under anoxic conditions by newly discovered mixotrophic sulfide-oxidizing bacterium. BIORESOURCE TECHNOLOGY 2025; 430:132553. [PMID: 40254100 DOI: 10.1016/j.biortech.2025.132553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Autotrophic denitrification (AutoDN) using sulfur represents a promising strategy for treating wastewater characterized by low carbon-to-nitrogen ratios (C/N). However, its widespread application is constrained by operational instability and the excessive sulfate accumulation. This study reports the isolation of Thauera sp. AutoDN2, a novel autotrophic denitrifier coupling nitrate reduction with sulfide oxidation while minizing sulfate production. AutoDN2 achieved nitrate removal of 99 ± 1 % at a sulfide-to-nitrogen ratio (S/N) of 4.8, primarily reducing nitrate to nitrite - a substrate for anaerobic ammonium oxidation (anammox), with minimal further reduction observed at S/N ratios ≥ 6.4. Unlike conventional sulfide-driven autotrophic denitrifiers, AutoDN2 predominantly generated elemental sulfur rather than sulfate, thereby mitigating secondary pollution. It also exhibited mixotrophic denitrification, indicating metabolic adaptability across a wide range of C/N ratios (0.3-5.0). These findings highlight AutoDN2's capability for sustainable treatment of organic-deficient, nitrate-rich wastewater, contributing to an integrated carbon-nitrogen-sulfur (CNS) cycle with reduced sulfate release.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576 Singapore
| | - Qingkun Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576 Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576 Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576 Singapore.
| |
Collapse
|
3
|
Xu J, Cao F, He C, Dai J. Efficient sulfur accumulation in biological desulfurisation and denitrification induced by microbial and chemical interactions. ENVIRONMENTAL TECHNOLOGY 2025; 46:2023-2034. [PMID: 39432526 DOI: 10.1080/09593330.2024.2416093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Efficient accumulation of sulfur from simultaneous desulfurisation denitrification process can achieve high economic and environmental benefits. This work aims to study the effect of product accumulation on elemental sulfur production and understand its potential mechanism. The addition of the intermediate product thiosulfate and the final product sulfate during the reaction led to an increase in the production of biological elemental sulfur (S bio 0 ). The effect is mainly reflected in the efficient accumulation effect of S bio 0 at high sulfide loads. When the sulfide feed water load was 300 mg/L, the S bio 0 production reached 65.94 mg/L in 24 h with the addition of 30 mg/L thiosulfate and 20 mg/L sulfate, which was 3.11 times higher than that of the control group. The addition of sulfate increased the content of aromatic protein I and aromatic protein II, and accelerated the propagation of Thiobacillus denitrificans, whose viable bacterial amount was 1.12-2.98 times higher than that of the control group. On the one hand, low-dose sulfate induced Thiobacillus denitrificans to participate in the sulfur-producing reaction (S 2 - →S bio 0 ) more quickly by accelerating the propagation of the strains in the pre-reaction stage. On the other hand, the addition of sulfate shifted the overall reaction equilibrium to the left and inhibited the formation of thiosulfate, thus accelerating the accumulation of S bio 0 in the whole reaction stage. This study would provide guidance for artificially promoting efficient sulfur accumulation in desulfurisation denitrification treatments.Highlights The S bio 0 production reached 65.94 mg/L in 24 h at high sulfide load.20 mg/L sulfate induced the rapid propagation of Thiobacillus denitrificans.Thiobacillus denitrificans were involved early in the sulfur-producing reaction.Inhibition of thiosulfate formation indirectly promoted sulfur accumulation.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, People's Republic of China
- Key Laboratory of Environmental Engineering, Xi'an, People's Republic of China
| | - Fen Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, People's Republic of China
- Key Laboratory of Environmental Engineering, Xi'an, People's Republic of China
| | - Chen He
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, People's Republic of China
- Key Laboratory of Environmental Engineering, Xi'an, People's Republic of China
| | - Jianan Dai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, People's Republic of China
- Key Laboratory of Environmental Engineering, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Pyo M, Kim D, Kim HS, Hwang MH, Lee S, Lee EJ. Sulfur powder utilization and denitrification efficiency in an elemental sulfur-based membrane bioreactor with coagulant addition. WATER RESEARCH 2025; 272:122882. [PMID: 39674135 DOI: 10.1016/j.watres.2024.122882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
The integration of elemental sulfur-based autotrophic denitrification with membrane bioreactor (MBR) technology offers a cost-effective solution for nitrate removal; however, stable operation demands efficient sulfur utilization and phosphorus management. This study explores sulfur consumption dynamics and the impacts of coagulant injection on denitrification efficiency. Sulfur consumption was closely correlated with nitrate removal rates, highlighting the critical role of stoichiometric sulfur availability for sustained denitrification. While coagulant addition enhanced phosphorus removal, excessive dosing impaired elemental sulfur-based microbial activity, reducing nitrate removal efficiency and increasing nitrite accumulation. Notably, microbial community analysis revealed a decline in the abundance of key sulfur-oxidizing bacteria, such as Sulfurimonas, under high coagulant concentrations. These findings emphasize the need for optimized sulfur and coagulant dosing strategies to balance phosphorus and nitrate removal while preserving microbial diversity and reactor stability. This study provides practical insights into operational parameters for efficient and sustainable ESAD-MBR processes.
Collapse
Affiliation(s)
- Minsu Pyo
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea; Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440746, Republic of Korea
| | - Dongyeon Kim
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea
| | - Hyung Soo Kim
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440746, Republic of Korea
| | - Moon-Hyun Hwang
- Institute of Conversions Science, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea
| | - Sangyoup Lee
- Institute of Conversions Science, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea.
| | - Eui-Jong Lee
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
5
|
Li B, Liu L, Xu Z, Li K. Optimizing carbon source addition to control surplus sludge yield via machine learning-based interpretable ensemble model. ENVIRONMENTAL RESEARCH 2025; 267:120653. [PMID: 39701344 DOI: 10.1016/j.envres.2024.120653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Appropriate carbon source addition can save operational costs and reduce surplus sludge yield in the wastewater treatment plant (WWTP). However, the link between carbon source and surplus sludge yield remains neglected although machine learning (ML) has become a powerful tool for WWTP, and is a challenge due to more complex multidimensional pattern recognition. Herein, weighted average ensemble strategy was conducted to assemble multiple diverse basic models to obtain better prediction capability to optimize carbon source addition (Model-1) and further control surplus sludge yield (Model-2). The ensemble models significantly outperformed all single models with MAE of 5.82 g/m3, MSE of 60.59 and R2 value of 0.98 in Model-1 and MAE of 15.09 g/m3, MSE of 449.01 and R2 value of 0.93 in Model-2. The optimal input feature subset was explored to reduce model complexity, indicating that the final ensemble models can predict with high precision using relatively few features with MAE of 6.41 g/m3, MSE of 78.49 and R2 value of 0.97 in Model-1 and MAE of 12.82 g/m3, MSE of 232.71 and R2 value of 0.95 in Model-2. Furthermore, the final models were deployed into an offline web application to facilitate their utility in real-world settings, demonstrating 47.25 % savings in carbon source addition and 15.89 % reductions in surplus sludge yield for an extra month of running. This work offers an efficient approach for the WWTP to optimize carbon source addition and provides new insights into controlling surplus sludge yield.
Collapse
Affiliation(s)
- Bowen Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Li Liu
- Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zikang Xu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China
| | - Kexun Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Wang R, Zeng W, Miao H, Gong Q, Peng Y. Novel mixotrophic denitrification biofilter for efficient nitrate removal using dual electron donors of polycaprolactone and thiosulfate. BIORESOURCE TECHNOLOGY 2025; 417:131836. [PMID: 39557099 DOI: 10.1016/j.biortech.2024.131836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
A novel mixotrophic denitrification biofilter for nitrate removal using polycaprolactone and thiosulfate (MD-PT) as electron donors was investigated. MD-PT achieved high nitrate removal efficiency of approximately 99.8 %. The nitrate removal rates of MD-PT reached 1820 g N/m3/d, which was 304 g N/m3/d higher than that of autotrophic denitrification biofilter using thiosulfate (AD-T). Autotrophic and heterotrophic denitrification pathways in MD-PT were responsible for 67.6-94.5 % and 4.7-32.4 % of the nitrate removal, respectively. The production of SO42- in MD-PT was lower than that in AD-T, and the effluent pH was maintained at approximately 7.3 without acid-base neutralization. The abundance of key genes involved in carbon, nitrogen, and sulfur transformation was enhanced, which improved the nitrate removal of MD-PT. Alicycliphilus and Simplicispira related to organic compounds degradation were enriched after the addition of polycaprolactone. This research provided new insights into mixotrophic denitrification systems.
Collapse
Affiliation(s)
- Ruikang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Haohao Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Li S, Zhao R, Wang S, Yang Y, Diao M, Ji G. Influences of fluctuating nutrient loadings on nitrate-reducing microorganisms in rivers. ISME COMMUNICATIONS 2025; 5:ycae168. [PMID: 39839890 PMCID: PMC11748280 DOI: 10.1093/ismeco/ycae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/23/2025]
Abstract
Rivers serve important functions for human society and are significantly impacted by anthropogenic nutrient inputs (e.g. organic and sulfur compounds). Reduced organic and sulfur compounds influence the nitrogen cycle as they are electron donors of microbial nitrate reduction. Water pollution caused by individual nutrients and the mechanisms have been studied, but how the variation in multiple nutrient loadings influences nitrate-reducing microorganisms is less understood. Two sets of microcosms were established and exposed to nitrate, along with either acetate or thiosulfate, at different times. Nutrient concentrations responded to the loading pollutant. The nutrient loading order was more important in shaping microbial community structure and microbial interactions through the exchange of growth-required substances. This indicated that upstream or historical nutrient inflows impacted current nitrate reduction by changing the seeding microbial community, highlighting the importance of river connectivity. Based on metatranscriptome analysis, although the order and type of nutrient loadings were equally important in regulating global transcriptomes, transcripts of enzymes for key metabolisms (nitrate reduction, sulfur oxidation, etc.) more actively responded to the nutrient type. The regulation of a small set of genes was sufficient to make the transition, while most transcripts were not degraded and regenerated. These insights are important for understanding the varying pollution status of rivers and for developing effective solutions, such as remediation.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
- Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Muhe Diao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Eom H. Development of an Improved Thiosulfate-Utilizing Denitrifying Bacteria-Based Ecotoxicity Test with High Detection Sensitivity and Reproducibility. TOXICS 2024; 12:788. [PMID: 39590968 PMCID: PMC11598543 DOI: 10.3390/toxics12110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024]
Abstract
Microorganism-based ecotoxicity assessment has been widely used as a reliable tool showing direct biochemical impacts of contaminants on ecosystems and the environment. The present study aimed at developing a thiosulfate-utilizing denitrifying bacteria (TUDB)-based ecotoxicity test with high detection sensitivity and favorable reproducibility. To achieve this goal, existing TUDB toxicity tests were improved by employing a pure culture of Thiobacillus thioparus ATCC 8158 and optimizing test conditions, particularly in terms of inoculated microbial biomass, incubating temperature, and operational pH. From control tests, it was found that 4 h is a sufficient processing time for TUDB test kits. As a result of optimization, 20 mg VSS/L of initial bacterial biomass, 25 °C of incubating temperature, and 6 of operational pH were determined as the most favorable test conditions, providing enhanced detection sensitivity and reproducibility. Under these optimal test conditions, I conducted toxicity tests for diverse toxic metals and obtained 0.65 ± 0.03, 1.09 ± 0.04, 1.21 ± 0.07, 0.13 ± 0.01, 0.56 ± 0.04, 1.42 ± 0.03, 0.98 ± 0.02, and 2.12 ± 0.05 mg/L of 4 h EC50 values for Ag+, As3+, Cd2+, Cr6+, Cu2+, Hg2+, Ni2+, and Pb2+, respectively. These EC50 values are substantially lower than those from earlier TUDB tests, demonstrating the high detection sensitivity of the current TUDB tests. Moreover, the present TUDB tests attained very low coefficient of variation (CV) values (1.6-6.3%) for the EC50, showing favorable reproducibility of the test methodology. In addition, the current TUDB toxicity tests offer numerous advantages for ecotoxicity assessment, including versatility for diverse test samples, no requirement for advanced equipment, and no distortion of end-point measurement. These refinements render the TUDB tests a favorable ecotoxicity assessment with enhanced sensitivity and reproducibility.
Collapse
Affiliation(s)
- Heonseop Eom
- Department of Civil Engineering, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
9
|
Liu Q, Li X, Wu M, Huang H, Chen Y. N 2O recovery from wastewater and flue gas via microbial denitrification: Processes and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174231. [PMID: 38917909 DOI: 10.1016/j.scitotenv.2024.174231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nitrous oxide (N2O) is increasingly regarded as a significant greenhouse gas implicated in global warming and the depletion of the ozone layer, yet it is also recognized as a valuable resource. This paper comprehensively reviews innovative microbial denitrification techniques for recovering N2O from nitrogenous wastewater and flue gas. Critical analysis is carried out on cutting-edge processes such as the coupled aerobic-anoxic nitrous decomposition operation (CANDO) process, semi-artificial photosynthesis, and the selective utilization of microbial strains, as well as flue gas absorption coupled with heterotrophic/autotrophic denitrification. These processes are highlighted for their potential to facilitate denitrification and enhance the recovery rate of N2O. The review integrates feasible methods for process control and optimization, and presents the underlying mechanisms for N2O recovery through denitrification, primarily achieved by suppressing nitrous oxide reductase (Nos) activity and intensifying competition for electron donors. The paper concludes by recognizing the shortcomings in existing technologies and proposing future research directions, with an emphasis on prioritizing the collection and utilization of N2O while considering environmental sustainability and economic feasibility. Through this review, we aim to inspire interest in the recovery and utilization of N2O, as well as the development and application of related technologies.
Collapse
Affiliation(s)
- Qimeng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meirou Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
10
|
Wang Q, Zhang C, Song J, Bamanu B, Zhao Y. Inhibitory mechanism of Cr(VI) on sulfur-based denitrification: Bio-toxicity, bio-electron characteristics, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134447. [PMID: 38692000 DOI: 10.1016/j.jhazmat.2024.134447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO2--N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, S2O32- oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
11
|
Zhang X, Feng C, Wei D, Liu X, Luo W. Optimization of "sulfur-iron-nitrogen" cycle in constructed wetlands by adjusting siderite/sulfur (Fe/S) ratio. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121336. [PMID: 38850915 DOI: 10.1016/j.jenvman.2024.121336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Sulfur-siderite autotrophic denitrification (SSAD) has been proved to solve the key problem of low nitrogen removal efficiency caused by the shortage of carbon source in constructed wetlands (CWs). In this study, five vertical flow constructed wetlands (VFCWs) were constructed with different Fe/S ratios (0/0, 0/1, 1/1, 2/1 and 1/2) to optimizing SSAD process, labeled S.0, S.1, S.2, S.3 and S.4. The results showed that the best NO3--N and TN removal rates were achieved with a Fe/S ratio of 2:1 (S.3), which were 96.26 ± 1.40% and 93.63 ± 3.12%, respectively. The abundance of denitrification genes (nirS, nirK and nosZ) in S.3 was significantly increased. Illumina high-throughput sequencing analysis indicated that the abundance and diversity of microorganisms involved in the "Sulfur-Iron-Nitrogen" cycle were enriched in S.3. The current study provided that the "Sulfur-Iron-Nitrogen" cycle in CWs was optimized by adjusting Fe/S ratio, and more types of denitrifying bacteria could be enriched, thereby enhancing nitrogen removal.
Collapse
Affiliation(s)
- Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Dong Wei
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Xinlin Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Wancheng Luo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
12
|
Zhang L, Cui Y, Dou Q, Peng Y, Yang J. Sulfur-carbon loop enhanced efficient nitrogen removal mechanism from iron sulfide-mediated mixotrophic partial denitrification/anammox systems. BIORESOURCE TECHNOLOGY 2024; 403:130882. [PMID: 38788805 DOI: 10.1016/j.biortech.2024.130882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
This study successfully established Iron Sulfide-Mediated mixotrophic Partial Denitrification/Anammox system, achieving nitrogen and phosphorus removal efficiency of 97.26% and 78.12%, respectively, with COD/NO3--N of 1.00. Isotopic experiments and X-ray Photoelectron Spectroscopy analysis confirmed that iron sulfide enhanced autotrophic Partial Denitrification performance. Meanwhile, various sulfur valence states functioned as electron buffers, reinforcing nitrogen and sulfur cycles. Microbial community analysis indicated reduced heterotrophic denitrifiers (OLB8, OLB13) under lower COD/NO3--N, creating more niche space for autotrophic bacteria and other heterotrophic denitrifiers. The prediction of functional genes illustrated that iron Sulfide upregulated genes related to carbon metabolism, denitrification, anammox and sulfur oxidation-reduction, facilitating the establishment of carbon-nitrogen-sulfur cycle. Furthermore, this cycle primarily produced electrons via nicotinamide adenine dinucleotide and sulfur oxidation-reduction processes, subsequently utilized within the electron transfer chain. In summary, the Partial Denitrification/Anammox system under the influence of iron sulfide achieved effient nitrogen removal by expediting electron transfer through the carbon-nitrogen-sulfur cycle.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Yufei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan
| |
Collapse
|
13
|
Wang L, Zhao Q, Zhang L, Wu D, Zhou J, Peng Y. S 0-driven partial denitrification coupled with anammox (S 0PDA) enables highly efficient autotrophic nitrogen removal from wastewater. WATER RESEARCH 2024; 255:121418. [PMID: 38492314 DOI: 10.1016/j.watres.2024.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
This study proposed a novel strategy that integrates S0 particles (diameter: 2-3 mm) and granular sludge to establish S0-driven partial denitrification coupled with anammox (S0PDA) process for autotrophic nitrogen removal from NH4+- and NO3--containing wastewaters. This process was evaluated using an up-flow anoxic sludge bed bioreactor, operating continuously for 240 days. The influent concentrations of NH4+ and NO3- were 29.9 ± 2.7 and 50.2 ± 2.7 mg-N/L, respectively. Throughout the operation, the hydraulic retention time was shortened from 4.0 h to 2.0 h, while the effluent concentrations of NH4+ and NO3- were maintained at a desirable level of 1.45-1.51 mg-N/L and 4.46-6.52 mg-N/L, respectively. Despite an autotrophic process, the nitrogen removal efficiency and rate reached up to 88.5 ± 2.0 % and 1.75 ± 0.07 kg-N/(m3·d), respectively, indicating the remarkable robustness of the S0PDA process. Autotrophic anammox and sulfur-oxidizing bacteria (Candidatus Brocadia and Thiobacillus) were the predominant bacterial genera involved in the S0PDA process. Candidatus Brocadia was primarily enriched in the granular sludge, with a relative abundance of 6.70 %. Thiobacillus occupied a unique niche on the S0 particles, with a relative abundance as high as 57.6 %, of which Thiobacillus thioparus with partial denitrification function (reducing NO3- to NO2- without further reduction to N2) accounted for 78.0 %. These findings challenge the stereotype of low efficiency in autotrophic nitrogen removal from wastewater, shedding fresh light on the applications of autotrophic processes.
Collapse
Affiliation(s)
- Luyao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Di Wu
- Qingdao SPRING Water Treatment Co.Ltd., Qingdao 266510, PR China
| | - Jiazhong Zhou
- Qingdao SPRING Water Treatment Co.Ltd., Qingdao 266510, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
14
|
Park CG, Lee JS, An SA, Cho SM, Min I, Woo YC, Kim HS. Enhancement of denitrification by sulfur-based carrier in sequencing batch reactor (SBR) for advanced wastewater treatment. CHEMOSPHERE 2024; 352:141415. [PMID: 38336039 DOI: 10.1016/j.chemosphere.2024.141415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
This study was to enhance the nitrogen removal efficiency in the sequencing batch reactor (SBR) process by adding sulfur-based carriers. The nitrogen removal efficiency of the control group was compared with that of the experimental group through a two-series operation of SBR1 without carrier and SBR2 with the carrier under the condition of no external carbon source. A total nitrogen (T-N) removal efficiency of 6.6%, 72.6%, and 79.9% was observed in SBR1, SBR2 (5%), and (10%), respectively. The T-N removal efficiency was improved in the system with carriers, which showed an increase in the removal efficiency of approximately 91.7%. The results suggest that the inclusion of the carrier led to an elevation in the sulfur ratio, implying an augmented surface area for sulfur-based denitrifying microorganisms. Additionally, CaCO3 contributed essential alkalinity for sulfur denitrification, thereby preventing a decline in pH. Regardless of the carrier, the efficiency of organic matter removal surpassed 89%, indicating that the sulfur-based carrier did not adversely affect the biological reaction associated with organic matter. Therefore, autotrophic denitrification was successfully performed using a sulfur carrier in the SBR process without an external carbon source, improving the nitrogen removal efficiency.
Collapse
Affiliation(s)
- Cheol-Gyu Park
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, Republic of Korea
| | - Jin-San Lee
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, Republic of Korea
| | - Sun-A An
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, Republic of Korea
| | - Seong-Min Cho
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, Republic of Korea
| | - Inhong Min
- K-Water Institute, 125, 1689beon-gil, Yuseong-daero, Yuseong-gu, Daejeon, 34045, Republic of Korea
| | - Yun Chul Woo
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, Republic of Korea.
| | - Han-Seung Kim
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
15
|
Wang X, Zhao YG, Mupindu P, Chen Y. Insight into characteristics of sulphur-based autotrophic denitrifying microbiota in the nitrate removal. ENVIRONMENTAL TECHNOLOGY 2024; 45:1531-1541. [PMID: 36368900 DOI: 10.1080/09593330.2022.2147450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Mariculture wastewater is characterized by low organic carbon to nitrogen ratio (C/N) but high nitrate concentration, which makes it difficult to remove nitrate by the completely heterotrophic denitrification. However, high nitrate discharge poses a threat to the natural environment and human health. Thus, we enriched sulphur-based autotrophic denitrifying (SAD) microbiota and optimized the nitrate removal under different environmental factors and electron donor conditions. The results showed that the dominant genera in the enriched microbiota were previously confirmed autotrophic denitrifiers, Sulfurovum, Thioalkalispira-Sulfurivermis, and Sedimenticola, with a high relative abundance of 41.14%, 21.01%, and 6.17%. Among the environmental factors, pH was the key factor affecting SAD microbiota, and pH 7-9 favoured nitrate removal. However, high pH led to nitrite accumulation (e.g. 10 mg/L at pH = 9), which should be strictly avoided. With regard to electron donors, the optimal concentrations of thiosulphate and nitrate were 50 and 5 mg/L, respectively. The best organic carbon is acetate with an optimal concentration of 10 mg/L. Meanwhile, the initial concentration of thiosulphate was proportional to the nitrate removal rate, while higher concentrations of organic carbon stimulated the heterotrophic denitrification potential of microbiota and thus benefited to dentrification. This study showed that the enriched SAD microbiota was able to achieve efficient nitrate removal under suitable environmental conditions and mixed electron donors and thus presented the potential for application in the treatment of mariculture wastewater.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
- Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yue Chen
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
16
|
Yang Y, Huang G, Chen C, Li R. Pyrrhotite-sulfur-limestone composite for high rate nitrogen and phosphorus removal from wastewater: Column study. CHEMOSPHERE 2024; 347:140711. [PMID: 37981019 DOI: 10.1016/j.chemosphere.2023.140711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/08/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Pyrrhotite-sulfur-limestone composite (PSLC) was prepared and PSLC autotrophic denitrification biofilter (PSLCAD) was constructed with PSLC particle (2-4.75 mm) in this study. During treating synthetic, municipal and industrial secondary effluent, PSLCAD showed good NO3--N and PO43--P removal, and the highest TON (Total oxidized nitrogen) removal rate of PSLCAD was up to 1749.91 mg/L/d. At HRT 0.5 h, and influent NO3--N 21.09 mg/L, TON removal rate was up to 1005.12 mg/L with effluent NO3--N 0.10 mg/L. PSLCAD achieved effluent PO43--P below 0.2 mg/L when influent PO43--P was around 0.5 mg/L. HRT down to 0.5 h had no negative impacts on N removal. Effluent pH below 7 was harmful to denitrification performance of PSLCAD. TON removal rate increased with influent NO3--N increasing, but influent NO3--N over 103.55 mg/L decreased NO3--N removal rate. In PSLCAD biofilter, the most dominant bacteria were Thiobacillus and Sulfurimonas, and they played the most important role in denitrification, but the abundance of heterotrophic denitrifiers was also quite high. PO43- was mainly removed through precipitate of Fe-P in PSLCAD. The synergistic effects between pyrrhotite and sulfur autotrophic denitrification were much enhanced, and that caused PSLCAD to achieve high rate N and P removal.
Collapse
Affiliation(s)
- Yinuo Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing, 210023, China
| | - Gaopan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing, 210023, China
| | - Changxin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing, 210023, China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163(#) Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
17
|
Jian C, Hao Y, Liu R, Qi X, Chen M, Liu N. Mixotrophic denitrification process driven by lime sulfur and butanediol: Denitrification performance and metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166654. [PMID: 37647948 DOI: 10.1016/j.scitotenv.2023.166654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Heterotrophic sulfur-based autotrophic denitrification is a promising biological denitrification technology for low COD/TN (C/N) wastewater due to its high efficiency and low cost. Compared to the conventional autotrophic denitrification process driven by elemental sulfur, the presence of polysulfide in the system can promote high-speed nitrogen removal. However, autotrophic denitrification mediated by polysulfide has not been reported. This study investigated the denitrification performance and microbial metabolic mechanism of heterotrophic denitrification, sulfur-based autotrophic denitrification, and mixotrophic denitrification using lime sulfur and butanediol as electron donors. When the influent C/N was 1, the total nitrogen removal efficiency of the mixotrophic denitrification process was 1.67 and 1.14 times higher than that of the heterotrophic and sulfur-based autotrophic denitrification processes, respectively. Microbial community alpha diversity and principal component analysis indicated different electron donors lead to different evolutionary directions in microbial communities. Metagenomic analysis showed the enriched denitrifying bacteria (Thauera, Pseudomonas, and Pseudoxanthomonas), dissimilatory nitrate reduction to ammonia bacteria (Hydrogenophaga), and sulfur oxidizing bacteria (Thiobacillus) can stably support nitrate reduction. Analysis of metabolic pathways revealed that complete denitrification, dissimilatory nitrate reduction to ammonia, and sulfur disproportionation are the main pathways of the N and S cycle. This study demonstrates the feasibility of a mixotrophic denitrification process driven by a combination of lime sulfur and butanediol as a cost-effective solution for treating nitrogen pollution in low C/N wastewater and elucidates the N and S metabolic pathways involved.
Collapse
Affiliation(s)
- Chuanqi Jian
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaochen Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, Guangdong, China
| | - Minmin Chen
- Guangdong Environmental Protection Engineering Vocational College, Guangzhou 510655, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
18
|
D'Aquino A, Kalinainen N, Auvinen H, Andreottola G, Puhakka JA, Palmroth MRT. Effects of inorganic ions on autotrophic denitrification by Thiobacillus denitrificans and on heterotrophic denitrification by an enrichment culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165940. [PMID: 37541515 DOI: 10.1016/j.scitotenv.2023.165940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/11/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Salinity of nitrate-laden wastewaters, such as those produced by metal industries, tanneries, and wet flue gas cleaning systems may affect their treatment by denitrification. Salt inhibition of denitrification has been reported, while impacts of individual ions remain poorly understood whilst being relevant for wastewaters where often the concentration of a single ion rather than the salts varies. The aim of this study was to determine the inhibition by inorganic ions (Na+, Cl-, SO42- and K+) commonly present in saline wastewaters on denitrification and reveal its potential for the treatment of such waste streams, like those produced by NOx-SOx removal scrubbers. The inhibitory effects were investigated for both heterotrophic (enrichment culture) and autotrophic (T. denitrificans) denitrification in batch assays, by using NaCl, Na2SO4, KCl and K2SO4 salts at increasing concentrations. The half inhibition concentrations (IC50) of Na+ (as NaCl), Na+ (as Na2SO4) and Cl- (as KCl) were: 4.3 ± 0.3, 7.9 ± 0.5 and 5.2 ± 0.3 g/L for heterotrophic, and 1-2.5, 2.5-5 and 4.1 ± 0.3 g/L for autotrophic denitrification, respectively. Heterotrophic denitrification was completely inhibited at 20 g/L Na+ (as NaCl), 30 g/L Na+ (as Na2SO4) and 30 g/L Cl- (as KCl), while autotrophic at 8 g/L Na+ (as NaCl), 10 g/L Na+ (as Na2SO4) and 15 g/L Cl- (as KCl). In both cases, Cl- addition had the most important role in decreasing denitrification rate, while Na+ at 1 g/L stimulated autotrophic denitrification but rapidly inhibited the rate at higher concentrations. Nitrite reduction was less inhibited by the ions than nitrate reduction and both the osmotic pressure and the toxicity of the single ions played key roles in the overall inhibition of denitrification. Eventually, both autotrophic and heterotrophic denitrification showed potential for the treatment of a saline wastewater from a NOx-SO2 removal scrubber from a pulp mill.
Collapse
Affiliation(s)
- Alessio D'Aquino
- Tampere University, Faculty of Engineering and Natural Sciences, Bio- and Circular Economy Unit, Korkeakoulunkatu 8, P.O. Box 541, 33014 Tampere, Finland.
| | - Niko Kalinainen
- Valmet Technologies Oy, Lentokentänkatu 11, 33900 Tampere, Finland
| | - Hannele Auvinen
- Tampere University, Faculty of Engineering and Natural Sciences, Bio- and Circular Economy Unit, Korkeakoulunkatu 8, P.O. Box 541, 33014 Tampere, Finland
| | - Gianni Andreottola
- University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, 38123 Trento, Italy
| | - Jaakko A Puhakka
- Tampere University, Faculty of Engineering and Natural Sciences, Bio- and Circular Economy Unit, Korkeakoulunkatu 8, P.O. Box 541, 33014 Tampere, Finland
| | - Marja R T Palmroth
- Tampere University, Faculty of Engineering and Natural Sciences, Bio- and Circular Economy Unit, Korkeakoulunkatu 8, P.O. Box 541, 33014 Tampere, Finland
| |
Collapse
|
19
|
Wang T, Li X, Wang H, Xue G, Zhou M, Ran X, Wang Y. Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: A review. WATER RESEARCH 2023; 245:120569. [PMID: 37683522 DOI: 10.1016/j.watres.2023.120569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The sulfur autotrophic denitrification (SADN) process is an organic-free denitrification process that utilizes reduced inorganic sulfur compounds (RISCs) as the electron donor for nitrate reduction. It has been proven to be a cost-effective and environment-friendly approach to achieving carbon neutrality in wastewater treatment plants. However, there is no consensus on whether SADN can become a dominant denitrification process to treat domestic wastewater or industrial wastewater if organic carbon is desired to be saved. Through a comprehensive summary of the SADN process and extensive discussion of state-of-the-art SADN-based technologies, this review provides a systematic overview of the potential of the SADN process as a sustainable alternative for the heterotrophic denitrification (HD) process (organic carbons as electron donor). First, we introduce the mechanism of the SADN process that is different from the HD process, including its transformation pathways based on different RISCs as well as functional bacteria and key enzymes. The SADN process has unique theoretical advantages (e.g., economy and carbon-free, less greenhouse gas emissions, and a great potential for coupling with novel autotrophic processes), even if there are still some potential issues (e.g., S intermediates undesired production, and relatively slow growth rate of sulfur-oxidizing bacteria [SOB]) for wastewater treatment. Then we present the current representative SADN-based technologies, and propose the outlooks for future research in regards to SADN process, including implement of coupling of SADN with other nitrogen removal processes (e.g., HD, and sulfate-dependent anaerobic ammonium oxidation), and formation of SOB-enriched biofilm. This review will provide guidance for the future applications of the SADN process to ensure a robust-performance and chemical-saving denitrification for wastewater treatment.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Bao HX, Wang HL, Wang ST, Sun YL, Zhang XN, Cheng HY, Qian ZM, Wang AJ. Response of sulfur-metabolizing biofilm to external sulfide in element sulfur-based denitrification packed-bed reactor. ENVIRONMENTAL RESEARCH 2023; 231:116061. [PMID: 37149027 DOI: 10.1016/j.envres.2023.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Dosing sulfide into the sulfur-packed-bed (S0PB) has great potential to enhance the denitrification efficiency by providing compensatory electron donors, however, the response of sulfur-metabolizing biofilm to various sulfide dosages has never been investigated. In this study, the S0PB reactor was carried out with increasing sulfide dosages by 3.6 kg/m3/d, presenting a decreasing effluent nitrate from 14.2 to 2.7 mg N/L with accelerated denitrification efficiency (k: 0.04 to 0.27). However, 6.5 mg N/L of nitrite accumulated when the sulfide dosage exceeded 0.9 kg/m3/d (optimum value). The increasing electron export contribution of sulfide a maximum of 85.5% illustrated its competition with the in-situ sulfur. Meanwhile, over-dosing sulfide caused serious biofilm expulsion with significant decreases in the total biomass, live cell population, and ATP by 90.2%, 86.7%, and 54.8%, respectively. This study verified the capacity of dosing sulfide to improve the denitrification efficiency in S0PB but alerted the negative effect of exceeded dosing.
Collapse
Affiliation(s)
- Hong-Xu Bao
- College of the Environment, Liaoning University, Shenyang, 110036, PR China
| | - Han-Lin Wang
- College of the Environment, Liaoning University, Shenyang, 110036, PR China
| | - Shu-Tong Wang
- College of the Environment, Liaoning University, Shenyang, 110036, PR China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zhi-Min Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
21
|
Ashun E, Kim S, Jang M, Chae KJ, Oh SE. Assessing the toxicity of contaminated soils via direct contact using a gas production bioassay of thiosulfate utilizing denitrifying bacteria (TUDB). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117616. [PMID: 36934665 DOI: 10.1016/j.jenvman.2023.117616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
A direct contact bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) based on inhibition of gas production was deployed to assess the toxicity of naturally contaminated field soils and soils artificially contaminated with heavy metals. Test procedure producing optimal conditions responsible for maximum gas production was 0.5 mL test culture, 1 g soil sample, 80 RPM, and 48 h reaction time. Similarly, the concentrations which generated a 50% reduction in gas production by TUDB for the tested heavy metals were 3.01 mg/kg Cr6+; 15.30 mg/kg Ni2+;15.50 mg/kg Cu2+;16.60 mg/kg Ag+; 20.60 mg/kg As3+; 32.80 mg/kg Hg2+; 54.70 mg/kg Cd2+; and 74.0 mg/kg Pb2+. Because soil toxicity is usually influenced by various physicochemical characteristics, ten reference soils were used to determine the toxicity threshold for evaluating the toxicity of naturally contaminated field soils. All eight contaminated soils were toxic to the TUDB bioassay because their levels of inhibition ranged between 72% and 100% and exceeded the determined toxicity threshold of 10%. Compared to other direct contact assays, the newly developed assay TUDB proved to be very robust, producing highly sensitive data while the different soil physicochemical properties exerted minimal influence on the gas production activity of TUDB. Additionally, the simplicity of the developed methodology coupled with the elimination of pretreatment procedures such as elutriation, and ability to perform generate sensitive data in turbid and highly colored samples makes it, cost-effective, and easily adaptable for the assessment of heavy metal and field contaminated soils when compared with other conventional assays which require sophisticated instrumentation and prolonged testing procedures and times.
Collapse
Affiliation(s)
- Ebenezer Ashun
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea; Department of Environmental and Safety Engineering, University of Mines and Technology, P.O Box 237, Tarkwa, Western Region, Ghana
| | - Seunggyu Kim
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea.
| |
Collapse
|
22
|
Chen S, Zhou B, Chen H, Yuan R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. ENVIRONMENTAL RESEARCH 2023; 216:114687. [PMID: 36356669 DOI: 10.1016/j.envres.2022.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.
Collapse
Affiliation(s)
- Shaoting Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
23
|
Miao H, Zeng W, Li J, Liu H, Zhan M, Dai H, Peng Y. Simultaneous nitrate and phosphate removal based on thiosulfate-driven autotrophic denitrification biofilter filled with volcanic rock and sponge iron. BIORESOURCE TECHNOLOGY 2022; 366:128207. [PMID: 36328173 DOI: 10.1016/j.biortech.2022.128207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
This study constructed two thiosulfate-driven autotrophic denitrification biofilters filled with volcanic rock (VR-BF), sponge iron and volcanic rock (SIVR-BF), respectively. The nitrate removal load (3200 g/m3/d) and efficiency (98 %) of SIVR-BF were higher than those of VR-BF. The removal of phosphate in SIVR-BF was mainly through forming FePO4 and Fe3(PO4)2(OH)2. Sulfur and iron cycles in SIVR-BF contributed to Fe (II)/Fe (III) electron shuttle, as well as S2-, S0, Sn2- electron buffer and energy storage, which improved nitrate removal and electron utilization. The formation of multi-path collaborative denitrification dominated by sulfur autotrophic denitrification (64.2 ∼ 89.6 %) in SIVR-BF. The other denitrification pathways, such as iron autotrophic denitrification, which buffered pH and reduced sulfate production. Thiobacillus (38.6 %) and Ferritrophicum (25.3 %) were the dominant genus of VR-BF and SIVR-BF, respectively, which played crucial roles in autotrophic denitrification of iron and sulfur. SIVR-BF was a promising process to realize iron-sulfur coupling autotrophic denitrification and phosphate removal.
Collapse
Affiliation(s)
- Haohao Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jianmin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
24
|
Karuriya S, Choudhary S. Simultaneous heterotrophic nitrification and aerobic denitrification potential of Paenibacillus sp. strain GLM-08 isolated from lignite mine waste and its role ammonia removal from mine waste water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3223-3235. [PMID: 36579880 DOI: 10.2166/wst.2022.401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Paenibacillus sp. strain GLM-08 was isolated from a lignite mine waste site in the Barmer basin, Rajasthan, India. The strain is efficient in heterotrophic nitrification and aerobic denitrification. This bacterium could remove approximately more than 95% of NH4+, NO3-, and NO2- in 24 h. The average nitrogen (N) removal rate of the strain was found to be 4.775 mg/L/H, 5.66 mg/L/H, and 5.01 mg/L/H for NH4+, NO3-, and NO2-, respectively. Bioaugmentation of mine wastewater with Paenibacillus sp. strain GLM-08 demonstrated N removal of 86.6% under conditions of a high load of NH4+. The presence of potential genetic determinants (nxrB, nirS, and nosZ) having role in heterotrophic nitrification and aerobic denitrification was confirmed by PCR based analysis. The findings show that this bacterium performs simultaneous nitrification and denitrification and has a high nitrogen removal efficiency indicating the potential application of the strain in the treatment of wastewater.
Collapse
Affiliation(s)
- Silisti Karuriya
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan 304022, India E-mail:
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan 304022, India E-mail:
| |
Collapse
|
25
|
Kosgey K, Zungu PV, Bux F, Kumari S. Biological nitrogen removal from low carbon wastewater. Front Microbiol 2022; 13:968812. [PMID: 36466689 PMCID: PMC9709150 DOI: 10.3389/fmicb.2022.968812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Nitrogen has traditionally been removed from wastewater by nitrification and denitrification processes, in which organic carbon has been used as an electron donor during denitrification. However, some wastewaters contain low concentrations of organic carbon, which may require external organic carbon supply, increasing treatment costs. As a result, processes such as partial nitrification/anammox (anaerobic ammonium oxidation) (PN/A), autotrophic denitrification, nitritation-denitritation and bioelectrochemical processes have been studied as possible alternatives, and are thus evaluated in this study based on process kinetics, applicability at large-scale and process configuration. Oxygen demand for nitritation-denitritation and PN/A is 25% and 60% lower than for nitrification/denitrification, respectively. In addition, PN/A process does not require organic carbon supply, while its supply for nitritation-denitritation is 40% less than for nitrification/denitrification. Both PN/A and nitritation-denitritation produce less sludge compared to nitrification/denitrification, which saves on sludge handling costs. Similarly, autotrophic denitrification generates less sludge compared to heterotrophic denitrification and could save on sludge handling costs. However, autotrophic denitrification driven by metallic ions, elemental sulfur (S) and its compounds could generate harmful chemicals. On the other hand, hydrogenotrophic denitrification can remove nitrogen completely without generation of harmful chemicals, but requires specialized equipment for generation and handling of hydrogen gas (H2), which complicates process configuration. Bioelectrochemical processes are limited by low kinetics and complicated process configuration. In sum, anammox-mediated processes represent the best alternative to nitrification/denitrification for nitrogen removal in low- and high-strength wastewaters.
Collapse
Affiliation(s)
- Kiprotich Kosgey
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | | | | | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
26
|
Zhou M, Cao J, Lu Y, Zhu L, Li C, Wang Y, Hao L, Luo J, Ren H. The performance and mechanism of iron-modified aluminum sludge substrate tidal flow constructed wetlands for simultaneous nitrogen and phosphorus removal in the effluent of wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157569. [PMID: 35882329 DOI: 10.1016/j.scitotenv.2022.157569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Aiming at the poor N and P removal performance in the effluent of wastewater treatment plants by constructed wetlands (CWs), aluminum sludge (AS) from water supply plants was used to prepare iron-modified aluminum sludge (IAS), and tidal flow constructed wetlands (TFCWs) using IAS as substrates were constructed. By means of high-throughput sequencing, X-ray diffractometer (XRD), etc., the removal mechanism of N and P in the system and fate analysis of key elements were also interpreted. Results showed that an interlayer structure beneficial to adsorbing pollutants was formed in the IAS, due to the iron scraps entering into the molecular layers of AS. The removal rates of TP and TN by IAS-TFCWs reached 95 % and 47 %, respectively, when the flooding/resting time (F/R) and C/N were 6 h/2 h and 6. During the three-year operation of the IAS-TFCWs, the effluent concentrations of CODCr, NH4+-N, and TP could comply with Class IV Standard of "Environmental Quality Standards for Surface Water" (GB3838-2002). The mechanism analysis showed that the N removal was effectuated through Fe2+ as the electron donor of Fe(II)-driven the autotrophic denitrifying bacteria to reduce nitrate, while the P removal mainly depended on the adsorption reaction between FeOOH in IAS and phosphate. In conclusion, the stable Fe-N cycle in the IAS-TFCWs achieved simultaneous and efficient N and P removal.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yanhong Lu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Lisha Zhu
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yantang Wang
- Henan Yongze Environmental Technology Co., LTD, Zhengzhou 451191, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqiang Ren
- College of Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Wang D, Xu S, Zhou S, Wang S, Jiang C, Sun B, Wang X, Yang D, Zuo J, Wang H, Zhuang X. Partial nitrification in free nitrous acid-treated sediment planting Myriophyllum aquaticum constructed wetland strengthens the treatment of black-odor water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157287. [PMID: 35835191 DOI: 10.1016/j.scitotenv.2022.157287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Black-odor water pollution in rural areas, especially swine wastewater, can lead to the deterioration of water quality and thus seriously affect the daily life of people in the area. However, there is a lack of effective treatment measures with simultaneous attention to carbon, nitrogen and sulfur pollution in rural black-odor water bodies. This study evaluated the feasibility of an in-situ pilot-scale constructed wetland (CW) for the synchronous removal of COD, ammonium, and sulfur compounds in the swine wastewater. In this study, the operation strategy of CW sediment pretreated with free nitrous acid (FNA) and Myriophyllum aquaticum plantation was established. Throughout the 114-day operation, the total removal efficiencies of COD and ammonium nitrogen in experimental groups were 81.2 ± 4.2 % and 72.8 ± 1.8 %, respectively, which were significantly higher than CW without any treatment. Removal efficiencies of Sulfur compounds, i.e. sulfide, sulfate, thiosulfate, and sulfite, were 92.3 ± 1.9 % (61.2 % higher than the no-treatment group), 42.1 ± 3.8 %, 97.9 ± 1.7 %, and 42.7 ± 4.5 % respectively. High-throughput sequencing and qPCR revealed that experimental group significantly increased denitrification genes (nirK, nosZ) and sulfur oxidation genes (soxB, fccAB) and enriched the corresponding microbial taxa (Bacillus, Conexibacter and Clostridium sensu stricto). Moreover, metabolic pathways related to nitrogen and sulfur and the degradation of organic matter were up-regulated. These results indicated that partial nitrification in CW planted with M. aquaticum promoted sulfur oxidation denitrification and heterotrophic denitrification. Overall, the in-situ pilot-scale study revealed that the cultivation of M. aquaticum in FNA-treated CW can be a sustainable approach to treat black-odor water bodies.
Collapse
Affiliation(s)
- Danhua Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sining Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuseng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jialiang Zuo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Chen B, Qaisar M, Xiao J, Li W, Li J, Cai J. Combined acute effect of salinity and substrate concentration on simultaneous sulfide and nitrite removal process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Mohammadi SA, Najafi H, Zolgharnian S, Sharifian S, Asasian-Kolur N. Biological oxidation methods for the removal of organic and inorganic contaminants from wastewater: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157026. [PMID: 35772531 DOI: 10.1016/j.scitotenv.2022.157026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Enzyme-based bioremediation is a simple, cost-effective, and environmentally friendly method for isolating and removing a wide range of environmental pollutants. This study is a comprehensive review of recent studies on the oxidation of pollutants by biological oxidation methods, performed individually or in combination with other methods. The main bio-oxidants capable of removing all types of pollutants, such as organic and inorganic molecules, from fungi, bacteria, algae, and plants, and different types of enzymes, as well as the removal mechanisms, were investigated. The use of mediators and modification methods to improve the performance of microorganisms and their resistance under harsh real wastewater conditions was discussed, and numerous case studies were presented and compared. The advantages and disadvantages of conventional and novel immobilization methods, and the development of enzyme engineering to adjust the content and properties of the desired enzymes, were also explained. The optimal operating parameters such as temperature and pH, which usually lead to the best performance, were presented. A detailed overview of the different combination processes was also given, including bio-oxidation in coincident or consecutive combination with adsorption, advanced oxidation processes, and membrane separation. One of the most important issues that this study has addressed is the removal of both organic and inorganic contaminants, taking into account the actual wastewaters and the economic aspect.
Collapse
Affiliation(s)
- Seyed Amin Mohammadi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Hanieh Najafi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Sheida Zolgharnian
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Seyedmehdi Sharifian
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Neda Asasian-Kolur
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran.
| |
Collapse
|
30
|
Chen Y, Zhao YG, Wang X, Ji J. Impact of sulfamethoxazole and organic supplementation on mixotrophic denitrification process: Nitrate removal efficiency and the response of functional microbiota. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115818. [PMID: 35944321 DOI: 10.1016/j.jenvman.2022.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Recirculating aquaculture systems (RAS) effluent is characterized by low COD to total inorganic nitrogen ratio (C/N), excessive nitrate, and the presence of traces of antibiotics. Hence, it urgently needs to be treated before recycling or discharging. In this study, four denitrification bioreactors at increasing C/N ratios (0, 0.7, 2, and 5) were started up to treat mariculture wastewater under the sulfamethoxazole (SMX) stress, during which the bioreactors performance and the shift of mixotrophic microbial communities were explored. The result showed that during the SMX exposure, organic supplementation enhanced nitrate and thiosulfate removal, and eliminated nitrite accumulation. The denitrification rate was accelerated by increasing C/N from 0 to 2, while it declined at C/N of 5. The decline was ascribed to which SMX reduced the relative abundance of denitrifiers, but improved the capability of dissimilatory nitrogen reduction to ammonia (DNRA) and sulfide production. The direct evidence was the relative abundance of sulfidogenic populations, such as Desulfuromusa, Desulfurocapsa, and Desulfobacter increased under the SMX stress. Moreover, high SMX (1.5 mg L-1) caused the obvious accumulation of ammonia at C/N of 5 due to the high concentration of sulfide (3.54 ± 1.08 mM) and the enhanced DNRA process. This study concluded that the mixotrophic denitrification process with the C/N of 0.7 presented the best performance in nitrate and sulfur removal and indicated the maximum resistance to SMX.
Collapse
Affiliation(s)
- Yue Chen
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
31
|
Ashun E, Kang W, Thapa BS, Gurung A, Rahimnejad M, Jang M, Jeon BH, Kim JR, Oh SE. A novel gas production bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) for the toxicity assessment of heavy metals contaminated water. CHEMOSPHERE 2022; 303:134902. [PMID: 35561773 DOI: 10.1016/j.chemosphere.2022.134902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
This study reports for the first-time the possibility of deploying gas production by thiosulfate utilizing denitrifying bacteria (TUDB) as a proxy to evaluate water toxicity. The test relies on gas production by TUDB due to inhibited metabolic activity in the presence of toxicants. Gas production was measured using a bubble-type respirometer. Optimization studies indicated that 300 mg NO3--N/L, 0.5 mL acclimated culture, and 2100 mg S2O32-/L were the ideal conditions facilitating the necessary volume of gas production for sensitive data generation. Determined EC50 values of the selected heavy metals were: Cr6+, 0.51 mg/L; Ag+, 2.90 mg/L; Cu2+, 2.90 mg/L; Ni2+, 3.60 mg/L; As3+, 4.10 mg/L; Cd2+, 5.56 mg/L; Hg2+, 8.06 mg/L; and Pb2+, 19.3 mg/L. The advantages of this method include operational simplicity through the elimination of cumbersome preprocessing procedures which are used to eliminate interferences caused by turbidity when the toxicity of turbid samples is determined via spectrophotometry.
Collapse
Affiliation(s)
- Ebenezer Ashun
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Woochang Kang
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Bhim Sen Thapa
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Anup Gurung
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Islamic Republic of Iran
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-dong, Gangwon-do, Chuncheon-si, 200-701, Republic of Korea.
| |
Collapse
|
32
|
Xue M, Nie Y, Cao X, Zhou X. Deciphering the influence of S/N ratio in a sulfite-driven autotrophic denitrification reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155612. [PMID: 35504375 DOI: 10.1016/j.scitotenv.2022.155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Sulfur-based autotrophic denitrification is a cost-effective alternative to heterotrophic denitrification for nitrate removal due to no need of external organic carbon supply. Herein, sulfite-driven autotrophic denitrification (SDAD) was firstly established in a sequencing batch biofilm reactor treating high-strength nitrate-containing wastewater added by the sulfite. The nitrogen removal performance was mainly investigated under a molar ratio of sulfur-to‑nitrogen (S/N) ranging from 0.44 to 3.07 in a total of 180-day operation. Long-term experiment showed the optimal of S/N was found to be 2.63, much close to the stoichiometric value, achieving the highest autotrophic denitrification rate and complete total nitrogen removal efficiency (TNRE) with 92.4 ± 0.3%. Cyclical trial confirmed nitrate reduction and sulfite oxidation simultaneously occurred along with sulfate formation. Meanwhile, nitrite accumulation was observed at a very low S/N conditions. Microbial community analysis identified that Sulfurovum, Thiobacillus, and Thermomonas as key denitrifying sulfur-oxidizing bacteria responsible for SDAD. Moreover, the dynamic shift in functional microorganisms affected by influent S/N was also detected. Finally, the metabolic pathway of SDAD process was unraveled via the cooperative encoding of sulfite oxidases (Sor, Apr, Sat) and nitrate-reducing genes. This study sheds light on a new sulfur-cycle autotrophic denitrification process for the bioremediation of nitrate-contaminated wastewater.
Collapse
Affiliation(s)
- Mi Xue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Yuting Nie
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Xiwei Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China.
| |
Collapse
|
33
|
Yang Y, Perez Calleja P, Liu Y, Nerenberg R, Chai H. Assessing Intermediate Formation and Electron Competition during Thiosulfate-Driven Denitrification: An Experimental and Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11760-11770. [PMID: 35921133 DOI: 10.1021/acs.est.2c03937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is increasing interest in thiosulfate-driven denitrification for low C/N wastewater treatment, but the denitrification performance varies with the thiosulfate oxidation pathways. Models have been developed to predict the products of denitrification, but few consider thiosulfate reduction to elemental sulfur (S0), an undesirable reaction that can intensify electron competition with denitrifying enzymes. In this study, the model using indirect coupling of electrons (ICE) was developed to predict S0 formation and electron competition during thiosulfate-driven denitrification. Kinetic data were obtained from sulfur-oxidizing bacteria (SOB) dominated by the branched pathway and were used to calibrate and validate the model. Electron competition was investigated under different operating conditions. Modeling results reveal that electrons produced in the first step of thiosulfate oxidation typically prioritize thiosulfate reduction, then nitrate reduction, and finally nitrite reduction. However, the electron consumption rate for S0 formation decreases sharply with the decline of thiosulfate concentration. Thus, a continuous feeding strategy was effective in alleviating the competition between thiosulfate reduction and denitrifying enzymes. Electron competition leads to nitrite accumulation, which could be a reliable substrate for anammox. The model was further evaluated with anammox integration. Results suggested that the branched pathway and continuous supply of thiosulfate are favorable to create a symbiotic relationship between SOB and anammox.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patricia Perez Calleja
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
34
|
Li S, Jiang Z, Ji G. Effect of sulfur sources on the competition between denitrification and DNRA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119322. [PMID: 35447253 DOI: 10.1016/j.envpol.2022.119322] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The fate of nitrogen is controlled by the competition between nitrate reduction pathways. Denitrification removes nitrogen in the system to the atmosphere, whereas dissimilatory nitrate reduction to ammonia (DNRA) retains nitrate in the form of ammonia. Different microbes specialize in the oxidation of different electron donors, thus electron donors might influence the outcomes of the competition. Here, we investigated the fate of nitrate with five forms of sulfur as electron donors. Chemoautotrophic nitrate reduction did not continue after the passages of the enrichments with sulfide, sulfite and pyrite. Nitrate reduction rate was the highest in the enrichment with thiosulfate. Denitrification was stimulated and no DNRA was observed with thiosulfate, while both denitrification and DNRA were stimulated with elemental sulfur. Metagenomes of the enrichments were assembled and binned into ten genomes. The enriched populations with thiosulfate included Thiobacillus, Lentimicrobium, Sulfurovum and Hydrogenophaga, all of which contained genes involved in sulfur oxidation. Elemental sulfur-based DNRA was performed by Thiobacillus (with NrfA and NirB) and Nocardioides (with only NirB). Our study established a link between sulfur sources, nitrate reduction pathways and microbial populations.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Wang Y, Liang B, Kang F, Wang Y, Yuan Z, Lyu Z, Zhu T, Zhang Z. Denitrification Performance in Packed-Bed Reactors Using Novel Carbon-Sulfur-Based Composite Filters for Treatment of Synthetic Wastewater and Anaerobic Ammonia Oxidation Effluent. Front Microbiol 2022; 13:934441. [PMID: 35875584 PMCID: PMC9301263 DOI: 10.3389/fmicb.2022.934441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
To avoid nitrate pollution in water bodies, two low-cost and abundant natural organic carbon sources were added to make up the solid-phase denitrification filters. This study compared four novel solid-phase carbon-sulfur-based composite filters, and their denitrification abilities were investigated in laboratory-scale bioreactors. The filter F4 (mixture of elemental sulfur powder, shell powder, and peanut hull powder with a mass ratio of 6:2.5:1.5) achieved the highest denitrification ability, with an optimal nitrate removal rate (NRR) of 723 ± 14.2 mg NO3–-N⋅L–1⋅d–1 when the hydraulic retention time (HRT) was 1 h. The HRT considerably impacted effluent quality after coupling of anaerobic ammonium oxidation (ANAMMOX) and solid-phase-based mixotrophic denitrification process (SMDP). The concentration of suspended solids (SS) of the ANAMMOX effluent may affect the performance of the coupled system. Autotrophs and heterotrophs were abundant and co-existed in all reactors; over time, the abundance of heterotrophs decreased while that of autotrophs increased. Overall, the SMDP process showed good denitrification performance and reduced the sulfate productivity in effluent compared to the sulfur-based autotrophic denitrification (SAD) process.
Collapse
Affiliation(s)
- Yao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Baorui Liang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Fei Kang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Zhihong Yuan
- Shenyang Zhenxing Environmental Technology Co., Ltd., Shenyang, China
| | - Zhenning Lyu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
- *Correspondence: Tong Zhu, , orcid.org/0000-0002-3460-7316
| | - Zhijun Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
- Zhijun Zhang, , orcid.org/0000-0003-4281-5331
| |
Collapse
|
36
|
Zhang XN, Zhu L, Li ZR, Sun YL, Qian ZM, Li SY, Cheng HY, Wang AJ. Thiosulfate as external electron donor accelerating denitrification at low temperature condition in S 0-based autotrophic denitrification biofilter. ENVIRONMENTAL RESEARCH 2022; 210:113009. [PMID: 35218715 DOI: 10.1016/j.envres.2022.113009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study was carried out to determine the inhibition of low temperature on the performance of S0-based autotrophic denitrification (S0-SAD) biofilter, and proposed to enhance the nitrate removal efficiency with thiosulfate as external electron donor. With the decline of temperature from 30 °C to 10 °C at 0.25 h of empty bed contact time (EBCT), the nitrate removal rate presented a logarithmical drop, and the effluent nitrate dramatically increased from 9.19 mg L-1 to 15.13 mg L-1. EBCT was prolonged until 0.33 h for 20 °C, 0.66 h for 15 °C and 1.5 h for 10 °C, respectively, to maintain the effluent nitrate below 10 mg L-1. Such excessive variation of EBCT for different temperature is undoubtedly incredible for practical engineering. Thiosulfate, as the external electron donor, was adopted to compensate the efficiency loss during temperature decrease, which significantly prompted nitrate removal rate to 0.59, 0.53 and 0.31 kg N m-3 d-1 at 20 °C, 15 °C and 10 °C conditions, respectively, even at a short EBCT of 0.25 h. It not only acted as compensatory electron donor for nitrate removal, but also promoted the contribution of elemental sulfur via accelerating the DO consumption and extended larger effective volume of S0-layer for denitrification. Meanwhile, the significant enrichment of Sulfurimonas and Ferritrophicum provided biological evidences to the enhancement process. However, the incomplete consumption of thiosulfate was observed especially at EBCT of 0.25 h and 10 °C, and the thiosulfate runoff needs to be concerned in case of contaminating the effluent. Herein, approximately extending EBCT to 0.66 h and decreasing thiosulfate dosage were conducted simultaneously, thereby achieving 100% thiosulfate utilization efficiency and expected nitrate removal. This study provided a fundamental guidance to design and operate S0-SAD biofilter in response to seasonal temperature variation for practical engineering.
Collapse
Affiliation(s)
- Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhuo-Ran Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Zhi-Min Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Shuang-Yan Li
- Bureau of Ecology and Environment of Miyun, Beijing, 101500, PR China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| |
Collapse
|
37
|
Liu H, Zeng W, Li J, Zhan M, Fan Z, Peng Y. Effect of S 2O 32--S addition on Anammox coupling sulfur autotrophic denitrification and mechanism analysis using N and O dual isotope effects. WATER RESEARCH 2022; 218:118404. [PMID: 35462259 DOI: 10.1016/j.watres.2022.118404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonia oxidation (Anammox) coupling sulfur autotrophic denitrification is an effective method for the advanced nitrogen removal from the wastewater with limited carbon source. The influence of S2O32--S addition on Anammox coupling sulfur autotrophic denitrification was investigated by adding different concentrations of S2O32--S (0, 39, 78, 156 and 312 mg/L) to the Anammox system. The contribution of sulfur autotrophic denitrification and Anammox to nitrogen removal at S2O32--S concentrations of 156 mg/L was 75% ∼83% and 17%∼25%, respectively, and the mixed system achieved completely nitrogen removal. However, Anammox bioactivity was completely inhibited at S2O32--S concentrations up to 312 mg/L, and only sulfur autotrophic denitrification occurred. The isotopic effects of NO2--N (δ15NNO2 and δ18ONO2) and NO3--N (δ15NNO3 and δ18ONO3) during Anammox coupling sulfur autotrophic denitrification showed a gradual decrease trend with the increase of S2O32--S addition. The ratios of δ15NNO2:δ18ONO2 and δ15NNO3:δ18ONO3 was maintained at 1.30-2.41 and 1.36-2.52, respectively, which revealed that Anammox was dominant nitrogen removal pathway at S2O32--S concentrations less than 156 mg/L. Microbial diversity gradually decreased with the increase of S2O32--S. The S2O32--S addition enhanced the S2O32--driven autotrophic denitrification and weakened the Anammox, leading to a gradually decreasing trend of the proportion of Candidatus Brocadia as Anammox bacteria from the initial 27% to 4% (S2O32--S of 156 mg/L). Yet Norank-f-Hydrogenophilaceae (more than 50%) and Thiobacillus (54%) as functional bacteria of autotrophic denitrification obviously increased. The appropriate amount of S2O32--S addition promoted the performance of Anammox coupling sulfur autotrophic denitrification achieved completely nitrogen removal.
Collapse
Affiliation(s)
- Hong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Jianmin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Zhiwei Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
38
|
Zheng Z, Ali A, Su J, Zhang S, Su L, Qi Z. Biochar fungal pellet based biological immobilization reactor efficiently removed nitrate and cadmium. CHEMOSPHERE 2022; 296:134011. [PMID: 35181434 DOI: 10.1016/j.chemosphere.2022.134011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
To efficiently and simultaneously remove nitrate (NO3--N) and Cd(II) from aqueous solution, a novel type of biochar fungal pellet (BFP) immobilized denitrification bacteria (Cupriavidus sp. H29) composite was used in a bioreactor. The removal performance of the bioreactor R1 for the initial concentration of 27.7 mg L-1 nitrate and 10.0 mg L-1 Cd(II) reached 98.1 and 93.9% respectively, and the inoculation of strain H29 in bioreactor R1 significantly enhanced the removal efficiency of contaminants. The 3D-EEM spectra analysis showed that the activity of microorganisms in the bioreactor was higher at a lower concentration of Cd(II). FTIR indicated the effect of functional groups in BFP in bioadsorption of Cd(II). In addition, high-throughput analysis of species composition of the microbial community in the bioreactors at different levels demonstrated that strain H29 played a significant part in the bioreactor. This research provided a perspective for simultaneous restoration of nitrate and heavy metals in wastewater, and also enriched the application of fungal pellet (FP) in reactors.
Collapse
Affiliation(s)
- Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lindong Su
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710055, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710055, China
| |
Collapse
|
39
|
Wang K, Qaisar M, Chen B, Xiao J, Cai J. Metagenomic analysis of microbial community and metabolic pathway of simultaneous sulfide and nitrite removal process exposed to divergent hydraulic retention times. BIORESOURCE TECHNOLOGY 2022; 354:127186. [PMID: 35439563 DOI: 10.1016/j.biortech.2022.127186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The role of hydraulic retention time (HRT) on S0 production was assessed through metagenomics analyses. Considering comprehensive performance for the tested HRTs (0.25-13.33 h), the optimal HRT was 1 h, while respective sulfide and nitrite loading rate could reach 6.84 kg S/(m3·d) and 1.95 kg N/(m3·d), and total S0 yield was 0.36 kg S/(kg (VSS)·d). Bacterial community richness decreased along the shortening of HRT. Microbacterium, Sulfurimonas, Sulfurovum, Paracoccus and Thauera were highly abundant bacteria. During sulfur metabolism, high expression of sqr gene was the main reason of maintaining high desulfurization load, while lacking soxB caused the continuous increase of S0. Regarding nitrogen metabolism, the rapid decrease of nitrite transporter prevented nitrite to enter in cells, which caused a rapid decrease of nitrite removal under extreme HRT. Adjusting HRT is an effective way to enhance S0 production for the application of the simultaneous sulfide and nitrite removal process.
Collapse
Affiliation(s)
- Kaiquan Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan; College of Science, University of Bahrain, Bahrain
| | - Bilong Chen
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Jinghong Xiao
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
40
|
Liang B, Kang F, Wang Y, Zhang K, Wang Y, Yao S, Lyu Z, Zhu T. Denitrification performance of sulfur-based autotrophic denitrification and biomass‑sulfur-based mixotrophic denitrification in solid-phase denitrifying reactors using novel composite filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153826. [PMID: 35157874 DOI: 10.1016/j.scitotenv.2022.153826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Both the elemental sulfur-based autotrophic denitrification (ESAD) and the biomass‑sulfur-based mixotrophic (simultaneous autotrophic and heterotrophic) denitrification processes (BSMD) are efficient methods for removing nitrate from wastewater. However, a comparative analysis of the denitrification capacity of the BSMD and ESAD in the packed bed reactors is still lacking. In this paper, corncob powder was selected as the biomass source to prepare biomass‑sulfur-based composite filter (BSCF) for the BSMD process. The denitrification performances of the three identical lab-scale bioreactors packed with varying elemental sulfur-based composite filters (ESCFs) were compared under varying loading conditions, and the optimal ESCF of the ESAD system was 2:1 by weight ratio of sulfur powder to shell powder. In pilot-scale experiments, the results showed that BSCF could decrease the sulfate productivity and gave better denitrification performance than the ESCF with the optimal nitrate removal rate (NRR) of 504 ± 12.3 mg NO3--N·L-1·d-1. In addition, the two-stage flushing strategy (for the removal of aged sludge) can effectively improve the denitrification capacity, while the denitrification will be inhibited when the influent dissolved oxygen concentration was higher than 4.5 mg L-1. Moreover, the heterotrophs and autotrophs were abundant in the reactors. Over time, the abundance of autotrophs increased while that of heterotrophs decreased. Overall, BSCF could be a promising and economic technology to improve the effluent quality.
Collapse
Affiliation(s)
- Baorui Liang
- Institute of Process Equipment and Environmental Engineering, School of Chemistry and Chemical Engineering, Ningxia Vocational Technical College of Industry and Commerce, Yinchuan 750021, PR China; Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Fei Kang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Yao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Sai Yao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Zhenning Lyu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, PR China.
| |
Collapse
|
41
|
Song M, Sun B, Li R, Zhang Z, Bai Z, Zhuang X. Dynamic succession patterns and interactions of phyllospheric microorganisms during NO x exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128371. [PMID: 35150993 DOI: 10.1016/j.jhazmat.2022.128371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The phyllosphere plays a role in alleviating air pollution, potentially leveraging the native microorganisms for further enhancement. It remains unclear how phyllospheric microorganisms respond to nitrogen oxide (NOx) pollution and participate in abatement. Here, we exposed Schefflera octophylla to NOx to reveal microbial succession patterns and interactions in the phyllosphere. During exposure, phyllospheric ammonium (NH4+-N) significantly increased, with different alpha diversity changes between bacteria and fungi. Community successions enclosed core taxa with relatively excellent tolerance, represented by bacterial genera (Norcardiodes, Aeromicrobium) and fungal genera (Talaromyces, Acremonium). The exposure eliminated specific pathogens (e.g., Zymoseptoria) and benefitted plant growth-promoting populations (e.g., Talaromyces, Exiguobacterium), which might favor plant disease control, improve plant health and thus buffer NOx pollution. Cooccurrence networks revealed more negative correlations among bacteria and closer linkages among fungi during exposure. Our results also showed a functional shift from the predominance of pathotrophs to saprotrophs. Our study identified microbial successions and interactions during NOx pollution and thus enlightened prospective taxa and potential roles of phyllospheric microorganisms in NOx remediation.
Collapse
Affiliation(s)
- Manjiao Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zixuan Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Xiongan Institute of Innovation, Xiongan New Area 071000, China.
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review. WATER 2022. [DOI: 10.3390/w14071101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to carbon source dependence, conventional biological nitrogen removal (BNR) processes based on heterotrophic denitrification are suffering from great bottlenecks. The autotrophic BNR process represented by sulfur-driven autotrophic denitrification (SDAD) and anaerobic ammonium oxidation (anammox) provides a viable alternative for addressing low carbon wastewater. Whether for low carbon municipal wastewater or industrial wastewater with high nitrogen, the SDAD and anammox process can be suitably positioned accordingly. Herein, the recent advances and challenges to autotrophic BNR process guided by SDAD and anammox are systematically reviewed. Specifically, the present applications and crucial operation factors were discussed in detail. Besides, the microscopic interpretation of the process was deepened in the viewpoint of functional microbial species and their physiological characteristics. Furthermore, the current limitations and some future research priorities over the applications were identified and discussed from multiple perspectives. The obtained knowledge would provide insights into the application and optimization of the autotrophic BNR process, which will contribute to the establishment of a new generation of efficient and energy-saving wastewater nitrogen removal systems.
Collapse
|
43
|
Bao HX, Li ZR, Song ZB, Wang AJ, Zhang XN, Qian ZM, Sun YL, Cheng HY. Mitigating nitrite accumulation during S 0-based autotrophic denitrification: Balancing nitrate-nitrite reduction rate with thiosulfate as external electron donor. ENVIRONMENTAL RESEARCH 2022; 204:112016. [PMID: 34509485 DOI: 10.1016/j.envres.2021.112016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
This study was carried out to determine the effect of influent nitrate loading on nitrite accumulation during elemental-sulfur based denitrification process, and proposed to enhance the nitrogen removal efficiency by mitigating nitrite accumulation with thiosulfate as external electron donor. Along with increasing the nitrate influent loading (from 0.09 kg N/m3/d to 1.73 kg N/m3/d) by shortening the empty bed contact time (EBCT) (from 5 h to 0.25 h), the nitrate removal loading increased from 0.08 to 0.83 kg N/m3/d. Meanwhile, the raise of the nitrate influent loading obviously aggravated the nitrite accumulation. Herein, nitrite began to accumulate since the nitrate influent loading was over 0.86 kg N/m3/d, and a maximum nitrite accumulation of 2.39 mg/L was observed under the 0.25 h of EBCT and 15 mg/L of nitrate influent concentration condition. Thiosulfate was used as the external electron donor to accelerate the nitrite reduction rate in order to mitigate the nitrite accumulation. As a result, the nitrite accumulation significantly decreased from 2.39 mg/L to 0.17 mg/L with the thiosulfate dosage of 13.36 mg/L. However, the nitrite accumulation bounced with the on-going increase of the thiosulfate dosage, indicating that the nitrate reduction rate and nitrite reduction rate were accelerated alternatively. After dosing thiosulfate, the relative abundances of sulfurimonas and ferritrophicum grew up significantly.
Collapse
Affiliation(s)
- Hong-Xu Bao
- College of the Environment, Liaoning University, Shenyang, 110036, China
| | - Zhuo-Ran Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ze-Bin Song
- College of the Environment, Liaoning University, Shenyang, 110036, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhi-Min Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
44
|
Wang K, Qaisar M, Chen B, Liu S, Wu Y, Zheng Z, Cai J. Strategy for rapid recovery of simultaneous sulfide and nitrite removal under high substrate inhibition. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Zou X, Chen C, Wang C, Zhang Q, Yu Z, Wu H, Zhuo C, Zhang TC. Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: A short review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149645. [PMID: 34399327 DOI: 10.1016/j.scitotenv.2021.149645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Treatment of nitrate-rich wastewater is important but challenging for the conventional biological denitrification process. Here, we propose combining the electrochemical reduction and anaerobic ammonium oxidation (anammox) processes together for treatment of nitrate-rich wastewater. This article reviews the mechanism and current research status of electrochemical reduction of nitrate to ammonium as well as the mechanism and applicability of the anammox process. This article discusses the principles, superiorities and challenges of this combined process. The feasibility of the combined process depends on the efficiency of electrochemical nitrate reduction to ammonium and the conditions in the anammox process to use the reduced ammonium as the substrate to achieve deep nitrogen removal. The article provides a feasible strategy for using the electrochemical reduction and anammox combined process to treat nitrate-rich wastewater.
Collapse
Affiliation(s)
- Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Tianping College of Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| | - Changhong Wang
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Qun Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Zhuowei Yu
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Haiping Wu
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Chao Zhuo
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept., University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| |
Collapse
|
46
|
Chan-Pacheco CR, Valenzuela EI, Cervantes FJ, Quijano G. Novel biotechnologies for nitrogen removal and their coupling with gas emissions abatement in wastewater treatment facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149228. [PMID: 34346385 DOI: 10.1016/j.scitotenv.2021.149228] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Wastewaters contaminated with nitrogenous pollutants, derived from anthropogenic activities, have exacerbated our ecosystems sparking environmental problems, such as eutrophication and acidification of water reservoirs, emission of greenhouse gases, death of aquatic organisms, among others. Wastewater treatment facilities (WWTF) combining nitrification and denitrification, and lately partial nitrification coupled to anaerobic ammonium oxidation (anammox), have traditionally been applied for the removal of nitrogen from wastewaters. The present work provides a comprehensive review of the recent biotechnologies developed in which nitrogen-removing processes are relevant for the treatment of both wastewaters and gas emissions. These novel processes include the anammox process with alternative electron acceptors, such as sulfate (sulfammox), ferric iron (feammox), and anodes in microbial electrolysis cells (anodic anammox). New technologies that couple nitrate/nitrite reduction with the oxidation of methane, H2S, volatile methyl siloxanes, and other volatile organic compounds are also described. The potential of these processes for (i) minimizing greenhouse gas emissions from WWTF, (ii) biogas purification, and (iii) air pollution control is critically discussed considering the factors that might trigger N2O release during nitrate/nitrite reduction. Moreover, this review provides a discussion on the main challenges to tackle towards the consolidation of these novel biotechnologies.
Collapse
Affiliation(s)
- Carlos R Chan-Pacheco
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Edgardo I Valenzuela
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico.
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230 Querétaro, Mexico.
| |
Collapse
|
47
|
Liu H, Zeng W, Zhan M, Fan Z, Li J, Peng Y. Nitrogen removal performance of sulfur autotrophic denitrification under different S 2O 32- additions using isotopic fractionation of nitrogen and oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148794. [PMID: 34323755 DOI: 10.1016/j.scitotenv.2021.148794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The dual isotope fractionation of nitrogen (N) and oxygen (O) is an effective way to track the transformation of NO3--N in biological denitrification process. The Sulfur autotrophic denitrification combined with the different concentrations of S2O32- was investigated using the dual isotope fractionation of nitrogen (N) and oxygen (O) to reveal the nitrogen removal mechanism of the activated sludge. Based on successful autotrophic denitrification incubation, the modified Logistic model responded to the short-term effects of S2O32- addition on NO3--N removal and SO42- generation. Under the S2O32- addition of 0.5, 1, 2 and 4 times of the incubation stage (49.29 mg/L-394.32 mg/L), the fractionation effect of N in NO3--N (15εNO3) decreased from 8.74 ± 1.81‰ to 2.08 ± 0.06‰, and the fractionation effect of O in NO3--N (18εNO3) declined from 11.34 ± 0.46‰ to 5.48 ± 0.46‰. The 15εNO3/18εNO3 was maintained at 0.46-0.94, indicating a negative correlation between addition amount and isotope effect, and the addition of high concentrations of S2O32- was not suitable for system stabilization. Moreover, the 18O-labeled H2O (δ18OH2O) tests significantly proved the presence of O exchange between NO2--N/NO3--N and H2O (67%/97%) during the nitrogen removal process, while the reoxidation of NO2--N was explored in the autotrophic denitrification. The kinetic models coupled with isotope fractionation effectively revealed the nitrogen removal characteristics in the autotrophic denitrification systems, and verified the difference between the activated sludge-based wastewater treatment process and the natural ecosystem.
Collapse
Affiliation(s)
- Hong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jianmin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
48
|
Huang K, Li Q, Sun H, Zhang XX, Ren H, Ye L. Metagenomic analysis revealed the sulfur- and iron- oxidation capabilities of heterotrophic denitrifying sludge. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1399-1407. [PMID: 33210230 DOI: 10.1007/s10646-020-02307-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Heterotrophic denitrification is widely applied in wastewater treatment processes to remove nitrate. However, the ability of the heterotrophic denitrifying sludge to use inorganic matter as electron donors to perform autotrophic denitrification has rarely been investigated. In this study, we enriched heterotrophic denitrifying sludge and demonstrated its sulfur- and iron- oxidizing abilities and denitrification performance with batch experiments. Based on high-throughput sequencing of 16S rRNA genes, high diversity and abundance of sulfur-oxidizing bacteria (SOB) (e.g., Sulfuritalea, Thiobacillus, and Thiothrix) and iron (II)-oxidizing bacteria (FeOB) (e.g., Azospira and Thiobacillus) were observed. Metagenomic sequencing and genome binning results further suggested that the SOB in the heterotrophic denitrifying sludge were mainly Alphaproteobacteria and Betaproteobacteria instead of Gammaproteobacteria and Epsilonproteobacteria. The similarities of potential iron-oxidizing genes with known sequences were very low (32-51%), indicating potentially novel FeOB species in this system. The findings of this study suggested that the heterotrophic denitrifying sludge harbors diverse mixotrophic denitrifying bacterial species, and based on this finding, we proposed that organic carbon and inorganic electron donors (e.g., sulfur, thiosulfate, and iron) could be jointly used in engineering practices according to the quality and quantity of wastewater to balance the cost and efficiency of the denitrification process.
Collapse
Affiliation(s)
- Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 210044, Nanjing, China
| | - Qiaoling Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
49
|
Response of the reactor performances and bacterial communities to the evolution of sulfide-based mixotrophic denitrification processes from nitrate-type to nitrite-type. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
50
|
Huang S, Yu D, Chen G, Wang Y, Tang P, Liu C, Tian Y, Zhang M. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. CHEMOSPHERE 2021; 278:130413. [PMID: 33823349 DOI: 10.1016/j.chemosphere.2021.130413] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The study was based on the removal of nitrate and sulfide, and aimed to nitrite accumulation. The process of autotrophic denitrification driven by sulfide as an electron donor was investigated in a sequencing batch reactor. The research showed that autotrophic denitrification successfully started on day 22, and the removal rates of NO3--N and S2--S were 95.8% and 100%, respectively, when the S/N molar ratio was 1.45. When the S/N ratio was reduced to 0.94, the phenomenon of NO2--N accumulation was observed. NO2--N continuously accumulated, and the maximum accumulation rate was 55.3% when the S/N ratio was 0.8. In the batch test, the study showed that NO2--N accumulation was optimal when the S/N ratio was 0.8, and the NO2--N concentration increased with increasing NO3--N concentration at the same S/N ratio. Microbial communities also changed based on the high-throughput analysis, and Proteobacteria (59.5%-84%) was the main phylum. Arenimonas (11.4%-28.2%) and uncultured_f_ Chromatiaceae (5.7%-27.5%) were the dominant bacteria, which complete denitrification and desulfurization throughout the operating system. Therefore, this study provided a theoretical basis for the simultaneous removal of NO3--N and S2--S, as well as the accumulation of nitrite, and provided material support for anaerobic ammonia oxidation technology.
Collapse
Affiliation(s)
- Shuo Huang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China; Shandong Provincial Building Design Institute, Jinan, 250012, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yanyan Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Peng Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Chengcheng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yuan Tian
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|