1
|
Lee J, Shin Y, Ryu H, Boo C, Hong S. Toward zero liquid discharge treatment of semiconductor wastewaters with a hybrid system integrating forward osmosis and multi-stage nanofiltration. WATER RESEARCH 2025; 279:123410. [PMID: 40068286 DOI: 10.1016/j.watres.2025.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 05/06/2025]
Abstract
The semiconductor industry produces large quantities of acidic wastewaters containing high levels of hydrofluoric acid (HF) and sulfuric acid (H2SO4), which poses severe environmental concern. Zero liquid discharge (ZLD) treatment of these wastewaters is a pressing need for sustainable growth of the semiconductor industry. Herein, we propose an innovative membrane-based hybrid system that combines forward osmosis (FO) with multi-stage NF process for simultaneous treatments of H2SO4 and HF wastewaters. The preceding FO process was designed to operate with HF wastewater (i.e., 200 ppm F- and 189 ppm Cu2+ at different pH of 3 and 5) as a feed stream and neutralized H2SO4 wastewater (i.e., 1.0 M Na2SO4) as a draw stream. We demonstrate that the FO process allows >55 % dilution of the Na2SO4 waste stream while providing >50 % rejection of all ionic contaminants in the HF wastewater, especially over 90 % rejection of copper ions. As a result, the concentration of Cu2+ increased more than three-fold in the feed stream, highlighting the potential for valuable metal recovery from the HF wastewaters. The following two-stage NF process was employed to produce fresh water from the diluted Na2SO4 waste stream at a maximum water recovery rate which satisfies the ZLD requirement. Our results show that two-stage low-salt-rejection NF (LSRNF) configuration can concentrate the Na2SO4 stream to 1.3 M, which is the critical concentration required for ZLD treatment, at a relatively moderate hydraulic pressure of 40 bar, while simultaneously producing high-quality water that meets discharge standards. We further modeled the multi-stage NF process to highlight the feasibility of the promising FO and two-stage LSRNF hybrid design for ZLD treatment of semiconductor wastewaters.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeojin Shin
- Department of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hoyoung Ryu
- Samsung Electronics, 1-1, Samsungjeonja-ro, Hwaseong-si, 18448, Gyeonggi, Republic of Korea
| | - Chanhee Boo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Seungkwan Hong
- Department of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Jiao H, Cui M, Yuan S, Dong B, Xu Z. Carbon nanomaterials for co-removal of antibiotics and heavy metals from water systems: An overview. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137566. [PMID: 39952121 DOI: 10.1016/j.jhazmat.2025.137566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Pollution resulting from the combination of antibiotics and heavy metals (HMs) poses a significant threat to human health and the natural environment. Adsorption is a promising technique for removing antibiotics and HMs owing to its low cost, simple procedures, and high adsorption capacity. In recent years, various novel carbon nanomaterials have been developed, demonstrating outstanding performance in simultaneously removing antibiotics and HMs. This work presents a comprehensive review of carbon nanomaterials (i.e., carbon nanotubes, graphene, resins, and other nanocomposites) for the co-removal of antibiotics and HMs in water systems. The mechanisms influencing the simultaneous removal of antibiotics and HMs include the bridging effect, electrostatic shielding, competition, and spatial site-blocking effects. These mechanisms can promote, inhibit, or have no impact on the adsorption capacity for antibiotics or HMs. Additionally, environmental factors such as pH, inorganic ions, natural organic matter, and microplastics affect the adsorption efficiency. This review also covers adsorbent regeneration and cost estimation. On the laboratory scale, the cost of the adsorption process primarily depends on the chemical and energy costs of adsorbent production. Our assessment highlights that the carbon-nanomaterial-mediated simultaneous removal of antibiotics and HMs warrants comprehensive consideration from both economic and environmental perspectives.
Collapse
Affiliation(s)
- Huiting Jiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mengke Cui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, PR China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
3
|
Zhang R, Qi C, Bai J, Gao L, Gray S, Ma C, Zhou Q, Bian B. Hydrochar-nanocomposite membrane combined hydrothermal pretreatment for nutrient upcycling from anaerobic digestate. WATER RESEARCH 2025; 275:123212. [PMID: 39914311 DOI: 10.1016/j.watres.2025.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Efficient resource recovery is crucial for sustaining food production and alleviating stress on ecosystems. This study combines hydrothermal pretreatment with polyvinylidene fluoride (PVDF)-hydrochar nanocomposite membranes for near-complete resource recovery in kitchen waste treatment. The dual-functionalized pretreatment, which combines targeted conversion/enrichment with adsorption/filtration, effectively addresses the limitations of existing membrane separation technologies, including low nutrient recovery selectivity, low flux, and high costs. Within a wide pH range (3-11), the optimized lanthanum-doped hydrochar demonstrated over 99% phosphorus recovery, alongside exceptional nutrient recovery potential (over 289.71 mg P/g). The innovative composite membrane design successfully processed over 1,000 bed volumes of biogas slurry containing high phosphorus levels across three in-situ rejuvenation cycles, achieving nearly a 30-fold increase in membrane utilization compared to pristine PVDF membranes (36 bed volumes). The durability and fouling resistance of the composite membranes were enhanced through a synergistic mechanism that included ligand exchange and retention, as well as improved membrane surface properties. This facilitated the selective and efficient recovery of nutrients (99.33% P and 50.81% N) and enabled a profitable turnaround for anaerobic by-product upcycling ($28.51/ton). This study offers novel solutions to address the phosphorus scarcity crisis and promotes the integration of organic waste management with low carbon value addition.
Collapse
Affiliation(s)
- Runhao Zhang
- School of Environment, Nanjing Normal University, Nanjing 210046, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210046, PR China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210046, PR China
| | - Chujie Qi
- School of Environment, Nanjing Normal University, Nanjing 210046, PR China
| | - Jiaxin Bai
- School of Environment, Nanjing Normal University, Nanjing 210046, PR China
| | - Li Gao
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, Victoria, 3000, Australia
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Chenhao Ma
- Jiangsu RUIDA Environmental Technology Co., Ltd, Yancheng 224400, PR China
| | - Qiao Zhou
- Jiangsu RUIDA Environmental Technology Co., Ltd, Yancheng 224400, PR China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing 210046, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210046, PR China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210046, PR China.
| |
Collapse
|
4
|
Liu Y, Wang Y, Sengupta B, Kazi OA, Martinson ABF, Elam JW, Darling SB. Pillared Laminar Vermiculite Membranes with Tunable Monovalent and Multivalent Ion Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417994. [PMID: 40026056 PMCID: PMC11983263 DOI: 10.1002/adma.202417994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Effective membrane separation of Li+ from Na+ and Mg2+ is crucial for lithium extraction from water yet challenging for conventional polymeric membranes. Two dimensional (2D) membranes with ordered laminar structures and tunable physicochemical properties offer distinctive ion-sieving capabilities promising for lithium extraction. Recently, phyllosilicates are introduced as abundant and cost-effective source materials for such membranes. However, their water instability and low inherent ion transport selectivity hinder practical applications. Herein, a new class of laminar membranes with excellent stability and tunable ion sieving is reported by incorporating inorganic alumina pillars into vermiculite interlayers. Crosslinking vermiculite flakes with alumina pillars significantly strengthens interlamellar interactions, resulting in robust water stability. Doping of Na+ before the pillaring process reverses the membrane's surface charge, substantially boosting Li+ separation from multivalent cations via electrostatic interactions. Lithium extraction is often complicated by the presence of co-existing monovalent cations (e.g., Na+) at higher concentrations. Here, by introducing excess Na+ into the membrane after the pillaring process, the separation of Li+ from monovalent cations is enhanced through steric effects. This work realizes both monovalent/multivalent and monovalent/monovalent selective ion sieving with the same membrane platform. A separation mechanism is proposed based on Donnan exclusion and size exclusion, providing new insights for membrane design for resource recovery applications.
Collapse
Affiliation(s)
- Yining Liu
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Yuqin Wang
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Bratin Sengupta
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Applied Materials DivisionArgonne National LaboratoryLemontIL60439USA
- Northwestern Center for Water ResearchNorthwestern UniversityEvanstonIL60201USA
| | - Omar A. Kazi
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Alex B. F. Martinson
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Materials Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Jeffrey W. Elam
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Applied Materials DivisionArgonne National LaboratoryLemontIL60439USA
| | - Seth B. Darling
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
5
|
Zielińska M, Bułkowska K. Use of Membrane Techniques for Removal and Recovery of Nutrients from Liquid Fraction of Anaerobic Digestate. MEMBRANES 2025; 15:45. [PMID: 39997670 PMCID: PMC11857475 DOI: 10.3390/membranes15020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025]
Abstract
This review focuses on the use of membrane techniques to recover nutrients from the liquid fraction of digestate (LFD) and emphasizes their role in promoting the principles of the circular economy. A range of membrane separation processes are examined, including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and new tools and techniques such as membrane contactors (MCs) with gas-permeable membranes (GPMs) and electrodialysis (ED). Key aspects that are analyzed include the nutrient concentration efficiency, integration with biological processes and strategies to mitigate challenges such as fouling, high energy requirements and scalability. In addition, innovative hybrid systems and pretreatment techniques are examined for their potential to improve the recovery rates and sustainability. The review also addresses the economic and technical barriers to the full-scale application of these technologies and identifies future research directions, such as improving the membrane materials and reducing the energy consumption. The comprehensive assessment of these processes highlights their contribution to sustainable nutrient management and bio-based fertilizer production.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland;
| | | |
Collapse
|
6
|
Aryanti PTP, Harsono B, Biantoro MFW, Romariyo R, Putri TA, Hakim AN, Setia GA, Saputra DI, Khoiruddin K. The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124094. [PMID: 39837149 DOI: 10.1016/j.jenvman.2025.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability. Several case studies and quantitative data have demonstrated the reduction of chemical oxygen demand (COD), total suspended solids (TSS), and biological oxygen demand (BOD), illustrating the impact of these technologies. This comprehensive review also explores recent advancements, such as the integration of Zero Liquid Discharge (ZLD) processes, providing insights into the benefits and challenges of membrane technology for POME treatment. This article aims to inform future research and guide industrial applications toward more sustainable and efficient wastewater management in the palm oil industry.
Collapse
Affiliation(s)
- Putu Teta Prihartini Aryanti
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia.
| | - Budi Harsono
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Muhammad Fadlan Warsa Biantoro
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Riyo Romariyo
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Tiara Ariani Putri
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Ahmad Nurul Hakim
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Giri Angga Setia
- Electrical Engineering, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Dede Irawan Saputra
- Electrical Engineering, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Khoiruddin Khoiruddin
- Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| |
Collapse
|
7
|
Da Silva C, Serra-Toro A, Pelizzaro V, Valentino F, Astals S, Mas F, Dosta J. Modeling nitrogen recovery and water transport in gas-permeable membranes. WATER RESEARCH 2025; 269:122771. [PMID: 39579554 DOI: 10.1016/j.watres.2024.122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
This study presents a new modeling approach for nitrogen recovery in gas-permeable membrane (GPM) contactors, including both ammonia and water transport dynamics. A distinct feature of the model is its capacity to model water transport across the membrane, which has been overlooked in most publications. Osmotic pressure differences are used to predict the behavior of ammonia and water transport in the GPM contactor. Experiments carried out to develop, test and calibrate the model examined the dynamics of ammonia and water transport through the GPM contactor at various nitrogen concentrations. Specifically, the GPM contactor was tested for nitrogen recovery from high-strength synthetic wastewaters (2.4-10.6 g N/L) at 35 °C and at pH 9. The initial volume of the trapping solution (diluted H2SO4) was 10 times lower than that of the synthetic wastewater, aiming to concentrate the recovered nitrogen. The estimated ammonia transport constant (Km) ranged between (1.2 - 2.1)·10-6 m/s and water transport constant Kw between (2.8 - 8.2)·10-10 m/(s bar). Numerical determination of the model parameters revealed high R² values, demonstrating strong agreement with experimental data.
Collapse
Affiliation(s)
- C Da Silva
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona 08028, Spain.
| | - A Serra-Toro
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - V Pelizzaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Mestre, Venice 30170, Italy
| | - F Valentino
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Mestre, Venice 30170, Italy
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - F Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona 08028, Spain
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona 08028, Spain; Water Research Institute, University of Barcelona, Barcelona 08001, Spain
| |
Collapse
|
8
|
Weisz L, Reif D, Weilguni S, Parravicini V, Saracevic E, Krampe J, Kreuzinger N. Feasibility study of electrodialysis as an ammonium reuse process for covering the nitrogen demand of an industrial wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176699. [PMID: 39366584 DOI: 10.1016/j.scitotenv.2024.176699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Electrodialysis (ED) is a cost-effective membrane technology used is a variety of fields for desalination and concentration. This feasibility study explores the potential of ED as an NH4-N recovery technology from anaerobic digestate liquor (ADL), and the use of the concentrate as a nitrogen source in an industrial wastewater treatment plant (WWTP). Three neighboring WWTPs were the focus of this study: Two municipal WWTPs A and B, operating anaerobic sludge stabilization, and a pulp & paper WWTP C, utilizing urea as a nitrogen source. Two-stage bench-scale experiments with the municipal ADL from WWTP A and WWTP B were conducted, and performance indicators were determined. A concentration of approximately 10 g NH4-N/L and 15 g NH4-N/L was obtained in stages 1 and 2, respectively. The NH4-N removal was above 85 % in all experiment, while recovery varied between 25 and 95 %. The specific energy consumption (SEC) was on average 12.9 kWh/kg NH4-N. Moreover, mass and energy balances in a model WWTP demonstrated that an ED side-stream treatment for NH4-N removal coupled with microfiltration (MF) pre-treatment results in a net energy gain, also without the added benefit of the ED concentrate as a nitrogen source.
Collapse
Affiliation(s)
- Liad Weisz
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria.
| | - Daniela Reif
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Sascha Weilguni
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Vanessa Parravicini
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Ernis Saracevic
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Jörg Krampe
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Norbert Kreuzinger
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| |
Collapse
|
9
|
Tan Q, Shen Y, Sun J, Jian T, Lu W, Wu S, Zhao Z, Lei Q, Lin H. Effects of calcium ions and polysaccharides type on transparent exopolymer particle formation and the related fouling mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175775. [PMID: 39197790 DOI: 10.1016/j.scitotenv.2024.175775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Organics and divalent cations are the primary barriers constraining the performance of membrane technology, while the interactions between them and the detailed mechanisms of their impacts are still lacking in-depth analysis. In this study, sodium alginate and xanthan gum were selected as polysaccharides models, and the formation of transparent extracellular polymer particles (TEP) was assessed to examine the effect of Ca2+ and polysaccharides type on membrane fouling from both qualitative and quantitative perspectives. The results revealed that higher Ca2+ concentrations led to a greater abundance of TEP, and the transformation of TEP microstructure is a key factor for the membrane fouling change indicated by specific filtration resistance (SFR). TEP formed by sodium alginate underwent a transformation from amorphous-TEP (a-TEP) form to particle-TEP (p-TEP), corresponding to a unimodal pattern of SFR variation. With increasing Ca2+ concentration, the molecular interactions of xanthan gum became stronger, resulting in larger fibrous a-TEP and a continuous SFR increase. According to the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, TEP formed by xanthan gum exhibited higher adhesion energy, thus causing more severe membrane fouling. The SFR variation of the TEP system can be satisfactorily explained by the conception of chemical potential change in the filtration process depicted in Flory-Huggins theory. This study is the first work to introduce models regarding chemical potential and TEP microstructure, linking the system chemical potential and TEP microstructure with membrane fouling indicated by SFR. As all, this study provided a new perspective for analyzing the polysaccharide fouling behavior via TEP determination and further enhanced the understanding through thermodynamic analysis.
Collapse
Affiliation(s)
- Qiyin Tan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahao Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Tao Jian
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Wen Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Sijin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Zengjian Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Qian Lei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
10
|
Elozeiri AAE, Dykstra JE, Rijnaarts HHM, Lammertink RGH. Multi-component ion equilibria and transport in ion-exchange membranes. J Colloid Interface Sci 2024; 673:971-984. [PMID: 38935981 DOI: 10.1016/j.jcis.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
At the interface between an ion-exchange membrane and a multi-electrolyte solution, charged species redistribute themselves to minimize the free energy of the system. In this paper, we explore the Donnan equilibrium of membranes with quaternary electrolyte (Na+/Mg2+/K+/Ca2+/Cl-) solutions, experimentally. The data was used to calculate the ion activity coefficients for six commercial cation-exchange membranes (CEMs). After setting one of the activity coefficients to an arbitrary value, we used the remaining (N-1) activity coefficients as fitting parameters to describe the equilibrium concentrations of (N) ionic species with a mean relative error of 3 %. At increasing solution ionic strengths, the equivalent ion fractions of monovalent counter-ions inside the membrane increased at the expense of the multivalent ones in alignment with the Donnan equilibrium theory. The fitted activity coefficients were employed in a transport model that simulated a Donnan dialysis experiment involving all four cations simultaneously. The arbitrary value assigned to one activity coefficient affects the calculated Donnan potential at the membrane interface. Nevertheless, this arbitrary value does not affect the prediction of the ion concentrations inside the membrane and consequently does not affect the modeled ion fluxes.
Collapse
Affiliation(s)
- Alaaeldin A E Elozeiri
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Jouke E Dykstra
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Rob G H Lammertink
- Membrane Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| |
Collapse
|
11
|
Razzaq U, Nguyen TB, Saleem MU, Le VR, Chen CW, Bui XT, Dong CD. Recent progress in electro-Fenton technology for the remediation of pharmaceutical compounds in aqueous environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174253. [PMID: 38936713 DOI: 10.1016/j.scitotenv.2024.174253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.
Collapse
Affiliation(s)
- Uzma Razzaq
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Usman Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; Department of Environmental Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Van-Re Le
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
12
|
Zhang Y, Gong H, Liu Q, Zhou S, Zhu D, Dai X. Stratified structure of membrane clogs observed in full scale cross-flow tubular ultrafiltration (UF) system: Fouling characterization and a proposed two-stage formation mechanism. WATER RESEARCH 2024; 263:122133. [PMID: 39088879 DOI: 10.1016/j.watres.2024.122133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
Membrane fouling remains a significant challenge in wastewater treatment, hindering both efficiency and lifespan. This study reports a distinct phenomenon of stratified membrane clogging observed in a full-scale cross-flow tubular ultrafiltration (UF) system treating sludge anaerobic digestion (AD) reject water. The distinct stratified structure, comprising inner and outer layers within the cake layer, has not been previously described. This research involved characterizing the filtration performance, analyzing membrane clog composition, and proposing a two-stage formation mechanism for the stratified clogs. It was revealed that higher inorganic and lower organic content in the outer layer compared to the inner layer. Acid and alkali treatments demonstrated the effectiveness of combined cleaning strategies. A mathematical model was developed to determine the critical conditions for stratified clog formation, influenced by membrane flux and cross-flow velocity (CFV). It is proposed that outer layer forms through long-term selective deposition, while the inner layer results from short-term dewatering within limited tubular space. High CFV (>2.5 m/s) prevents inner layer formation. Critical conditions for stratification occur at a flux of 18 L/m2/h with a CFV of 0.1 m/s or 65 L/m2/h with a CFV of 0.35 m/s. This study contributes a novel understanding of stratified membrane clogging, proposing a two-stage formation mechanism and identifying critical conditions, which provides insights for effective fouling control strategies and maintenance of operational efficiency for membrane systems.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hui Gong
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Qinpei Liu
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shuyan Zhou
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Danyang Zhu
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
13
|
Ruiz-Barriga P, Serralta J, Bouzas A, Carrillo-Abad J. Boosting nutrient recovery from AnMBR effluent by means of electrodialysis technology: Operating parameters assessing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121712. [PMID: 39003898 DOI: 10.1016/j.jenvman.2024.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
This work describes a comprehensive assessment of operating parameters of a bench-scale electrodialysis (ED) plant for nutrient concentration from an Anaerobic Membrane BioReactor (AnMBR) effluent. The ED bench-scale plant serves a dual purpose. Firstly, to generate a concentrated stream with a high nutrient content, and secondly, to produce high-quality reclaimed water in the diluted stream, both sourced from real wastewater coming from the effluent of an AnMBR. Two sets of experiments were conducted: 1) short-term experiments to study the effect of some parameters such as the applied current and the type of anionic exchange membrane (AEM), among others, and 2) a long-term experiment to verify the feasibility of the process using the selected parameters. The results showed that ED produced concentrated ammonium and phosphate streams using a 10-cell pair stack with 64 cm2 of unitary effective membrane area, working in galvanostatic mode at 0.24 A, and operating with an Acid-100-OT anionic exchange membrane. Concentrations up to 740 mg/L and 50 mg/L for NH4-N and PO4-P, respectively, were achieved in the concentrated stream along with removal efficiencies of 70% for ammonium and 60% for phosphate in the diluted stream. The average energy consumption was around 0.47 kWh·m-3.
Collapse
Affiliation(s)
- P Ruiz-Barriga
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera S/n, 46022 Valencia, Spain.
| | - J Serralta
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera S/n, 46022 Valencia, Spain
| | - A Bouzas
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat S/n, 46100 Burjassot, Valencia, Spain
| | - J Carrillo-Abad
- CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat S/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
14
|
Reyes Alva R, Mohr M, Zibek S. Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution. MEMBRANES 2024; 14:102. [PMID: 38786937 PMCID: PMC11123178 DOI: 10.3390/membranes14050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Membrane contactors are among the available technologies that allow a reduction in the amount of ammoniacal nitrogen released into the environment through a process called transmembrane chemical absorption (TMCA). This process can be operated with different substances acting as trapping solutions; however, strong inorganic acids have been studied the most. The purpose of this study was to demonstrate, at laboratory scale, the performance of citric acid as a capturing solution in TMCA processes for recovering ammonia as an organic fertilizer from anaerobic digestor reject water using membrane contactors in a liquid-liquid configuration and to compare it with the most studied solution, sulfuric acid. The experiments were carried out at 22 °C and 40 °C and with a feed water pH of 10 and 10.5. When the system was operated at pH 10, the rates of recovered ammonia from the feed solution obtained with citric acid were 10.7-16.5 percentage points (pp) lower compared to sulfuric acid, and at pH 10.5, the difference decreased to 5-10 pp. Under all tested conditions, the water vapor transport in the system was lower when using citric acid as the trapping solution, and at pH 10 and 40 °C, it was 5.7 times lower. When estimating the operational costs for scaling up the system, citric acid appears to be a better option than sulfuric acid as a trapping solution, but in both cases, the process was not profitable under the studied conditions.
Collapse
Affiliation(s)
- Ricardo Reyes Alva
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany;
| | - Marius Mohr
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstr. 12, 70569 Stuttgart, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstr. 12, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Liu D, Wang W, Liu D, Gao Z, Wang W. Bubble Turbulent Gas-Permeable Membrane for Ammonia Recovery from Swine Wastewater: Mass Transfer Enhancement and Antifouling Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6019-6029. [PMID: 38509821 DOI: 10.1021/acs.est.3c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Recovering ammonium from swine wastewater employing a gas-permeable membrane (GM) has potential but suffers from the limitations of unattractive mass transfer and poor-tolerance antifouling properties. Turbulence is an effective approach to enhancing the release of volatile ammonia from wastewater while relying on interfacial disturbance to interfere with contaminant adhesion. Herein, we design an innovative gas-permeable membrane coupled with bubble turbulence (BT-GM) that enhances mass transfer while mitigating membrane fouling. Bubbles act as turbulence carriers to accelerate the release and migration of ammonia from the liquid phase, increasing the ammonia concentration gradient at the membrane-liquid interface. In comparison, the ammonium mass transfer rate of the BT-GM process applied to real swine wastewater is 38% higher than that of conventional GM (12 h). Through a computational fluid dynamics simulation, the turbulence kinetic energy of BT-GM system is 3 orders of magnitude higher than that of GM, and the effective mass transfer area is nearly 3 times that of GM. Seven batches of tests confirmed that the BT-GM system exhibits remarkable antifouling ability, broadens its adaptability to complex water quality, and practically promotes the development of sustainable resource recycling.
Collapse
Affiliation(s)
- Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Wenhui Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Zibo Gao
- Key Laboratory of Bionic Engineering, (Ministry of Education of China), Jilin University, Changchun 130022, People's Republic of China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
16
|
Huang Y, Jeffrey P, Pidou M. UV/TiO 2 photocatalysis as post-treatment of anaerobic membrane bioreactor effluent for reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120628. [PMID: 38520856 DOI: 10.1016/j.jenvman.2024.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Advanced oxidation processes have been widely applied as a post-treatment solution to remove residual organic compounds in water reuse schemes. However, UV/TiO2 photocatalysis, which provides a sustainable option with no continuous chemical addition, has very rarely been studied to treat anaerobically treated effluents. In the current study, the removal of organics and nutrients from an anaerobic membrane bioreactor (AnMBR) effluent is evaluated during adsorption and photocatalysis processes under various conditions of TiO2 dose and UV intensity and compared to the effluent from an aerobic membrane bioreactor (AeMBR). The sequence for preferential adsorption on TiO2 was found to be phosphorus, inorganic carbon and then ammonia/organic carbon were found. The competing effect between the organics and nutrients, along with the low UV transmission efficiency caused by the need for high doses of TiO2, ultimately compromise the organic removal efficiency in the AnMBR permeate. TiO2 dosage was found to have a greater impact than UV intensity on improving the overall removal performance as nutrients are competing for the adsorption site but are not photodegraded. Under the same operational condition, the UV/TiO2 photocatalysis displayed a higher removal efficiency of organic matter and phosphorus in the AeMBR effluent due to a lower initial organics concentration and absence of ammonia as compared to the AnMBR effluent.
Collapse
Affiliation(s)
- Yu Huang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK430AL, United Kingdom
| | - Paul Jeffrey
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK430AL, United Kingdom
| | - Marc Pidou
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK430AL, United Kingdom.
| |
Collapse
|
17
|
Proskynitopoulou V, Garagounis I, Vourros A, Dimopoulos Toursidis P, Lorentzou S, Zouboulis A, Panopoulos K. Nutrient recovery from digestate: Pilot test experiments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120166. [PMID: 38280247 DOI: 10.1016/j.jenvman.2024.120166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
A series of technologies have been employed in pilot-scale to process digestate, i.e. the byproduct remaining after the anaerobic digestion of agricultural and other wastes, with the aim of recovering nutrients and reducing the load of solids and organics from it, hence improving the quality of digestate for potential subsequent reuse. In this case the digestate originated from a mixture of dairy and animal wastes and a small amount of agricultural wastes. It was processed by the application of several treatments, applied in series, i.e. microfiltration, ultrafiltration, reverse osmosis, selective electrodialysis and combined UV/ozonation. The initially applied membrane filtration methods (micro- and ultra-filtration) removed most of the suspended solids and macromolecules with a combined efficiency of more than 80%, while the reverse osmosis (at the end) removed almost all the remaining solutes (85-100%), producing sufficiently clarified water, appropriate for potential reuse. In the selective electrodialysis unit over 95% of ammonium and potassium were recovered from the feed, along with 55% of the phosphates. Of the latter, 75% was retrieved in the form of struvite.
Collapse
Affiliation(s)
- Vera Proskynitopoulou
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece; Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioannis Garagounis
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| | - Anastasios Vourros
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| | - Panagiotis Dimopoulos Toursidis
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| | - Souzana Lorentzou
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| | - Anastasios Zouboulis
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriakos Panopoulos
- ARTEMIS Laboratory, Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), 6th km Charilaou-Thermi Road, Thermi, P.O. Box: 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
18
|
Hofmann AH, Liesegang SL, Keuter V, Eticha D, Steinmetz H, Katayama VT. Nutrient recovery from wastewater for hydroponic systems: A comparative analysis of fertilizer demand, recovery products, and supply potential of WWTPs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119960. [PMID: 38198838 DOI: 10.1016/j.jenvman.2023.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Nutrient recovery from wastewater treatment plants (WWTPs) for hydroponic cultivation holds promise for closing the nutrient loop and meeting rising food demands. However, most studies focus on solid products for soil-based agriculture, thus raising questions about their suitability for hydroponics. In this study, we address these questions by performing the first in-depth assessment of the extent to which state-of-the-art nutrient recovery processes can generate useful products for hydroponic application. Our results indicate that less than 11.5% of the required nutrients for crops grown hydroponically can currently be recovered. Potassium nitrate (KNO3), calcium nitrate (Ca(NO3)2), and magnesium sulfate (MgSO4), constituting over 75% of the total nutrient demand for hydroponics, cannot be recovered in appropriate form due to their high solubility, hindering their separated recovery from wastewater. To overcome this challenge, we outline a novel nutrient recovery approach that emphasizes the generation of multi-nutrient concentrates specifically designed to meet the requirements of hydroponic cultivation. Based on a theoretical assessment of nutrient and contaminant flows in a typical municipal WWTP, utilizing a steady-state model, we estimated that this novel approach could potentially supply up to 56% of the nutrient requirements of hydroponic systems. Finally, we outline fundamental design requirements for nutrient recovery systems based on this new approach. Achieving these nutrient recovery potentials could be technically feasible through a combination of activated sludge processes for nitrification, membrane-based desalination processes, and selective removal of interfering NaCl. However, given the limited investigation into such treatment trains, further research is essential to explore viable system designs for effective nutrient recovery for hydroponics.
Collapse
Affiliation(s)
- Anna Hendrike Hofmann
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, Environment and Resources, Osterfelder Str. 3, 46047, Oberhausen, Germany.
| | - Sica Louise Liesegang
- University of Kaiserslautern-Landau (RPTU), Resource Efficient Wastewater Technology, 67663, Kaiserslautern, Germany.
| | - Volkmar Keuter
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, Environment and Resources, Osterfelder Str. 3, 46047, Oberhausen, Germany.
| | - Dejene Eticha
- Yara International, Research Center Hanninghof, 48249, Duelmen, Germany.
| | - Heidrun Steinmetz
- University of Kaiserslautern-Landau (RPTU), Resource Efficient Wastewater Technology, 67663, Kaiserslautern, Germany.
| | - Victor Takazi Katayama
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, Environment and Resources, Osterfelder Str. 3, 46047, Oberhausen, Germany.
| |
Collapse
|
19
|
He Y, Gao T, Gong A, Liang P. Sustained Phosphorus Removal and Enrichment through Off-Flow Desorption in a Reservoir of Membrane Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3031-3040. [PMID: 38299499 DOI: 10.1021/acs.est.3c08291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In this study, we used a membrane capacitive deionization device with a reservoir (R-MCDI) to enrich phosphorus (P) from synthetic wastewater. This R-MCDI had two small-volume electrode chambers, and most of the electrolyte was contained in the reservoir, which was circulated along the electrode chambers. Compared with conventional MCDI, R-MCDI exhibited a phosphate removal rate of 0.052 μmol/(cm2·min), approximately double that of MCDI. This was attributed to R-MCDI's utilization of OH- alternative adsorption to remove phosphate from the influent. Noticing that around 73.9% of the removed phosphate was stored in the electrolyte in R-MCDI, we proposed a novel off-flow desorption operation to enrich the removed phosphate in the reservoir. Exciting results from the multicycle experiment (∼8 h) of R-MCDI showed that the PO43--P concentration in the reservoir increased all the way from the initial 152 mg/L to the final 361 mg/L, with the increase in the P charge efficiency from 5.5 to 22.9% and the decrease in the energy consumption from 28.2 to 6.8 kW h/kg P. The P recovery performance of R-MCDI was evaluated by viewing other similar studies, which revealed that R-MCDI in this study achieved superior P enrichment with low energy consumption and that the off-flow desorption proposed here considerably simplified the operation and enabled continuous P enrichment.
Collapse
Affiliation(s)
- Yunfei He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Tie Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Ao Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Peng Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
20
|
He Y, Gong A, Osabutey A, Gao T, Haleem N, Yang X, Liang P. Emerging electro-driven technologies for phosphorus enrichment and recovery from wastewater: A review. WATER RESEARCH 2023; 246:120699. [PMID: 37820510 DOI: 10.1016/j.watres.2023.120699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
The recovery of phosphorus from wastewater is a critical step in addressing the scarcity of phosphorus resources. Electro-driven technologies for phosphorus enrichment have gathered significant attention due to their inherent advantages, such as mild operating conditions, absence of secondary pollution, and potential integration with other technologies. This study presents a comprehensive review of recent advancements in the field of phosphorus enrichment, with a specific focus on capacitive deionization and electrodialysis technologies. It highlights the underlying principles and effectiveness of electro-driven techniques for phosphorus enrichment while systematically comparing energy consumption, enrichment rate, and concentration factor among different technologies. Furthermore, the study provides a thorough analysis of the capacity of various technologies to selectively enrich phosphorus and proposes several methods and strategies to enhance selectivity. These insights offer valuable guidance for advancing the future development of electrochemical techniques with enhanced efficiency and effectiveness in phosphorus enrichment from wastewater.
Collapse
Affiliation(s)
- Yunfei He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ao Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Augustina Osabutey
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Tie Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Noor Haleem
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA.
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
21
|
Kong Q, Zhang H, Lan Y, Shi X, Fang Z, Chang Q, Liu J, Wei C. Functional graphene oxide for organic pollutants removal from wastewater: a mini review. ENVIRONMENTAL TECHNOLOGY 2023; 44:3183-3195. [PMID: 35286239 DOI: 10.1080/09593330.2022.2053754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO), an important derivative of graphene, with a variety of active oxygen-containing groups (hydroxyl, carboxyl and epoxy) on its surface is easy to be functionalized to obtain adsorbent with high adsorption capacity. To date, the adsorption behaviour of organic pollutants by functionalized GO adsorbents have been extensively studied, but there has been no systematic review regarding the functionalization method of GO for the purpose to remove organic pollutants from wastewater. The leading objective of this review is to (i) summarize the functionalization strategies of GO for organic pollutants removal (covalent functionalization and non-covalent functionalization), (ii) evaluate the adsorption performance of functional GO towards organic pollutants by taking aromatic pollutants and dyes as examples and (iii) discuss the regeneration property and adsorption mechanism of functional GO adsorbent. In addition, the problems of existing studies and future research directions are also identified briefly.
Collapse
Affiliation(s)
- Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Hongzheng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Yunlong Lan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Zilong Fang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Qi Chang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Jun Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
22
|
Wu T, Chen W, Wu M, Zhang Y. Membrane-based purification and recovery of phosphate and antibiotics by two-dimensional zeolitic nanoflakes. RSC Adv 2023; 13:18799-18811. [PMID: 37346951 PMCID: PMC10281495 DOI: 10.1039/d3ra02933f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
The pervasive presence of persistent contaminants in water resources, including phosphate and antibiotics, has attracted significant attention due to their potential adverse effects on ecosystems and human health. Adsorption membranes packed with metal-organic frameworks (MOFs) have been proposed as a potential solution to this challenge due to their high surface area to volume ratio, and the tailored functionality they can provide for selective purification. However, devising a straightforward method to enhance the stability of MOF membranes on polymer supports and manipulate their surface morphology remains challenging. In this study, we present a facile solution immersion technique to fabricate a ZIF-L adsorption membrane on commercial supports by leveraging the self-polymerization characteristics of dopamine. The simple coating methodology provides a polydopamine-lined interface that regulates the ZIF-L heteroepitaxial growth, along with tailored nanoflake morphology. Compared with crystals prepared in bulk solution, the sorbents grown on the membrane exhibit a higher saturation capacity of 248 mg g-1 of phosphate (∼80 mg phosphorus per g sorbent) and 196 mg g-1 for tetracycline in static adsorption experiments at 30 °C. Additionally, the membranes are capable of selectively removing 99.5% of the phosphate in simulant solutions comprising competitive background ions in various concentrations, and efficiently removing tetracycline. The result from the static adsorption experiments directly translates to a flow-through process, showcasing the utility of a composite membrane with a 3 μm thick active layer in practical adsorption applications. The facile solution immersion fabrication protocol introduced in this work may offer a more efficient paradigm to harness the potential of MOF composite membranes in selective adsorption and resource recovery applications.
Collapse
Affiliation(s)
- Tong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yizhou Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
23
|
Min KJ, An HJ, Park KY. Cadmium-treatment efficiency and membrane fouling during electrodialysis of wastewater discharged from zinc smelting. CHEMOSPHERE 2023; 332:138881. [PMID: 37164203 DOI: 10.1016/j.chemosphere.2023.138881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Zinc smelting wastewater contains high concentrations of Cd. Here, the treatment efficiency of Cd using electrodialysis was evaluated. In addition, scale accumulation of ion-exchange membrane (IEM) was analyzed, and fouling control was studied. The results showed that spacers effectively improved the limiting current density but accelerated foulant accumulation. The Cd-treatment efficiency improved to 85.4% without a spacer. Dissolved organic carbon (DOC) and hydrophobic DOC levels in diluted water decreased by 0.65 mg L-1 and 2.1 mg L-1, respectively; in contrast, hydrophilic DOC level increased by 1.45 mg L-1. Some of the hydrophobic DOC in the diluted water was converted to hydrophilic DOC and subsequently to low-molecular-weight (LMW) DOC. DOC level in the concentrated water did not change substantially, but the LMW fraction of the hydrophilic DOC increased. In the cation-exchange membrane, a material composed of calcium sulfate accumulated in the bottom layer, and hydroxides of divalent and trivalent ions accumulated on top of it. In contrast, the anion-exchange membrane was fouled by humic substances. In terms of fouling control, physical and acid cleaning of IEMs was more effective than the reversal operation.
Collapse
Affiliation(s)
- Kyung Jin Min
- Department of Tech Center for Research Facilities, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Hyo Jin An
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Yang Z, Wu C, Tang CY. Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment? WATER RESEARCH X 2023; 19:100172. [PMID: 36860551 PMCID: PMC9969056 DOI: 10.1016/j.wroa.2023.100172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the last few decades, developing ultra-permeable nanofiltration (UPNF) membranes has been a focus research area to support NF-based water treatment. Nevertheless, there have been ongoing debates and doubts on the need for UPNF membranes. In this work, we share our perspectives on why UPNF membranes are desired for water treatment. We analyze the specific energy consumption (SEC) of NF processes under various application scenarios, which reveals the potential of UPNF membranes for reducing SEC by 1/3 to 2/3 depending on the prevailing transmembrane osmotic pressure difference. Furthermore, UPNF membranes could potentially enable new process opportunities. Vacuum-driven submerged NF-modules could be retrofitted to existing water/wastewater treatment plants, offering lower SEC and lower cost compared to conventional NF systems. Their use in submerged membrane bioreactors (NF-MBR) can recycle wastewater into high-quality permeate water, which enables energy-efficient water reuse in a single treatment step. The ability for retaining soluble organics may further extend the application of NF-MBR for anaerobic treatment of dilute municipal wastewater. Critical analysis of membrane development reveals huge rooms for UPNF membranes to attain improved selectivity and antifouling performance. Our perspective paper offers important insights for the future development of NF-based water treatment technology, which could potentially lead to a paradigm shift in this burgeoning field.
Collapse
|
25
|
Lu YX, Yuan H, Shao Y, Chand H, Wu Y, Yang YL, Song HL. Shedding light on the transfer of tetracycline in forward osmosis through experimental investigation and machine learning modeling. CHEMOSPHERE 2023; 319:137959. [PMID: 36709845 DOI: 10.1016/j.chemosphere.2023.137959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Tetracycline in wastewater can pose adverse impacts on the environment and human health. Forward osmosis (FO) is a promising method to reject antibiotics due to its low energy demand and high rejection rate. Tetracycline rejection during FO is a complicated process. Mechanistic models have been developed to describe antibiotic rejection by the FO membrane under ideal conditions but cannot be applied to real wastewater. Herein, the effects of draw concentration, pH, and solute type on the fate of tetracycline during FO were investigated by combining experimentation, factor analysis, and artificial neural network (ANN) modeling. High draw concentrations led to high convection that favored tetracycline diffusion. Low draw pH helped reject antibiotics potentially due to the decreased tortuosity and pore size of the FO membrane. When different draw solutes were tested, both convection and electrostatic interaction exerted effects on tetracycline retention on the FO membrane surface, and steric hindrance could further affect the amount of tetracycline in the draw solution. Exploratory factor analysis (EFA) showed that tetracycline rejection was a combined result of convection, steric hindrance, and electrostatic interactions. Path analysis revealed the significant roles of initial conductivity and draw pH in tetracycline rejection. Eight representative input variables were selected from 13 observed explanatory variables using redundancy analysis (RDA), based on which an ANN was trained and successfully predicted tetracycline diffusion and transfer through the FO membrane. These results have provided practical and predictive insights in the development of FO processes for efficient treatment of pharmaceutical wastewater.
Collapse
Affiliation(s)
- Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19312, USA
| | - Yi Shao
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China
| | - Hameer Chand
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, PR China.
| |
Collapse
|
26
|
Chen N, Ni C, Wu S, Chen D, Pan B. Enhanced phosphate removal from water by hydrated neodymium oxide-based nanocomposite: Performance, mechanism, and validation. J Colloid Interface Sci 2023; 633:866-875. [PMID: 36495808 DOI: 10.1016/j.jcis.2022.11.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Phosphorus (P) control has been recognized as an imperative task to mitigate water eutrophication and settle the imminent shortage of P resources. Despite intensive effort put into this matter, it is still generally challenging for the current methods to remove and even potentially recover phosphorus (as phosphate) from complicated water matrices. To this end, we proposed a novel nanocomposite via coupling polystyrene anion exchanger (PsAX) with hydrated neodymium oxide (HNdO) nanoparticle for selective removal of phosphate. The developed nanocomposite, i.e., HNdO-PsAX, exhibited quite stable and efficient phosphate adsorption over a wide pH range of 3.0-10.0 with the maximum adsorption capacity as 85.4 mg P/g. It also showed satisfied anti-interference against various competing substances; notably, HNdO-PsAX obviously outperformed Phoslock, a commercial lanthanum-based adsorbent exclusively for phosphate sequestration, particularly under the interference of bicarbonate and humic acid, which were admitted as the paralyzing factors for Phoslock. The superior affinity of HNdO-PsAX towards phosphate, driven by the specific Nd-P inner-sphere complexation as evidenced by XPS, FT-IR, and the lattice evolution of HNdO nanoparticle, renders the nanocomposite eminently suitable for sequestrating trace phosphate. Fixed-bed treatment validated that HNdO-PsAX was capable of treating ∼11,800 bed volume of a simulated wastewater (from 2.0 to below 0.5 mg P/L), approximately 12 times higher than that of the previously reported Fe-based nanocomposite (HFO-PsAX, ∼ 900 BV); also, a satisfactory outcome in treating authentic municipal wastewater by HNdO-PsAX and the feasibility of regenerating the exhausted one by a binary NaOH-NaCl solution were recognized. This work provides a new potion of enhanced phosphorous control for surface water and wastewater.
Collapse
Affiliation(s)
- Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenhao Ni
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shuang Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Du Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
27
|
Karanasiou A, Angistali K, Plakas KV, Kostoglou M, Karabelas AJ. Ammonia recovery from anaerobic-fermentation liquid digestate with vacuum membrane distillation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
28
|
George J, Kumar VV. Polymeric membranes customized with super paramagnetic iron oxide nanoparticles for effective separation of pentachlorophenol and proteins in aqueous solution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
29
|
Istirokhatun T, Lin Y, Kinooka K, Shen Q, Zhang P, Jia Y, Matsuoka A, Kumagai K, Yoshioka T, Matsuyama H. Unveiling the impact of imidazole derivative with mechanistic insights into neutralize interfacial polymerized membranes for improved solute-solute selectivity. WATER RESEARCH 2023; 230:119567. [PMID: 36621280 DOI: 10.1016/j.watres.2023.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/20/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Domestic wastewater (DWW) contains a reservoir of nutrients, such as nitrogen, potassium, and phosphorus; however, emerging micropollutants (EMPs) hinder its applications in resource recovery. In this study, a novel class of nanofiltration (NF) membranes was developed; it enabled the efficient removal of harmful EMP constituents while preserving valuable nutrients in the permeate. Neutral (IM-N) and positively charged (IM-P) imidazole derivative compounds have been used to chemically functionalize pristine polyamide (PA) membranes to synchronously inhibit the hydrolysis of residual acyl chloride and promote their amination. Owing to their distinct properties, these IM modifiers can custom-build the membrane physicochemical properties and structures to benefit the NF process in DWW treatment. The electroneutral NF membrane exhibited ultrahigh solute-solute selectivity by minimizing the Donnan effects on ion penetration (K, N, and P ions rejection < 25%) while imposing remarkable size-sieving obstruction against EMPs (rejection ratio > 91%). Moreover, the hydrophilic IM-modifier synergistically led to enhanced water permeance of 9.2 L m-2 h-1 bar-1, reaching a 2-fold higher magnitude than that of the pristine PA membrane, along with excellent antifouling/antibacterial fouling properties. This study may provide a paradigm shift in membrane technology to convert wastewater streams into valuable water and nutrient resources.
Collapse
Affiliation(s)
- Titik Istirokhatun
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan; Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto-Tembalang, Semarang 50275, Indonesia
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ken Kinooka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Qin Shen
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Yuandong Jia
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Kazuo Kumagai
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
30
|
de Almeida R, Porto RF, Quintaes BR, Bila DM, Lavagnolo MC, Campos JC. A review on membrane concentrate management from landfill leachate treatment plants: The relevance of resource recovery to close the leachate treatment loop. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:264-284. [PMID: 35924944 PMCID: PMC9972246 DOI: 10.1177/0734242x221116212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Membrane filtration processes have been used to treat landfill leachate. On the other hand, closing the leachate treatment loop and finding a final destination for landfill leachate membrane concentrate (LLMC) - residual stream of membrane systems - is challenging for landfill operators. The re-introduction of LLMC into the landfill is typical; however, this approach is critical as concentrate pollutants may accumulate in the leachate treatment facility. From that, leachate concentrate management based on resource recovery rather than conventional treatment and disposal is recommended. This work comprehensively reviews the state-of-the-art of current research on LLMC management from leachate treatment plants towards a resource recovery approach. A general recovery train based on the main LLMC characteristics for implementing the best recovery scheme is presented in this context. LLMCs could be handled by producing clean water and add-value materials. This paper offers critical insights into LLMC management and highlights future research trends.
Collapse
Affiliation(s)
- Ronei de Almeida
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
- Ronei de Almeida, School of Chemistry,
Inorganic Processes Department, Universidade Federal do Rio de Janeiro, 149
Athos da Silveira Ramos Avenue, laboratory I-124, Rio de Janeiro, RJ 21941-909,
Brazil.
| | - Raphael Ferreira Porto
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | | | - Daniele Maia Bila
- Department of Sanitary and Environment
Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Lavagnolo
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
| | - Juacyara Carbonelli Campos
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| |
Collapse
|
31
|
Strokal M, Strokal V, Kroeze C. The future of the Black Sea: More pollution in over half of the rivers. AMBIO 2023; 52:339-356. [PMID: 36074247 PMCID: PMC9453707 DOI: 10.1007/s13280-022-01780-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The population in the Black Sea region is expected to decline in the future. However, a better understanding of how river pollution is affected by declining trends in population and increasing trends in economic developments and urbanization is needed. This study aims to quantify future trends in point-source emissions of nutrients, microplastics, Cryptosporidium, and triclosan to 107 rivers draining into the Black Sea. We apply a multi-pollutant model for 2010, 2050, and 2100. In the future, over half of the rivers will be more polluted than in 2010. The population in 74 sub-basins may drop by over 25% in our economic scenario with poor wastewater treatment. Over two-thirds of the people will live in cities and the economy may grow 9-fold in the region. Advanced wastewater treatment could minimize trade-offs between economy and pollution: our Sustainability scenario projects a 68-98% decline in point-source pollution by 2100. Making this future reality will require coordinated international efforts.
Collapse
Affiliation(s)
- Maryna Strokal
- Water Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| | - Vita Strokal
- National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 15, Kiev, 03041 Ukraine
| | - Carolien Kroeze
- Water Systems and Global Change, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
32
|
Constantinescu-Aruxandei D, Oancea F. Closing the Nutrient Loop-The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2096. [PMID: 36767462 PMCID: PMC9915181 DOI: 10.3390/ijerph20032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The recovery of plant mineral nutrients from the bio-based value chains is essential for a sustainable, circular bioeconomy, wherein resources are (re)used sustainably. The widest used approach is to recover plant nutrients on the last stage of biomass utilization processes-e.g., from ash, wastewater, or anaerobic digestate. The best approach is to recover mineral nutrients from the initial stages of biomass biorefinery, especially during biomass pre-treatments. Our paper aims to evaluate the nutrient recovery solutions from a trans-sectorial perspective, including biomass processing and the agricultural use of recovered nutrients. Several solutions integrated with the biomass pre-treatment stage, such as leaching/bioleaching, recovery from pre-treatment neoteric solvents, ionic liquids (ILs), and deep eutectic solvents (DESs) or integrated with hydrothermal treatments are discussed. Reducing mineral contents on silicon, phosphorus, and nitrogen biomass before the core biorefinery processes improves processability and yield and reduces corrosion and fouling effects. The recovered minerals are used as bio-based fertilizers or as silica-based plant biostimulants, with economic and environmental benefits.
Collapse
Affiliation(s)
| | - Florin Oancea
- Department of Bioresources, Bioproducts Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania
| |
Collapse
|
33
|
Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159283. [PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
Collapse
Affiliation(s)
- Bogna Sniatala
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tonni Agustiono Kurniawan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
34
|
Lu Y, Jin X, Li X, Liu M, Liu B, Zeng X, Chen J, Liu Z, Yu S, Xu Y. Controllable Preparation of Superparamagnetic Fe 3O 4@La(OH) 3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate. Polymers (Basel) 2023; 15:polym15010248. [PMID: 36616595 PMCID: PMC9824844 DOI: 10.3390/polym15010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Superparamagnetic Fe3O4 particles have been synthesized by solvothermal method, and a layer of dense silica sol polymer is coated on the surface prepared by sol-gel technique; then La(OH)3 covered the surface of silica sol polymer in an irregular shape by controlled in situ growth technology. These magnetic materials are characterized by TEM, FT-IR, XRD, SEM, EDS and VSM; the results show that La(OH)3 nanoparticles have successfully modified on Fe3O4 surface. The prepared Fe3O4@La(OH)3 inorganic polymer has been used as adsorbent to remove phosphate efficiently. The effects of solution pH, adsorbent dosage and co-existing ions on phosphate removal are investigated. Moreover, the adsorption kinetic equation and isothermal model are used to describe the adsorption performance of Fe3O4@La(OH)3. It was observed that Fe3O4@La(OH)3 exhibits a fast equilibrium time of 20 min, high phosphate removal rate (>95.7%), high sorption capacity of 63.72 mgP/g, excellent selectivity for phosphate in the presence of competing ions, under the conditions of phosphate concentration 30 mgP/L, pH = 7, adsorbent dose 0.6 g/L and room temperature. The phosphate adsorption process by Fe3O4@La(OH)3 is best described by the pseudo-second-order equation and Langmuir isotherm model. Furthermore, the real samples and reusability experiment indicate that Fe3O4@La(OH)3 could be regenerated after desorption, and 92.78% phosphate removing remained after five cycles. Therefore, La(OH)3 nanoparticles deposited on the surface of monodisperse Fe3O4 microspheres have been synthesized for the first time by a controlled in-situ growth method. Experiments have proved that Fe3O4@La(OH)3 particles with fast separability, large adsorption capacity and easy reusability can be used as a promising material in the treatment of phosphate wastewater or organic pollutants containing phosphoric acid functional group.
Collapse
Affiliation(s)
- Yao Lu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Xuna Jin
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Xiang Li
- Jilin Institute of Chemical Technology, School of Petrochemical Technology, Jilin 132022, China
| | - Minpeng Liu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Baolei Liu
- Jilin Institute of Chemical Technology, School of Petrochemical Technology, Jilin 132022, China
| | - Xiaodan Zeng
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
| | - Jie Chen
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
| | - Zhigang Liu
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
- Correspondence: (Z.L.); (S.Y.)
| | - Shihua Yu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
- Correspondence: (Z.L.); (S.Y.)
| | - Yucheng Xu
- Railway Transportation Department, Jilin Petrochemical Company, Jilin 132021, China
| |
Collapse
|
35
|
Saeid Hosseini S, Azadi Tabar M, F. J. Vankelecom I, F. M. Denayer J. Progress in High Performance Membrane Materials and Processes for Biogas Production, Upgrading and Conversion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Xiang Y, Zhou Y, Yao B, Sun Y, Khan E, Li W, Zeng G, Yang J, Zhou Y. Vinasse-based biochar magnetic composites: adsorptive removal of tetracycline in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8916-8927. [PMID: 35146603 DOI: 10.1007/s11356-022-19012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Highly efficient and cost-effective adsorbents for antibiotic removal are the key to mitigate pollution by industrial wastewaters. Pyrolyzing low-cost winemaking waste into biochar is a promising means for waste biomass utilization. This study assembled vinasse-derived biochar with manganese ferrite into vinasse-manganese ferrite biochar-magnetic composites (V-MFB-MCs) through simultaneous pyrolysis of waste biomass and metal (Mn and Fe) hydroxide precipitates. Batch experiments were conducted to evaluate the kinetics and isotherms of tetracycline (TC) adsorption as well as the influence of pH value, humic acid, and ionic strength. Morphological characterization showed that crystalline MnFe2O4 nanoparticles were impregnated within the framework of fabricated V-MFB-MCs. Superior TC adsorption capacity and fast pseudo-second-order kinetics could be achieved by the V-MFB-MCs-800 at pH 3.0. The TC adsorption onto V-MFB-MCs-800 was highly pH-dependent and controlled by the positive influence of ionic strength and humic acid. V-MFB-MCs-800 showed excellent adsorption performance in different natural water. Multiple interaction mechanisms including pore filling effect, π-π stacking interaction, and hydrogen bonding contribute to TC removal by V-MFB-MCs-800, which can be an innovative biowaste-derived material for industrial wastewater treatment.
Collapse
Affiliation(s)
- Yujia Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Guihua Zeng
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
37
|
Al-Juboori RA, Al-Shaeli M, Aani SA, Johnson D, Hilal N. Membrane Technologies for Nitrogen Recovery from Waste Streams: Scientometrics and Technical Analysis. MEMBRANES 2022; 13:15. [PMID: 36676822 PMCID: PMC9864344 DOI: 10.3390/membranes13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The concerns regarding the reactive nitrogen levels exceeding the planetary limits are well documented in the literature. A large portion of anthropogenic nitrogen ends in wastewater. Nitrogen removal in typical wastewater treatment processes consumes a considerable amount of energy. Nitrogen recovery can help in saving energy and meeting the regulatory discharge limits. This has motivated researchers and industry professionals alike to devise effective nitrogen recovery systems. Membrane technologies form a fundamental part of these systems. This work presents a thorough overview of the subject using scientometric analysis and presents an evaluation of membrane technologies guided by literature findings. The focus of nitrogen recovery research has shifted over time from nutrient concentration to the production of marketable products using improved membrane materials and designs. A practical approach for selecting hybrid systems based on the recovery goals has been proposed. A comparison between membrane technologies in terms of energy requirements, recovery efficiency, and process scale showed that gas permeable membrane (GPM) and its combination with other technologies are the most promising recovery techniques and they merit further industry attention and investment. Recommendations for potential future search trends based on industry and end users' needs have also been proposed.
Collapse
Affiliation(s)
- Raed A. Al-Juboori
- NYUAD Water Research Centre, New York University, Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Muayad Al-Shaeli
- Department of Engineering, University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Saif Al Aani
- The State Company of Energy Production-Middle Region, Ministry of Electricity, Baghdad 10013, Iraq
| | - Daniel Johnson
- NYUAD Water Research Centre, New York University, Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Centre, New York University, Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
38
|
Altınbaş B, Orak C, Ökten HE, Yüksel A. Novel Hybrid Adsorption-Electrodialysis (AdED) System for Removal of Boron from Geothermal Brine. ACS OMEGA 2022; 7:45422-45431. [PMID: 36530257 PMCID: PMC9753525 DOI: 10.1021/acsomega.2c06046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
A novel hybrid adsorption-electrodialysis (AdED) system to remove environmentally harmful boron from geothermal brine was designed and effective operating parameters such as pH, voltage, and flow rate were studied. A cellulose-based adsorbent was synthesized from glycidyl methacrylate (GMA) grafted cellulose and modified with a boron selective n-methyl-d-glucamine (NMDG) group and characterized with SEM-EDX, FT-IR, and TGA analyses. Batch adsorption studies revealed that cellulose-based adsorbent showed a remarkable boron removal capacity (19.29 mg/g), a wide stable operating pH range (2-10), and an adsorption process that followed the Freundlich isotherm (R 2 = 0.95) and pseudo-second-order kinetics (R 2 = 0.99). In the hybrid AdED system, the optimum operating parameters for boron removal were found to be a pH of 10, a voltage of 10 V, a flow rate of 100 mL/min, and an adsorbent dosage of 4 g/L. The presence of the adsorbent in the hybrid system increased boron removal from real geothermal brine (containing 199 ppm boron) from 7.2% to 73.3%. The results indicate that the designed AdED system performs better than bare electrodialysis for boron removal from ion-rich real geothermal brine while utilizing environmentally friendly cellulose-based adsorbent.
Collapse
Affiliation(s)
- Bekir
Fırat Altınbaş
- Department
of Chemical Engineering, Izmir Institute
of Technology, Urla35430, Izmir, Turkey
| | - Ceren Orak
- Department
of Chemical Engineering, Izmir Institute
of Technology, Urla35430, Izmir, Turkey
| | - Hatice Eser Ökten
- Department
of Environmental Engineering, Izmir Institute
of Technology, Urla35430, Izmir, Turkey
| | - Aslı Yüksel
- Department
of Chemical Engineering, Izmir Institute
of Technology, Urla35430, Izmir, Turkey
- Geothermal
Energy Research and Application Center, Izmir Institute of Technology, Urla35430, Izmir, Turkey
| |
Collapse
|
39
|
Zhang Y, Guo F. Breaking the Saturated Vapor Layer with a Thin Porous Membrane. MEMBRANES 2022; 12:1231. [PMID: 36557138 PMCID: PMC9784513 DOI: 10.3390/membranes12121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The main idea of membrane distillation is to use a porous hydrophobic membrane as a barrier that isolates vapor from aqueous solutions. It is similar to the evaporation process from a free water surface but introduces solid-liquid interfaces and solid-vapor interfaces to a liquid-vapor interface. The transmembrane mass flux of a membrane-distillation process is affected by the membrane's intrinsic properties and the temperature gradient across the membrane. It is interesting and important to know whether the evaporation process of membrane distillation is faster or slower than that of a free-surface evaporation under the same conditions and know the capacity of the transmembrane mass flux of a membrane-distillation process. In this work, a set of proof-of-principle experiments with various water surface/membrane interfacial conditions is performed. The effect and mechanism of membrane-induced evaporation are investigated. Moreover, a practical engineering model is proposed based on mathematical fitting and audacious simplification, which reflects the capacity of transmembrane flux.
Collapse
|
40
|
Layer-by-layer assembly of alginate/Ca2+ as interlayer on microfiltration substrate: Fabrication of high selective thin-film composite forward osmosis membrane for efficient heavy metal ions removal. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Wang M, Li M, Ren Z, Fei Z, Hou Y, Niu QJ. Novel macrocyclic polyamines regulated nanofiltration membranes: Towards efficient micropollutants removal and molecular separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Yang D, Chen Q, Liu R, Song L, Zhang Y, Dai X. Ammonia recovery from anaerobic digestate: State of the art, challenges and prospects. BIORESOURCE TECHNOLOGY 2022; 363:127957. [PMID: 36113813 DOI: 10.1016/j.biortech.2022.127957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen-containing wastewater and organic wastes are inevitably produced during human activities. To reduce nitrogen pollution, much energy has been used to convert ammonia nitrogen into nitrogen gas through biological nitrogen removal method. However, it needs to consume high energy again during industrial nitrogen fixation, which give rise to massive greenhouse gas (GHG) emissions. Therefore, ammonia recovery from organic wastes has attracted much attention in recent years. In this review, the advantages and disadvantages of ammonia stripping, membrane separation and struvite precipitation are discussed firstly. The ammonia stripping mechanisms, influencing factors, mass transfer process, and the latest innovative ammonia stripping techniques from the anaerobic digestate of organic wastes are critically reviewed. Additionally, a comprehensive economic analysis of different ammonia removal or recovery processes is carried out. The challenges and prospects of ammonia recovery are suggested. Ammonia recovery is of great significance for promoting nitrogen cycle, energy saving and GHG emission reduction.
Collapse
Affiliation(s)
- Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuhong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing 100082, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
43
|
Tai Y, Wang L, Hu Z, Dang Y, Guo Y, Ji X, Hu W, Li M. Efficient phosphorus recovery as struvite by microbial electrolysis cell with stainless steel cathode: Struvite purity and experimental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156914. [PMID: 35753464 DOI: 10.1016/j.scitotenv.2022.156914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) recovery from waste streams is an essential choice due to the coming global P crisis. One promising solution is to recover P by microbial electrolysis cell (MEC). Both the P recovery effectiveness and product quality are of critical importance for application. In this study, a two-chamber MEC was constructed and the effects of applied voltage, NaAc concentration, Mg/P molar ratio, N/P molar ratio, and initial P concentration on P recovery and product purity were explored. The maximum P recovery efficiency of 99.64 % and crystal accumulation rate over 106.49 g/m3-d were achieved. Struvite (MAP) was confirmed as the final recovered product and the purity obtained could reach up to 99.95 %. Besides, higher applied voltage, N/P molar ratio and initial P concentration could promote P recovery efficiency, while the purity of MAP showed correlation with applied voltage, Mg/P molar ratio, N/P molar ratio and initial P concentration. The correlation between NaAc concentration and both of the above was not very significant. A lower energy consumption of 4.1 kWh/kg P was observed at the maximum P recovery efficiency. In addition, the efficiency of P recovery from real wastewater also could reach nearly 88.25 %. These results highlight the promising potential of efficient phosphorus recovery from P-rich wastewater by MEC.
Collapse
Affiliation(s)
- Yanfeng Tai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lingjun Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenzhen Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
44
|
Gau C, Sato S, Zhang D, Ishibashi Y, Kobayashi J. Recovering nutrients and rejecting trace organic compounds in human urine by a forward osmosis-membrane distillation (FO-MD) hybrid system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1904-1914. [PMID: 36315084 DOI: 10.2166/wst.2022.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Urine is a major source of reclaimed water and fertilizer. Urine treatment involves two key processes: the recovery of nutrients and the rejection of trace organic compounds (TOrCs). In this study, we investigated the rejection of TOrCs and the recovery of nutrients in human urine using a seawater-driven forward osmosis and membrane distillation (FO-MD) hybrid system. Three 24 h experiments were conducted at draw solution temperatures of 30, 40, and 50 °C. The average rejection rates of cations, anions, and dissolved organic carbon were more than 93.7% and 79.5% in the FO-MD system and FO side, respectively. Ten types of TOrCs were detected in the feed solution, whereas none were detected in the product water, indicating that the TOrCs were completely rejected. The precipitates, i.e., the recovered nutrients in the FO side, were extremely close to magnesium ammonium phosphate (struvite, MgNH4PO4·6H2O), according to their electron microscopic images, elemental composition, and X-ray diffraction spectra, and it was estimated that approximately 85% of the nutrients in the feed solution were recovered. The rejection and recovery efficiencies were unaffected by the draw solution temperature. These results indicate the potential for the sustainable use of FO-MD-based treatments for human urine.
Collapse
Affiliation(s)
- Chihiro Gau
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-Ku, Kumamoto 862-8502, Japan E-mail:
| | - Satoshi Sato
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-Ku, Kumamoto 862-8502, Japan E-mail:
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-Ku, Kumamoto 862-8502, Japan E-mail:
| | - Yasuhiro Ishibashi
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-Ku, Kumamoto 862-8502, Japan E-mail:
| | - Jun Kobayashi
- Faculty of Environmental and Symbiotic Science, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-Ku, Kumamoto 862-8502, Japan E-mail:
| |
Collapse
|
45
|
Xiang W, Yao J, Velizarov S, Han L. Unravelling the fouling behavior of anion-exchange membrane (AEM) by organic solute of varying characteristics. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Zheng Y, Wan Y, Zhang Y, Huang J, Yang Y, Tsang DCW, Wang H, Chen H, Gao B. Recovery of phosphorus from wastewater: A review based on current phosphorous removal technologies. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 53:1148-1172. [PMID: 37090929 PMCID: PMC10116781 DOI: 10.1080/10643389.2022.2128194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
Collapse
Affiliation(s)
- Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yongshan Wan
- National Health and Environmental Effects Research Laboratory, US EPA, Gulf Breeze, Florida, USA
| | - Yue Zhang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Jinsheng Huang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Yicheng Yang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
47
|
Gonzales RR, Sasaki Y, Istirokhatun T, Li J, Matsuyama H. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
A novel electrocoagulation-membrane stripping hybrid system for simultaneous ammonia recovery and contaminant removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
In-situ aeration-assisted polydopamine/polyethyleneimine copolymerization and deposition for rapid and uniform membrane modification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Righetto I, Al-Juboori RA, Kaljunen JU, Huynh N, Mikola A. Nitrogen Recovery from Landfill Leachate Using Lab- and Pilot-Scale Membrane Contactors: Research into Fouling Development and Membrane Characterization Effects. MEMBRANES 2022; 12:membranes12090837. [PMID: 36135856 PMCID: PMC9503888 DOI: 10.3390/membranes12090837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/13/2023]
Abstract
Membrane contactor technology affords great opportunities for nitrogen recovery from waste streams. This study presents a performance comparison between lab- and pilot-scale membrane contactors using landfill leachate samples. Polypropylene (PP) and polytetrafluoroethylene (PTFE) fibers in different dimensions were compared in terms of ammonia (NH3) recovery on a lab scale using a synthetic ammonium solution. The effect of pre-treating the leachate with tannin coagulation on nitrogen recovery was also evaluated. An ammonia transfer on the lab and pilot scale was scrutinized using landfill leachate as a feed solution. It was found that PTFE fibers performed better than PP fibers. Among PTFE fibers, the most porous one (denoted as M1) had the highest NH3 flux of 19.2 g/m2.h. Tannin pre-treatment reduced fouling and increased NH3, which in turn improved nitrogen recovery. The mass transfer coefficient of the lab-scale reactor was more than double that of the pilot reactor (1.80 × 10-7 m/s vs. 4.45 × 10-7 m/s). This was likely attributed to the difference in reactor design. An analysis of the membrane surface showed that the landfill leachate caused a combination of inorganic and organic fouling. Cleaning with UV and 0.01 M H2O2 was capable of removing the fouling completely and restoring the membrane characteristics.
Collapse
Affiliation(s)
- Ilaria Righetto
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| | - Raed A. Al-Juboori
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
- Correspondence:
| | - Juho Uzkurt Kaljunen
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| | - Ngoc Huynh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 11000, Aalto, FI-00076 Espoo, Finland
| | - Anna Mikola
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| |
Collapse
|