1
|
Hu T, Lü F, Zhang H, Yuan Z, He P. Wet oxidation technology can significantly reduce both microplastics and nanoplastics. WATER RESEARCH 2024; 263:122177. [PMID: 39111211 DOI: 10.1016/j.watres.2024.122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
For the resource recovery of biomass waste, it is a challenge to simultaneously remove micro-/nano-plastics pollution but preserve organic resources. Wet oxidation is a promising technology for valorization of organic wastes through thermal hydrolysis and oxidation. This might in turn result in the degradation of microplastics in the presence of oxygen and high temperatures. Based on this hypothesis, this study quantified both microplastics and nanoplastics in an industrial-scale wet oxidation reactor from a full-size coverage perspective. Wet oxidation significantly reduced the size and mass of individual microplastics, and decreased total mass concentration of microplastics and nanoplastics by 94.8 % to 98.6 %. This technology also reduced the micro- and nanoplastic shapes and polymer types, resulting in a complete removal of fibers, clusters, polypropylene (PP) and poly(methyl methacrylate) (PMMA). The present study confirms that wet oxidation technology is effective in removing microplastics and nanoplastics while recovering organic waste.
Collapse
Affiliation(s)
- Tian Hu
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhiwen Yuan
- Ningbo Kaseen Ecology Technology Co., Ltd., Ningbo 315000, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Gou L, Dai L, Wang Y. Coupling of struvite crystallization and aqueous phase recirculation for hydrochar upgrading and nitrogen recovery during hydrothermal carbonization of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172682. [PMID: 38663600 DOI: 10.1016/j.scitotenv.2024.172682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Recycling of aqueous phase (AP) as a by-product after hydrothermal carbonization (HTC) of sewage sludge (SS) has been of interest. The combination of magnesium ammonium phosphate (MAP) or the so-called struvite crystallization and aqueous phase (AP) recirculation has great potential for resource recovery and hydrochar enhancement. In this study, both the aqueous phase of HTC after MAP recovery of NH4+-N (AP-MAP) and the untreated aqueous phase of HTC (AP-HTC) were reused for HTC of fresh SS, and both aqueous phases were recycled four times. The effects of the two AP cycles on the properties of AP and hydrochar at 200, 230, and 260 °C were studied, and the effect of temperature on the two AP cycles was similar. The hydrochar produced by the AP-MAP cycle had lower nitrogen content than that of the AP-HTC cycle due to the low ammonia nitrogen (NH4+-N) content, and the combustion performance was improved. MAP recovery reduces the accumulation of NH4+-N in the AP cycle and MAP is also a high-quality fertilizer. Therefore, the combination of MAP recovery and AP recycling provides a feasible technical approach for resource utilization, eutrophic AP treatment, and production of high-quality hydrochar in the HTC process of SS.
Collapse
Affiliation(s)
- Le Gou
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China
| | - Liyi Dai
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| | - Yuanyuan Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
3
|
Hui W, Zhou J, Jin R. Amino acid preparation and recovery from refractory sludge by the oxidative acid hydrolysis process. ENVIRONMENTAL TECHNOLOGY 2024; 45:1989-1999. [PMID: 36519308 DOI: 10.1080/09593330.2022.2159541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
After the anaerobic digestion of excess sludge, dissolved organic matter is absorbed and used, but the treatment of refractory sludge is a headache. The oxidative acid (performic acid and hydrochloric acid) hydrolysis process can effectively prepare amino acids from refractory sludge. During the preparation process, insoluble proteins in sludge were turned into soluble proteins and peptides. All of them eventually hydrolyse into amino acids. The optimum conditions in the single-factor experiment were as follows: a temperature of 110°C, a reaction time of 24 h, and a hydrochloric acid (HCl) concentration of 6 M. The results showed that the maximum total yield of amino acids from refractory sludge was 94.76%. In the orthogonal experiment, the maximum total yield of amino acids was 97.20% under the optimum conditions of a temperature of 113.45°C, a reaction time of 26.79 h, and 5.92 M HCl. The recovery rate of purity amino acids was 17.16 g per 100 g of dry sludge. The recovery rate of the hydrochloric acid was approximately 70%. There were 17 kinds of amino acids in the hydrolysate, which could be used as deodorants, food additives, preservatives, and corrosion inhibitors. This new technology is expected to be very effective in the treatment of refractory sludge.
Collapse
Affiliation(s)
- Wenlong Hui
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| |
Collapse
|
4
|
Romero L, Weng S, Oulego P, Collado S, Marcet I, Díaz M. Hydrolyzed sewage sludge as raw bio-based material for hermetic bag production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:31-43. [PMID: 38006756 DOI: 10.1016/j.wasman.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
This study aimed to assess the potential of sewage sludge, a significant residue of wastewater treatment plants (WWTPs), as a sustainable resource for producing a bio-based material for hermetic bags (BMHB), in order to reduce the dependency on petroleum-derived plastics. The approach involved the application of thermal hydrolysis to solubilize sewage sludge, and it systematically examined critical process parameters, including temperature (120-150 °C), residence time (1-4 h), and medium pH (6.6-10). Results revealed that alkaline thermal hydrolysis significantly enhanced biomolecule solubilization, particularly proteins (289 ± 1 mg/gVSSo), followed by humic-like substances (144 ± 6 mg/gVSSo) and carbohydrates (49 ± 2 mg/gVSSo). This condition also increased the presence of large-and medium-sized compounds, thereby enhancing BMHB mechanical resistance, with puncture resistance values reaching 63.7 ± 0.2 N/mm. Effective retention of UV light within the 280-400 nm range was also observed. All BMHB samples exhibited similar properties, including water vapor permeability (WVP) (∼3.9 g * mm/m2 * h * kPa), hydrophilicity (contact angles varied from 35.4° ± 0.3 to 64° ± 5), solubility (∼95%), and thermal stability (∼74% degradation at 700 °C). Notably, BMHB proved to be an eco-friendly packaging for acetamiprid, an agricultural pesticide, preventing direct human exposure to harmful substances. Testing indicated rapid pesticide release within 5 min of BMHB immersion in water, with only 5% of BMHB residues remaining after 20 min. Additionally, the application of this material in soil was considered safe, as it met regulatory limits for heavy metal content and exhibited an absence of microorganisms.
Collapse
Affiliation(s)
- Luis Romero
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Shihan Weng
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain.
| |
Collapse
|
5
|
Romero L, Oulego P, Collado S, Díaz M. Advanced thermal hydrolysis for biopolymer production from waste activated sludge: Kinetics and fingerprints. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118243. [PMID: 37276624 DOI: 10.1016/j.jenvman.2023.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Waste activated sludge (WAS) is the main residue of wastewater treatment plants, which can be considered an environmental problem of prime concern due to its increasing generation. In this study, a non-energetic approach was evaluated in order to use WAS as a renewable resource of high value-added products. For this reason, WAS was treated by thermal hydrolysis, H2O2 oxidation and advanced thermal hydrolysis (ATH) promoted by H2O2. The influence of temperature, H2O2 concentration and dosing strategy on biomolecule production (proteins and carbohydrates), size distribution (fingerprints) and various physico-chemical parameters (VSS, total and soluble COD, soluble TOC, pH and colour) was studied. The results revealed a synergistic effect between TH and H2O2 oxidation, which led to a significant increase in the production of both proteins and carbohydrates. In this sense, the concentration of proteins and carbohydrates obtained during TH at 85 °C for120 min was found to be 1376 ± 9 mg/L (121 mg/gVSSo) and 208 ± 4 mg/L (18 mg/gVSSo), respectively. However, in the presence of 4.5 mM H2O2/gVSSo under the same process conditions, the concentrations of proteins and carbohydrates exhibited a significant increase of 1.9-fold and 3.1-fold, respectively. Besides, the addition of H2O2 promoted the transformation of hydrophobic compounds, such as proteins and or lipids, into hydrophilic compounds, which presented low and medium sizes. An increase in temperature improved the solubilization rate and the yield of biomolecules significantly. Besides, the analysis of the kinetics related to the dosing strategy of H2O2 suggested the existence of two fractions during WAS solubilization, one of them being easily oxidizable, whereas the other one was more refractory to oxidation. Thus, the value of kH2O2 for the first addition of 1 mM H2O2/g VSSo was 0.020 L0.4 mgH2O2-0.4 min-1, while it was 4.3 and 8 times lower for the second and third additions, respectively.
Collapse
Affiliation(s)
- Luis Romero
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería s/n, E-33071, Oviedo, Spain.
| |
Collapse
|
6
|
Wang Y, Yang T, Ding L, Wei R, Qian L, Long H, Xu CC. Subcritical hydrothermal oxidation of semi-dry ash from iron ore sintering flue gas desulfurization: Experimental and kinetic studies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 160:156-164. [PMID: 36827884 DOI: 10.1016/j.wasman.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Realization of low temperature and high efficiency oxidation of CaSO3 is the key to solve the issue of ecological hazards caused by semi-dry sintering flue gas desulfurization ash. The subcritical hydrothermal technology was employed for the oxidation of CaSO3, achieving 89.83% of CaSO3 at 180 °C, 2 MPa for 120 min with a solid-to-liquid ratio of 1:20. The macroscopic oxidation kinetics of CaSO3 in the subcritical hydrothermal reaction system was investigated. A mathematical model was established, incorporating the intrinsic reaction, CaSO3 dissolution, oxygen diffusion and CaSO4 precipitation. It was concluded that the macroscopic oxidation of CaSO3 was co-controlled by the oxygen diffusion and CaSO4 precipitation. Subcritical hydrothermal technology promises not only higher efficiency, but more importantly, potentially "one-step" preparation of CaSO4 whiskers, enabling cost-effective and high value-added resource utilization of the semi-dry FGD ash.
Collapse
Affiliation(s)
- Yifan Wang
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang road, Ma'anshan, Anhui province 243032, China; Department of Chemical/Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, 1151 Richmond St, London, Ontario N6A 5B9, Canada
| | - Tao Yang
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang road, Ma'anshan, Anhui province 243032, China
| | - Long Ding
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang road, Ma'anshan, Anhui province 243032, China
| | - Rufei Wei
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang road, Ma'anshan, Anhui province 243032, China
| | - Lixin Qian
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang road, Ma'anshan, Anhui province 243032, China
| | - Hongming Long
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang road, Ma'anshan, Anhui province 243032, China; Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of Education, No. 59 Hudong road, Ma'anshan, Anhui province 243002, China.
| | - Chunbao Charles Xu
- Department of Chemical/Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, 1151 Richmond St, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
7
|
García M, Collado S, Oulego P, Díaz M. The wet oxidation of aqueous humic acids. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122402. [PMID: 32298859 DOI: 10.1016/j.jhazmat.2020.122402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
Humic acids are highly distributed in aqueous environments. This article examines in depth the advanced oxidation of humic acid aqueous solutions, in order to understand more complex oxidation processes such as those of the sewage sludge or landfill leachate, or the matrix effects triggered by the humic acids of natural organic matter (NOM) in the oxidation of other aqueous compounds as herbicides. Humic acids were efficiently oxidized; higher temperatures (180-220 °C) involved higher mineralization, the formation of intermediates with lower colour and also led to a higher concentration of organic acids at the end of the treatment, particularly acetic and oxalic ones. Nevertheless, humic acid wet oxidation was not sensitive to changes in the pressure, at least in the range tested (65-95 bar), but the initial pH (4-13) was found to be a key factor. Thus, alkaline media accelerated the humic acid removal, but more refractory intermediates were generated, and the organic acids, excepting malic acid, were more stable than in neutral or acidic media. Eventually, a lumped kinetic model was proposed and successfully fitted to the experimental data, including the effect of all the operating variables studied.
Collapse
Affiliation(s)
- Manuel García
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n., E-33071, Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n., E-33071, Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n., E-33071, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n., E-33071, Oviedo, Spain.
| |
Collapse
|
8
|
Urrea JL, García M, Collado S, Oulego P, Díaz M. Sludge hydrothermal treatments. Oxidising atmosphere effects on biopolymers and physical properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:284-290. [PMID: 29096142 DOI: 10.1016/j.jenvman.2017.10.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/15/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
In this work, the role of an oxidising atmosphere during the hydrothermal treatment of an activated sludge at 160 °C and 40 bar, was determined. The composition and molecular weight sizes of the soluble biopolymers generated during the sludge treatment in presence (wet oxidation "WO") or absence (thermal hydrolysis "TH") of oxygen were compared. Likewise, the characteristics of organic material, settleability, colour and pH of the treated sludge during both treatments were analysed. The thermal treatment in presence of oxygen provided better results in terms of solubilisation, settleability and mineralisation. WO initially favoured a more intense cellular lysis, causing a higher degree of solubilisation than that achieved by TH. Either in presence or absence of oxygen, thermal treatments caused a marked worsening of the settleability of the sludge. However, the degradation of biopolymers during WO led subsequently to an improvement of the settleability properties for longer reaction times. Both treatments caused a fast solubilisation of biopolymers at the beginning by effect of the release of extracellular and intracellular material from sludge. Subsequently, the presence of oxygen produced a significant decrease in the concentration of those biopolymers. In contrast, the proteins were the only one biopolymer that was degraded during TH.
Collapse
Affiliation(s)
- José L Urrea
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Manuel García
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, E-33071 Oviedo, Spain.
| |
Collapse
|
9
|
Hong PN, Honda R, Noguchi M, Ito T. Optimum selection of extraction methods of extracellular polymeric substances in activated sludge for effective extraction of the target components. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Yousefifar A, Baroutian S, Farid MM, Gapes DJ, Young BR. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review. WATER RESEARCH 2017; 123:607-622. [PMID: 28709105 DOI: 10.1016/j.watres.2017.06.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
The management and disposal of solid waste is of increasing concern across the globe. Hydrothermal processing of sludge has been suggested as a promising solution to deal with the considerable amounts of sludge produced worldwide. Such a process not only degrades organic compounds and reduces waste volume, but also provides an opportunity to recover valuable substances. Hydrothermal processing comprises two main sub-processes: wet oxidation (WO) and thermal hydrolysis (TH), in which the formation of various free radicals results in the production of different intermediates. Volatile fatty acids (VFAs), especially acetic acid, are usually the main intermediates which remain as a by-product of the process. This paper aims to review the fundamental mechanism for hydrothermal processing of sludge, and the formation of different free radicals and intermediates therein. In addition, the proposed kinetic models for the two processes (WO and TH) from the literature are reviewed and the advantages and disadvantages of each model are outlined. The effect of mass transfer as a critical component of the design and development of the processes, which has been neglected in most of these proposed models, is also reviewed, and the effect of influencing parameters on the processes' controlling step (reaction or mass transfer) is discussed.
Collapse
Affiliation(s)
- Azadeh Yousefifar
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Saeid Baroutian
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand.
| | - Mohammed M Farid
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand.
| | - Daniel J Gapes
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand
| | - Brent R Young
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Dong H, Zhang K, Han X, Du B, Wei Q, Wei D. Achievement, performance and characteristics of microbial products in a partial nitrification sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation. CHEMOSPHERE 2017; 183:212-218. [PMID: 28549327 DOI: 10.1016/j.chemosphere.2017.05.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
This study was carried out to evaluate achievement, performance and characteristics of microbial products in a partial nitrification sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation (anammox). After 100 days long-term operation, the effluent NO2--N/NH4+N ratio of the reactor was average at 1.3 and NO3--N concentration was low by controlling low dissolved oxygen (DO) concentration, which was considered as the ideal influent for anammox. Specific oxygen uptake rate (SOUR) implied that (SOUR)NH4 and (SOUR)NO2 of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) in sludge changed from 21.73 ± 0.52 and 27.39 ± 0.50 O2/g SS/h to 36.37 ± 0.85 and 12.04 ± 0.17 O2/g SS/h, respectively. The main compositions of extracellular polymeric substances (EPS) and soluble microbial products (SMP), including proteins (PN) and polysaccharides (PS), were both reduced during the achievement of partial nitrification. Three-dimensional excitation-emission matrix (3D-EEM) and synchronous fluorescence spectra revealed that PN-like, fulvic acid-like and humic acid-like substances were identified in both EPS and SMP, and their fluorescence intensities changed significantly after partial nitrification achievement. It was found from typical cycle that free ammonia (FA) may play a significant role on inhibiting the activity of NOB. The obtained results could provide more information on the performance of partial nitrification through the characteristics of microbial products when treating high ammonium wastewater.
Collapse
Affiliation(s)
- Heng Dong
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Keyi Zhang
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Xiao Han
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
12
|
García M, Urrea JL, Collado S, Oulego P, Díaz M. Protein recovery from solubilized sludge by hydrothermal treatments. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:278-287. [PMID: 28601580 DOI: 10.1016/j.wasman.2017.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/04/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
New alternatives for sludge management have been developed in recent years, with hydrothermal treatments being one of the most attractive ones. Even though many studies have been made on the application of hydrothermal treatments as pre-treatment or end-line technologies for sludge stabilisation and/or minimization, there is a lack of knowledge about the products generated during the process and its characteristics. This information is a crucial step for the assessment of the recovery of valuable products of the sludge, mainly proteins, humic acids and carbohydrates, which can considerably improve the economic balance of the hydrothermal treatment. This work assesses, for the first time, the potential of hydrothermally hydrolysed sludge as renewable source for proteins recovery. For this purpose, firstly, the concentrations and properties of the main soluble biopolymers generated during the hydrothermal treatment, either in presence (wet oxidation, WO) or absence (thermal hydrolysis, TH) of oxygen, were measured, determining the reaction time necessary for a maximum solubilisation. Peak concentrations of 7.7g/l (0.291g/gVSSo) of proteins for WO and 7.2g/l (0.272g/gVSSo) for TH, were achieved at 87min of experiment. Afterwards, different separation methods, usually applied at industrial scale, were assessed for the separation of protein from the hydrolysed sludge, in terms of protein recovery and selectivity. Ammonium sulphate addition was found to be the best separation method, achieving 87% and 86% of protein recovery for TH and WO samples respectively, and the highest selectivity. Although further studies are required in order to achieve complete protein purification, a new perspective in sludge management is now open, by recovering valuable compounds.
Collapse
Affiliation(s)
- Manuel García
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería, s/n. E-33071, Oviedo, Spain
| | - José L Urrea
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería, s/n. E-33071, Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería, s/n. E-33071, Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería, s/n. E-33071, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería, s/n. E-33071, Oviedo, Spain.
| |
Collapse
|
13
|
Suárez-Iglesias O, Urrea JL, Oulego P, Collado S, Díaz M. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:921-934. [PMID: 28187943 DOI: 10.1016/j.scitotenv.2017.01.140] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Sewage sludge is considered a costly waste, whose benefit has received a lot of attention for decades. In this sense, a variety of promising technologies, such as thermal hydrolysis and wet oxidation, are currently employed. Thermal hydrolysis is used as a pretreatment step ahead of anaerobic digestion processes and wet oxidation is intended for the solubilization and partial oxidation of the sludge. Such processes could be utilized for solubilizing polysaccharides, lipids, fragments of them and phosphorus (thermal hydrolysis) or for generating carboxylic acids (wet oxidation). This article compiles the available information on the production of valuable chemicals by these techniques and comments on their main features. Temperature, reaction duration times and sludge characteristics influence the experimental results significantly, but only the first two variables have been thoroughly studied. For thermal hydrolysis, a rise of temperature led to an increase in the solubilized biomolecules, but also to a greater decomposition of proteins and undesirable reactions of carbohydrates with themselves or with proteins. At constant temperature, the amounts of substances that can be recovered tend to become time independent after several minutes. Diluted and activated sludges seem to be more readily hydrolyzable than the thickened and primary ones. For wet oxidation, the dependence of the production of carboxylic acids with temperature and time is not simple: their concentration can increase, decrease or go through a maximum. At high temperatures, acetic acid is the main carboxylic acid obtained. Concentrated, fermented and secondary sludge seem to be more suitable for yielding higher amounts of acid than diluted, undigested and primary ones.
Collapse
Affiliation(s)
- Octavio Suárez-Iglesias
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - José Luis Urrea
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, c/Julián Clavería s/n, E-33071 Oviedo, Spain.
| |
Collapse
|