1
|
Hung MD, Nga NT, Jung HJ, Shin YJ, Lee BC, Cho HS. Perfluoroalkyl substances (PFASs) in the major rivers of Korea: Distribution in the environment and bioaccumulation in crucian carp fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179483. [PMID: 40280104 DOI: 10.1016/j.scitotenv.2025.179483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The concentration of thirteen PFASs in water (n = 21), sediment (n = 21) and crucian carp fish muscle samples (n = 57) collected from three major rivers of Korea, including Namhan River, Yeongsan River and Nakdong River in June 2019 were determined to assess the potential risk of PFASs to aquatic life using bio-accumulation factor (BAF). The mean PFASs concentration in water (ng/L) were in order Nakdong River (69.63) > Yeongsan River (51.47) > Namhan River (13.30). The detection frequency rate of the long-chain PFASs, include PFHxA, PFOA and PFOS were high in river water samples. The PFASs in sediment samples were observed at low concentrations (<2 ng/g dw) in three rivers. The sediment/water partition coefficient (Kd) values of PFHpA were greatest in three rivers. The bioaccumulation factor (BAF) of PFHxA, PFUnDA and PFHpA were dominant in crucian carp fish samples. However, all the BAF levels for the carp samples were found to be <2000 (L/kg). Although the BAF values in crucian carp fish did not exceed the bioaccumulative level, several high long-chain PFASs concentrations were observed in water samples from surrounding hotspot sampling sites in Nakdong and Yeongsan River. Further study and monitoring of PFASs in various fish species and/or trophic level investigations are necessary to assess the impact of these pollutants on the river ecosystems.
Collapse
Affiliation(s)
- Mai Duc Hung
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Nguyen Thi Nga
- Big Data Fishery Resource Management Interdisciplinary Program, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyeon Ji Jung
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Yu-Jin Shin
- Environmental Risk Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Byoung-Cheun Lee
- Environmental Risk Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Hyeon Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
2
|
Meunier M, Hanana H, Houde M, Rosabal M, Sauvé S, Verreault J. Impact of a primary wastewater effluent on liver lipid metabolism and oxidative stress in St. Lawrence River Northern pike. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179349. [PMID: 40245516 DOI: 10.1016/j.scitotenv.2025.179349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Municipal wastewater effluents (MWWEs) contain complex chemical mixtures that can affect the health of exposed aquatic organisms. Montreal's (Quebec, Canada) primary MWWE is one of the largest in North America and is a known point of release of halogenated flame retardants (HFRs) and per- and polyfluoroalkyl substances (PFAS) into the St. Lawrence River ecosystem. The objective of this study was to investigate hepatic lipid metabolism and oxidative stress in St. Lawrence River Northern pike (Esox lucius) environmentally exposed to Montreal's MWWE. A suite of HFRs and PFAS were also measured in pike liver. Among the 76 PFAS that were investigated in pike, 18 compounds were analyzed for the first time in St. Lawrence River fish, although only three of these could be detected and quantified. Concentrations of ∑76PFAS in liver of female pike collected downstream of the effluent outfall were 32 % lower than those collected upstream. In male pike liver, 0.3-fold lower mRNA levels of peroxisome proliferator-activated receptor alpha (pparα), a regulator of lipid metabolism, and 0.7-fold lower levels of phospholipase A2 mRNA (pla2g4ab), involved in lysophosphatidylcholine and arachidonic acid metabolism, were observed. Additionally, there was a 17 % decrease in relative abundance of the ∑1528lipid at the downstream site for males. Higher percentages of contribution to the ∑1528lipid were noted for ∑1103membrane lipids (26 % higher) and ∑2steroid lipids (50 % higher) in male pike collected at the downstream site. Moreover, negative correlations between ∑34PBDE concentrations and pparα mRNA levels as well as between ∑2steroid lipids and pla2g4ab mRNA levels were determined in male pike. These findings suggest that chronic environmental exposure of a top predator fish to a primary MWWE may have sex-specific effects on liver lipid content and composition as well as the transcription of genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Mélanie Meunier
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada; Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Houda Hanana
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Maikel Rosabal
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Sébastien Sauvé
- Département de chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Zhang N, Grabicová K, Horký P, Toušová Z, Douda K, Linhartová Z, Turek J, Pšenička M, Hilscherová K, Grabic R, Randák T. Early life development and sex determination of brown trout affected by treated wastewater discharge. ENVIRONMENTAL RESEARCH 2025; 271:121135. [PMID: 39956416 DOI: 10.1016/j.envres.2025.121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Artificial conditions limit the ability of laboratory studies to describe the complex effects of polluted environments on aquatic life. This study aimed to evaluate the impacts of treated wastewater discharge on the survival, growth, and sex ratio balance of the population of brown trout (Salmo trutta m. fario) in situ. Five floating incubators with 1000 eggs each were placed in the upstream reference and treated wastewater-affected sites in the Czech Republic for approximately three months. The hatched fish were grown in a natural environment for nearly one year. Water quality, including nutrients, temperature, pharmaceutical and personal care products, biological effects by bioassays and fish mortality, metabolic rate, and growth, were measured regularly. Up to 72 pharmaceutical and personal care products (7400-23000 ng/sampler) were detected in the passive samplers deployed downstream of the sewage treatment plant effluent. In vitro bioassays of the sampler extracts indicated elevated oestrogenic effects, transthyretin binding inhibition, and aryl hydrocarbon-mediated and androgenic potencies, showing endocrine-disrupting potential at the polluted site. The cumulated mortality of brown trout in the exposed group (9.67%) was significantly higher (p < 0.05) than in the control group (5.16%). In addition, the body size, growth, and metabolic rate of exposed fish were significantly lower (p < 0.05). The sex ratio of brown trout in the effluent-affected stretch was imbalanced, and sterile individuals were detected after several months of natural development in the stream. The observed effects of treated wastewater on the early developmental stages of aquatic wildlife could be connected to the development and readiness of adult individuals and, consequently, to the sustainability of freshwater ecosystems. Applying the hatching apparatus used in fishery practices, followed by comparing mortality, development, and sex with reference localities, seems to be a promising biomonitoring approach that can indicate hotspots for in-depth investigation and risk assessment.
Collapse
Affiliation(s)
- Ning Zhang
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Pavel Horký
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Praha 6, Kamýcká 129, 165 00, Suchdol, Czech Republic
| | - Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Karel Douda
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Praha 6, Kamýcká 129, 165 00, Suchdol, Czech Republic
| | - Zuzana Linhartová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jan Turek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Martin Pšenička
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
4
|
Junaid M, Liu S, Yue Q, Wei M, Wang J. Trophic transfer and interfacial impacts of micro(nano)plastics and per-and polyfluoroalkyl substances in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133243. [PMID: 38103288 DOI: 10.1016/j.jhazmat.2023.133243] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Both micro(nano)plastics (MNPs) and per-and polyfluoroalkyl substances (PFAS) possessed excellent properties and diverse applications, albeit gained worldwide attention due to their anthropogenic, ubiquitous, degradation resistant nature and a wide variety of ecological and human health impacts. MNPs and PFAS discharged from discrete sources and extensively bioaccumulated in the food chain through trophic transfer and their long-distance transport potential assist in their dispersal to pristine but vulnerable ecosystems such as Antarctica. They inevitably interacted with each other in the environment through polarized N-H bond, hydrogen bond, hydrophobic interaction, and weak bond energies such as Van der Waals, electrostatic, and intramolecular forces. During co-exposure, they significantly impact the uptake and bioaccumulation of each other in exposed organisms, which may increase or decrease their bioavailable concentration. Hence, this review compiles the studies on the co-occurrence and adsorption of PFAS and MNPs in the environment, their trophic transfer, combined in vivo and in vitro impacts, and factors influencing the MNP-PFAS interface. A significant proportion of studies were conducted in China, Europe, and the US, while studies are rare from other parts of the world. Freshwater and marine food chains were more prominently investigated for trophic transfers compared to terrestrial food chains. The most notable in vivo effects were growth and reproductive impairment, oxidative stress, neurotoxicity and apoptosis, DNA damage, genotoxicity and immunological responses, behavioral and gut microbiota modifications, and histopathological alterations. Cellular uptake of PFAS and MNPs can impact cell survival and proliferation, photosynthesis and membrane integrity, ROS generation and antioxidant responses, and extracellular polymeric substances (EPS) release in vitro. MNP characteristics, PFAS properties, tissue and species-dependent distribution, and environmental medium properties were the main factors influencing the PFAS and MNP nexus and associated impacts. Last but not least, gaps and future research directions were highlighted to better understand the interplay between these critical persistent chemicals.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Maochun Wei
- Xiamen Key Laboratory of Intelligent Fishery, Xiamen Ocean Vocational College, Xiamen 361100, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Xiamen Key Laboratory of Intelligent Fishery, Xiamen Ocean Vocational College, Xiamen 361100, China.
| |
Collapse
|
5
|
Manjarrés-López DP, Vitale D, Callejas-Martos S, Usuriaga M, Picó Y, Pérez S, Montemurro N. An effective method for the simultaneous extraction of 173 contaminants of emerging concern in freshwater invasive species and its application. Anal Bioanal Chem 2023; 415:7085-7101. [PMID: 37776351 PMCID: PMC10684701 DOI: 10.1007/s00216-023-04974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
A robust and efficient extraction method was developed to detect a broad range of pollutants of emerging interest in three freshwater invasive species: American red crab (Prokambarus clarkii), Asian clam (Corbicula fluminea), and pumpkinseed fish (Lepomis gibbosus). One native species, "petxinot" clam (Anodonta cygnea), was also evaluated. Invasive species are often more resistant to contamination and could be used in biomonitoring studies to assess the effect of contaminants of emerging concern on aquatic ecosystems while preserving potentially threatened native species. So far, most extraction methods developed for this purpose have focused on analyzing fish and generally focus on a limited number of compounds, especially analyzing compounds from the same family. In this sense, we set out to optimize a method that would allow the simultaneous extraction of 87 PhACs, 11 flame retardants, 21 per- and poly-fluoroalkyl substances, and 54 pesticides. The optimized method is based on ultrasound-assisted solvent extraction. Two tests were performed during method development, one to choose the extraction solvent with the best recovery efficiencies and one to select the best clean-up. The analysis was performed by high-performance liquid chromatography coupled to high-resolution mass spectrometry. The method obtained recoveries between 40 and 120% and relative standard deviations of less than 25% for 85% of the analytes in the four validated matrices. Limits of quantification between 0.01 ng g-1 and 22 ng g-1 were obtained. Application of the method on real samples from the Albufera Natural Park of Valencia (Spain) confirmed the presence of contaminants of emerging concern in all samples, such as acetaminophen, hydrochlorothiazide, tramadol, PFOS, carbendazim, and fenthion. PFAS were the group of compounds with the highest mean concentrations. C. fluminea was the species with the highest detection frequency, and P. clarkii had the highest average concentrations, so its use is prioritized for biomonitoring studies.
Collapse
Affiliation(s)
- Diana P Manjarrés-López
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Dyana Vitale
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Callejas-Martos
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Martí Usuriaga
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Picó
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Pérez
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
6
|
Grabicová K, Randák T, Cerveny D, Turek J, Kolářová J, Brooks BW, Grabic R. Influence of time-dependent sampling on fish plasma levels of select pharmaceuticals and per- and polyfluoroalkyl substances (PFASs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120338. [PMID: 36209932 DOI: 10.1016/j.envpol.2022.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Determining pharmaceutical levels in fish plasma represents an increasingly valuable approach for environmental assessments of pharmaceuticals. These fish plasma observations are compared to human therapeutic plasma doses because of the high evolutionary conservation of many drug targets among vertebrates. In the present study, we initially identified highly variable information regarding plasma sampling practices in the literature and then tested the hypothesis that fish plasma levels of selected pharmaceuticals and per- and polyfluoroalkyl substances (PFASs) would not change with time to process samples from the field. After common carp were placed in a wastewater-fed pond for one month, we immediately sampled fish plasma nonlethally in the field or after transferring fish to clean water and held them under these conditions for either 3 or 20 h. We then quantitated pharmaceuticals in water, and pharmaceuticals and PFASs in plasma by LC-MSMS. Whereas plasma levels of most pharmaceuticals decreased even after 3 h that fish spent in clean water, plasma concentrations of the PFASs examined here remained stable over 20 h. Collectively, our examination of these time-dependent sampling approaches and associated findings highlight the importance of appropriate and consistent sampling for bioaccumulation studies, biomonitoring activities, and aquaculture product safety evaluations.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jan Turek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Jitka Kolářová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
7
|
Semerád J, Horká P, Filipová A, Kukla J, Holubová K, Musilová Z, Jandová K, Frouz J, Cajthaml T. The driving factors of per- and polyfluorinated alkyl substance (PFAS) accumulation in selected fish species: The influence of position in river continuum, fish feed composition, and pollutant properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151662. [PMID: 34780822 DOI: 10.1016/j.scitotenv.2021.151662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFASs) represent a group of highly recalcitrant micropollutants, that continuously endanger the environment. The present work describes the geographical trends of fish contamination by individual PFASs (including new compounds, e.g., Gen-X) assessed by analyzing the muscle tissues of 5 separate freshwater fish species from 10 locations on the Czech section of the Elbe River and its largest tributary, the Vltava River. The data of this study also showed that the majority of the detected PFASs consisted of long-chain representatives (perfluorooctane sulfonate (PFOS), perfluorononanoic acid, perfluorodecanoic acid, and perfluoroundecanoic acid), whereas short-chain PFASs as well as other compounds such as Gen-X were detected in relatively small quantities. The maximum concentrations of the targeted 32 PFASs in fish were detected in the lower stretches of the Vltava and Elbe Rivers, reaching 289.9 ng/g dw, 140.5 ng/g dw, and 162.7 ng/g dw for chub, roach, and nase, respectively. Moreover, the relationships between the PFAS (PFOS) concentrations in fish muscle tissue and isotopic ratios (δ15N and δ13C) were studied to understand the effect of feed composition and position in the river continuum as a proxy for anthropogenic activity. Redundancy analysis and variation partitioning showed that the largest part of the data variability was explained by the interaction of position in the river continuum and δ15N (δ13C) of the fish. The PFAS concentrations increased downstream and were positively correlated with δ15N and negatively correlated with δ13C. A detailed study at one location also demonstrated the significant relationship between δ15N (estimated trophic position) and PFASs (PFOS) concentrations. From the tested physicochemical properties, the molecular mass and number of fluorine substituents seem to play crucial roles in PFAS bioaccumulation.
Collapse
Affiliation(s)
- Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Petra Horká
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Alena Filipová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Jaroslav Kukla
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Kateřina Holubová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Zuzana Musilová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague 2, Czech Republic
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Jan Frouz
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic.
| |
Collapse
|
8
|
Chu K, Lu Y, Hua Z, Liu Y, Ma Y, Gu L, Gao C, Yu L, Wang Y. Perfluoroalkyl acids (PFAAs) in the aquatic food web of a temperate urban lake in East China: Bioaccumulation, biomagnification, and probabilistic human health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118748. [PMID: 34958848 DOI: 10.1016/j.envpol.2021.118748] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The bioaccumulation and biomagnification of perfluoroalkyl acids (PFAAs) in temperate urban lacustrine ecosystems is poorly understood. We investigated the occurrence and trophic transfer of and probabilistic health risk from 15 PFAAs in the food web of Luoma Lake, a temperate urban lake in East China. The target PFAAs were widely distributed in the water (∑PFAA: 77.09 ± 9.07 ng/L), suspended particulate matter (SPM) (∑PFAA: 284.07 ± 118.05 ng/g dw), and sediment samples (∑PFAA: 67.77 ± 17.96 ng/g dw) and occurred in all biotic samples (∑PFAA: 443.27 ± 124.89 ng/g dw for aquatic plants; 294.99 ± 90.82 for aquatic animals). PFBA was predominant in water and SPM, with 40.11% and 21.35% of the total PFAAs, respectively, while PFOS was the most abundant in sediments (14.11% of the total PFAAs) and organisms (14.33% of the total PFAAs). Sediment exposure may be the major route of biological uptake of PFAAs. The PFAA accumulation capacity was the highest in submerged plants, followed by emergent plants > bivalves > crustaceans > fish > floating plants. Long-chain PFAAs were biomagnified, and short-chain PFAAs were biodiluted across the entire lacustrine food web. PFOS exhibited the greatest bioaccumulation and biomagnification potential among the target PFAAs. However, biomagnification of short-chain PFAAs was also observed within the low trophic-level part of the food web. Human health risk assessment indicated that perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) posed health risks to all age groups, while the other PFAAs were unlikely to cause immediate harm to consumers in the region. This study fills a gap in the knowledge of the transfer of PFAAs in the food webs of temperate urban lakes.
Collapse
Affiliation(s)
- Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Chang Gao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yifan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
9
|
Legacy and Emerging Per- and Polyfluoroalkyl Substances: Analytical Techniques, Environmental Fate, and Health Effects. Int J Mol Sci 2021; 22:ijms22030995. [PMID: 33498193 PMCID: PMC7863963 DOI: 10.3390/ijms22030995] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/24/2023] Open
Abstract
Due to their unique chemical properties, per- and polyfluoroalkyl substances (PFAS) have been used extensively as industrial surfactants and processing aids. While several types of PFAS have been voluntarily phased out by their manufacturers, these chemicals continue to be of ecological and public health concern due to their persistence in the environment and their presence in living organisms. Moreover, while the compounds referred to as “legacy” PFAS remain in the environment, alternative compounds have emerged as replacements for their legacy predecessors and are now detected in numerous matrices. In this review, we discuss the historical uses of PFAS, recent advances in analytical techniques for analysis of these compounds, and the fate of PFAS in the environment. In addition, we evaluate current biomonitoring studies of human exposure to legacy and emerging PFAS and examine the associations of PFAS exposure with human health impacts, including cancer- and non-cancer-related outcomes. Special focus is given to short-chain perfluoroalkyl acids (PFAAs) and ether-substituted, polyfluoroalkyl alternatives including hexafluoropropylene oxide dimer acid (HFPO-DA; tradename GenX), 4,8-dioxa-3H-perfluorononanoic acid (DONA), and 6:2 chlorinated polyfluoroethersulfonic acid (6:2 Cl-PFESA; tradename F-53B).
Collapse
|
10
|
Ali AM, Higgins CP, Alarif WM, Al-Lihaibi SS, Ghandourah M, Kallenborn R. Per- and polyfluoroalkyl substances (PFASs) in contaminated coastal marine waters of the Saudi Arabian Red Sea: a baseline study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2791-2803. [PMID: 32894446 PMCID: PMC7788036 DOI: 10.1007/s11356-020-09897-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/25/2020] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are today considered important constituents of the continuously growing substance group of persistent contaminants of emerging environmental concern (PCEC). Here, we report for the first time the concentrations of 12 relevant PFASs in 28 marine water samples from the Saudi Arabian coastal waters of the Red Sea. The sum levels of 12 PFASs (Σ12 PFAS) in surface seawater ranged from <LOQ to 956 ngL-1. For the reference background site of this study, Σ12 PFAS levels ranged from <LOQ to 10.9 ng/L. The highest PFAS levels have been found in Al-Arbaeen and Al-Shabab, two lagoons continuously receiving treated sewage effluents. PFHxA, PFHxS, and 6:2 FTS were the most prevalent PFASs with relatively high concentrations. Discharge of municipal and industrial wastewaters is considered an important source of PFASs. The pattern of PFASs observed here suggests that the usage of PFAS-containing aqueous film-forming foams (AFFFs) is a potential additional source for these compounds in Al-Arbaeen and Al-Shabab lagoons. However, a systematic elucidation of local PFASs sources is needed. Contamination of the Red Sea waters with PFASs poses a potential imminent risk to the marine environment of the Red Sea and ultimately may even affect the health of human consumers through the consumption of local seafood.
Collapse
Affiliation(s)
- Aasim M Ali
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O 1870 Nordnes, NO-5817, Bergen, Norway.
| | - Christopher P Higgins
- Department of Civil & Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Walied M Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, PO Box 80207, Jeddah, 21589, Saudi Arabia
| | - Sultan S Al-Lihaibi
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, PO Box 80207, Jeddah, 21589, Saudi Arabia
| | - Mohammed Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, PO Box 80207, Jeddah, 21589, Saudi Arabia
| | - Roland Kallenborn
- Arctic Technology Department (AT), University Centre in Svalbard (UNIS), P.O. Box 156, Longyearbyen, Svalbard, Norway
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), P.O. Box 5003, Christian M. Falsen veg 1, No-1432, Ås, Norway
| |
Collapse
|
11
|
An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. WATER 2020. [DOI: 10.3390/w12123590] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The current article reviews the state of art of the perfluoroalkyl and polyfluoroalkyl substances (PFASs) compounds and provides an overview of PFASs occurrence in the environment, wildlife, and humans. This study reviews the issues concerning PFASs exposure and potential risks generated with a focus on PFAS occurrence and transformation in various media, discusses their physicochemical characterization and treatment technologies, before discussing the potential human exposure routes. The various toxicological impacts to human health are also discussed. The article pays particular attention to the complexity and challenging issue of regulating PFAS compounds due to the arising uncertainty and lack of epidemiological evidence encountered. The variation in PFAS regulatory values across the globe can be easily addressed due to the influence of multiple scientific, technical, and social factors. The varied toxicology and the insufficient definition of PFAS exposure rate are among the main factors contributing to this discrepancy. The lack of proven standard approaches for examining PFAS in surface water, groundwater, wastewater, or solids adds more technical complexity. Although it is agreed that PFASs pose potential health risks in various media, the link between the extent of PFAS exposure and the significance of PFAS risk remain among the evolving research areas. There is a growing need to address the correlation between the frequency and the likelihood of human exposure to PFAS and the possible health risks encountered. Although USEPA (United States Environmental Protection Agency) recommends the 70 ng/L lifetime health advisory in drinking water for both perfluorooctane sulfonate (PFO) perfluorooctanoic acid (PFOA), which is similar to the Australian regulations, the German Ministry of Health proposed a health-based guidance of maximum of 300 ng/L for the combination of PFOA and PFOS. Moreover, there are significant discrepancies among the US states where the water guideline levels for the different states ranged from 13 to 1000 ng L−1 for PFOA and/or PFOS. The current review highlighted the significance of the future research required to fill in the knowledge gap in PFAS toxicology and to better understand this through real field data and long-term monitoring programs.
Collapse
|
12
|
Wang P, Lu Y, Su H, Su C, Johnson AC, Yu L, Jenkins A. Managing health risks of perfluoroalkyl acids in aquatic food from a river-estuary-sea environment affected by fluorochemical industry. ENVIRONMENT INTERNATIONAL 2020; 138:105621. [PMID: 32142913 DOI: 10.1016/j.envint.2020.105621] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Substantial perfluoroalkyl acids (PFAAs) production still occurs in China, and the consumption of aquatic products is a critical exposure pathway of PFAAs in humans. In this study, specimens of 16 freshwater and 40 marine species were collected in the river-estuary-sea environment affected by a mega fluorochemical industry park in China in 2015, and the edible tissues of these organisms were analyzed for PFAA levels. Perfluorooctanoic acid (PFOA) was the dominating contaminant with an overall contribution of more than 90%, and concentrations as high as 2161 ng/g wet weight (measured in the freshwater winkle). All species with the greatest PFOA levels were benthic. The trophic magnification factor (TMF) of PFOA was 1.10 for freshwater species and 1.28 for marine species, indicating that PFOA was slightly magnifying. Analysis of carbon source indicated that freshwater species were more benthic feeding, while marine species were more pelagic feeding. Aquatic food consumption screening values of PFOA were modified according to estimated daily intake (EDI) values, which generated recommendations for limited meal categories and the do-not-eat category. Thus, this study provides recommendations for mitigating the health risks of PFAA-contaminated aquatic food, ranging from food selection to consumption frequency and proper food processing.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yonglong Lu
- Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongqiao Su
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Management World Journal Press, Development Research Center of the State Council, Beijing 100026, China
| | - Chao Su
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | | | - Longfei Yu
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstr. 129, CH-8600 Duebendorf, Switzerland
| | - Alan Jenkins
- Centre for Ecology & Hydrology, Wallingford, OX 10 8BB, UK
| |
Collapse
|
13
|
Meng J, Zhou Y, Liu S, Chen S, Wang T. Increasing perfluoroalkyl substances and ecological process from the Yongding Watershed to the Guanting Reservoir in the Olympic host cities, China. ENVIRONMENT INTERNATIONAL 2019; 133:105224. [PMID: 31665680 DOI: 10.1016/j.envint.2019.105224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl substances (PFASs) have raised great attention, particularly in regions of rapid urbanization. Zhangjiakou and Beijing will jointly host the Winter Olympic Games in 2022, which will likely increase local PFASs pollution and their associated risks over the coming period. In this study, we identified ecological process of PFASs, including sources, environmental fate, and risks, from the Yongding Watershed to the Guanting Reservoir. The concentrations of total 12 PFASs in water of the Guanting Reservoir were higher than that from the Yongding Watershed, with mean of 48.9 and 33.7 ng/L, respectively. The concentrations of PFASs in sediment of the Yongding Watershed and the Guanting Reservoir were similar, with mean of 1.01 and 0.827 ng/g dry weight, respectively. Detected levels of PFASs in the Guanting Reservoir significantly increased during the past eight years, possibly due to an improving economy and a rapidly developed service industry. Moderate PFASs levels in fish of the Guanting Reservoir were detected relative to other lakes and reservoirs. The daily intake of PFASs via fish and water ranged from 4.96 to 15.0 ng/kg bw/day, with higher levels found in children relative to adults. In total, approximately 9.06 kg of PFASs from riverine flow and atmospheric deposition annually entered the Guanting Reservoir. PFASs from the Yongding River significantly contributed to the pollution of Guanting Reservoir, with predominance of perfluorobutanoic acid (PFBA) in water, and long-chain perfluorinated carboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS) in sediment in both the Yongding Watershed and the Guanting Reservoir. Most of the PFASs (23.5 kg) were stored in water of the Guanting Reservoir, while the annual storage of PFASs in sediment and fish was only 4.68 × 10-2 kg and 4.36 × 10-2 kg via deposition and accumulation, respectively. The results suggest that water quality management of the Yongding Watershed is necessary for effective control on PFASs pollution in the Guanting Reservoir.
Collapse
Affiliation(s)
- Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sifan Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuqin Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
A critical review on passive sampling in air and water for per- and polyfluoroalkyl substances (PFASs). Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Langberg HA, Breedveld GD, Grønning HM, Kvennås M, Jenssen BM, Hale SE. Bioaccumulation of Fluorotelomer Sulfonates and Perfluoroalkyl Acids in Marine Organisms Living in Aqueous Film-Forming Foam Impacted Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10951-10960. [PMID: 31353899 DOI: 10.1021/acs.est.9b00927] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The use of aqueous film-forming foams (AFFFs) has resulted in hot spots polluted with poly- and perfluorinated alkyl substances (PFASs). The phase out of long-chained perfluoroalkyl acids (PFAAs) from AFFFs resulted in the necessity for alternatives, and short-chained PFAAs and fluorotelomer-based surfactants have been used. Here, the distribution of PFAS contamination in the marine environment surrounding a military site in Norway was investigated. Up to 30 PFASs were analyzed in storm, leachate, and fjord water; marine sediments; marine invertebrates (snails, green shore crab, great spider crab, and edible crab); and teleost fish (Atlantic cod, European place, and Lemon sole). Perfluorooctanesulfonic acid (PFOS) was the most abundantly detected PFAS. Differences in PFAS accumulation levels were observed among species, likely reflecting different exposure routes among trophic levels and different capabilities for depuration and/or enzymatic degradation. In agreement with previous literature, almost no 6:2 fluorotelomer sulfonate (6:2 FTS) was detected in teleost fish. However, this study is one of the first to report considerable concentrations of 6:2 FTS in marine invertebrates, suggesting bioaccumulation. Biota monitoring and risk assessments of sites contaminated with fluorotelomer sulfonates (FTSs) and related compounds should not be limited to fish, but should also include invertebrates.
Collapse
Affiliation(s)
- Håkon A Langberg
- Environmental Department , Norwegian Geotechnical Institute (NGI) , N-0855 Oslo , Norway
- Department of Biology , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| | - Gijs D Breedveld
- Environmental Department , Norwegian Geotechnical Institute (NGI) , N-0855 Oslo , Norway
- Department of Geosciences , University of Oslo (UiO) , 0371 Oslo , Norway
| | - Hege M Grønning
- Environmental Department , Norwegian Geotechnical Institute (NGI) , N-0855 Oslo , Norway
| | - Marianne Kvennås
- Environmental Department , Norwegian Geotechnical Institute (NGI) , N-0855 Oslo , Norway
| | - Bjørn M Jenssen
- Department of Biology , Norwegian University of Science and Technology (NTNU) , NO-7491 Trondheim , Norway
| | - Sarah E Hale
- Environmental Department , Norwegian Geotechnical Institute (NGI) , N-0855 Oslo , Norway
| |
Collapse
|
16
|
Godlewska K, Stepnowski P, Paszkiewicz M. Application of the Polar Organic Chemical Integrative Sampler for Isolation of Environmental Micropollutants – A Review. Crit Rev Anal Chem 2019; 50:1-28. [DOI: 10.1080/10408347.2019.1565983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Klaudia Godlewska
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Monika Paszkiewicz
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
17
|
Martín J, Hidalgo F, García-Corcoles MT, Ibáñez-Yuste AJ, Alonso E, Vilchez JL, Zafra-Gómez A. Bioaccumulation of perfluoroalkyl substances in marine echinoderms: Results of laboratory-scale experiments with Holothuria tubulosa Gmelin, 1791. CHEMOSPHERE 2019; 215:261-271. [PMID: 30317097 DOI: 10.1016/j.chemosphere.2018.10.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Bioaccumulation of six perfluoroalkyl substances (PFAS) was assessed using the marine echinoderm Holothuria tubulosa Gmelin, 1791. Batch experiments were conducted to establish the relationship between concentrations in water, sediment and biota over 197 days. The sample treatment for the determination of compounds involves steps of lyophilization, solvent extraction and clean-up of the extracts with dispersive sorbents. PFAS were then analysed by liquid chromatography-tandem mass spectrometry. During contaminant exposure, detectable levels of compounds were found in all samples collected. Mean concentrations of selected PFAS were higher in sediments than in water samples. This fact is explained by the strong adsorption of these compounds into sediments. Sediment-water distribution coefficients (log Kd) were in the range 0.11 (PFBuA) to 2.46 (PFOA). Beside this, PFAS accumulation was observed in Holothuria tubulosa organisms. The uptake of PFAS was very rapid, reaching the maximum between 22 and 38 days of assay. Bioaccumulation factors (mean log BAF: 1.16-4.39) and biota sediment accumulation factors (mean log BSAF: 1.37-2.89) indicated a high bioaccumulation potential for the target compounds. Both parameters increased with perfluoroalkyl chain length (R2 > 0.93; p < 0.05). In organ-specific distributions of PFAS, greater concentrations were found in intestine than in gonads. Also, male specimens showed higher concentration levels than female (student t-test: tcal = 2.788, ttab = 2.262; p < 0.05). These data provide a detailed accounting of PFAS fate and distribution in the marine environment highlighting accumulation at lower trophic levels, a potential source for contamination in higher organisms.
Collapse
Affiliation(s)
- Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011, Seville, Spain
| | - Félix Hidalgo
- Department of Zoology, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain
| | - María Teresa García-Corcoles
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain
| | - Alejandro José Ibáñez-Yuste
- Agriculture and Fisheries Management Agency of Andalusia (AGAPA), Administrative Central Services, Av. of Greece s/n, 41012, Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011, Seville, Spain
| | - Jose Luís Vilchez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain
| | - Alberto Zafra-Gómez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, E-18071, Granada, Spain.
| |
Collapse
|