1
|
Liu Y, Li M, Wan QL, Wang X, Mortimer M, Fang WD, Guo LH. Recent advances in bioassays for assessing the toxicity of environmental contaminants in effect-directed analysis. J Environ Sci (China) 2025; 155:343-358. [PMID: 40246470 DOI: 10.1016/j.jes.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 04/19/2025]
Abstract
Chemical cocktails in the environment can cause adverse impacts on ecosystems and human health even at low concentrations. Effect-directed analysis (EDA) has proven to be very valuable in identifying key toxic substances in environmental mixtures. For this, it is important to carefully select accurate bioassays from a wide range of tests for EDA when applying it to actual environmental samples. This article reviews studies published from 2014 to 2023 that have applied EDA and summarizes the bioassays and their corresponding biological effects. A total of 127 studies were selected from 591 publications evaluating the toxic effects of environmental samples, including wastewater, surface water, and sediments. Here, bioassays used in EDA are summarized, including the assays that measure specific receptor-mediated modes of action (MOA), induction of xenobiotic metabolism pathways, and induction of adaptive stress response pathways using either in vitro or in vivo bioassays. Also, the identified substances using EDA are discussed based on their MOA. The importance of EDA in establishing a comprehensive approach for the detection of environmental contaminants using bioanalytical methods is emphasized. The current limitations and benefits of using EDA in practical applications are outlined and strategies for moving forward are proposed.
Collapse
Affiliation(s)
- Yao Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Qi-Lin Wan
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xun Wang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Wen-Di Fang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Fan F, Liu F, Yu Q, Yi R, Ren H, Geng J. FT-GNN Tool for Bridging HRMS Features and Bioactivity: Uncovering Unidentified Estrogen Receptor Agonists in Sewage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7736-7746. [PMID: 40201978 DOI: 10.1021/acs.est.5c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Identifying primary estrogen receptor (ER) agonists in municipal sewage is essential for ensuring the health of aquatic environments. Given the complex and variable chemical composition of sewage, the predominant ER agonists remain unclear. High-resolution mass spectrometry (HRMS)-based models have been developed to predict compound bioactivity in complex matrices, but further optimization is needed to effectively bridge HRMS features with ER agonists. To address this challenge, an FT-GNN (fragmentation tree-based graph neural network) model was proposed. Given limited data and class imbalance, data augmentation was performed using model predictions within the applicability domain (AD) and oversampling technique (OTE). Model development results demonstrated that integrating the FT-GNN with data augmentation improved the balanced accuracy (bACC) value by 6%-31%. The developed model, with a high bACC to identify more true ER agonists, efficiently classified tens of thousands of unidentified HRMS features in sewage, reducing postprocessing workload in nontargeted screening. Analysis of ER agonist transformation during sewage treatment revealed the anaerobic stage as key to both their removal and formation. Estrogenic effect balance analysis suggests that α-E2 and 9,11-didehydroestriol may be two previously overlooked key ER agonists. Collectively, the development and application of the FT-GNN model are crucial advancements toward credible tracking and efficient control of estrogenic risks in water.
Collapse
Affiliation(s)
- Fan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Institute for the Environment and Health, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Fu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Institute for the Environment and Health, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Qingmiao Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Ran Yi
- State Key Laboratory of Pollution Control and Resource Reuse, Institute for the Environment and Health, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Institute for the Environment and Health, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jinju Geng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
3
|
Black GP, Anderson BN, Wong L, Alaimo CP, He G, Denison MS, Bennett DH, Tancredi D, Durbin-Johnson B, Hammock BD, Chowdhary P, Rubin R, Young TM. Comprehensive Nontargeted Analysis of Drinking Water Supplies to Identify Chemicals Associated with Estrogen Receptor Agonism or Present in Regions of Elevated Breast Cancer Occurrence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5237-5248. [PMID: 40042489 PMCID: PMC11924233 DOI: 10.1021/acs.est.4c12204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
To explore the hypothesis that differential exposures to estrogen active chemicals may contribute to regional disparities in cancer incidence, a comprehensive targeted and nontargeted analysis was conducted over two seasons (2020) for drinking water samples from 120 households served by 8 public water systems (4 with historically elevated breast cancer incidence) and from 15 brands of retail water. All samples were analyzed using gas and liquid chromatography with high-resolution mass spectrometry and a bioassay for estrogen receptor agonism. Target compounds included disinfection byproducts, per- and polyfluoroalkyl substances (PFAS), trace elements, and compounds selected for their possible relation to breast cancer. Over 7500 GC and LC nontargeted molecular features passed all quality control filters in each sampling season and were prioritized for identification if they were related to measured estrogen receptor agonism or were present at higher levels in areas with high breast cancer incidence (n = 1036). Benzothiazole-2-sulfonic acid, acetyl tributyl citrate, and diphenyl sulfone were among the prioritized and confirmed nontarget compounds. Nine polycyclic aromatic hydrocarbons and two ketone derivatives displayed significant negative correlations with estrogen receptor agonism. Many prioritized compounds remained unidentified, as 84.4% of the LC features and 77.5% of the GC features could not be annotated with high confidence.
Collapse
Affiliation(s)
- Gabrielle P Black
- Department of Civil and Environmental Engineering, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Berkley N Anderson
- Department of Civil and Environmental Engineering, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Luann Wong
- Department of Civil and Environmental Engineering, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Christopher P Alaimo
- Department of Civil and Environmental Engineering, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Daniel Tancredi
- Department of Public Health Sciences, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Cancer Center, University of California, Davis One Shields Ave., Davis, California 95616, United States
| | - Pujeeta Chowdhary
- Breast Cancer Prevention Partners, 1388 Sutter St #901, San Francisco, California 94109, United States
| | - Rainbow Rubin
- Breast Cancer Prevention Partners, 1388 Sutter St #901, San Francisco, California 94109, United States
| | - Thomas M Young
- Department of Civil and Environmental Engineering, University of California, Davis One Shields Ave., Davis, California 95616, United States
| |
Collapse
|
4
|
Disdier Z, Dagnelie RVH. "P AW" a smart analytical process assessing lipophilicity of solutes in mixtures. Anal Chim Acta 2024; 1316:342871. [PMID: 38969431 DOI: 10.1016/j.aca.2024.342871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The analysis of mixtures of contaminants remains a challenging task in many fields, including water quality and waste management. For example, the degradation of industrial waste such as plastics, leads to complex mixtures with hundreds of organic contaminants and often non-referenced analytes. In such cases, non-targeted or effects-based analyses provide complementary information to classical targeted-analyses, regarding contaminants nature or properties (molecular mass, lability, toxicity). In this study, a novel analytical method is proposed to characterise mixtures of unknown organic contaminants, with a focus on the lipophilicity of solutes. RESULTS The proposed process, named "PAW" (Partition of Aqueous Waste), aims at the quantification of octanol-water partition coefficients (POW) of mixed organic analytes. The process is based on sequential liquid-liquid partition equilibria. The output result is a lipophilicity histogram of the solutes, screened according to the chosen detection method. The process quantifies the distribution of analytes as a function of their octanol-water partition coefficients, without requiring any identification or prior knowledge. The PAW process is applicable with various detectors (UV-Visible, total carbon, liquid scintillation, etc.) allowing to focus on specific families of contaminants (e.g. organic solutes, colloids, 14C-bearing, etc.). Experimental proofs of concept are proposed, illustrating process implementation and possible fields of application. The first example deals with purity analysis of synthetic radiolabeled compounds. The second example aims the monitoring of cellulose degradation and quantification of the lipophilicity of degradation products. SIGNIFICANCE The PAW analytical process seems especially useful for characterisation of mixtures containing both hydrophilic and lipophilic compounds, e.g. neutral and ionizable organic contaminants, hardly characterisable simultaneously by chromatographic methods. It could be complementary to more detailed targeted or screening analysis of samples and effluents. For example it may help assessing the composition and environmental fate of mixtures of unknown analytes, thus facilitating waste management or mitigation strategies.
Collapse
Affiliation(s)
- Z Disdier
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France
| | - R V H Dagnelie
- Université Paris-Saclay, CEA, Service de Physico-Chimie, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Luo W, Chou L, Cui Q, Wei S, Zhang X, Guo J. High-efficiency effect-directed analysis (EDA) advancing toxicant identification in aquatic environments: Latest progress and application status. ENVIRONMENT INTERNATIONAL 2024; 190:108855. [PMID: 38945088 DOI: 10.1016/j.envint.2024.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Facing the great threats to ecosystems and human health posed by the continuous release of chemicals into aquatic environments, effect-directed analysis (EDA) has emerged as a powerful tool for identifying causative toxicants. However, traditional EDA shows problems of low-coverage, labor-intensive and low-efficiency. Currently, a number of high-efficiency techniques have been integrated into EDA to improve toxicant identification. In this review, the latest progress and current limitations of high-efficiency EDA, comprising high-coverage effect evaluation, high-resolution fractionation, high-coverage chemical analysis, high-automation causative peak extraction and high-efficiency structure elucidation, are summarized. Specifically, high-resolution fractionation, high-automation data processing algorithms and in silico structure elucidation techniques have been well developed to enhance EDA. While high-coverage effect evaluation and chemical analysis should be further emphasized, especially omics tools and data-independent mass acquisition. For the application status in aquatic environments, high-efficiency EDA is widely applied in surface water and wastewater. Estrogenic, androgenic and aryl hydrocarbon receptor-mediated activities are the most concerning, with causative toxicants showing the typical structural features of steroids and benzenoids. A better understanding of the latest progress and application status of EDA would be beneficial to further advance in the field and greatly support aquatic environment monitoring.
Collapse
Affiliation(s)
- Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qinglan Cui
- Bluestar Lehigh Engineering Institute Co., Ltd., Lianyungang 222004, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| |
Collapse
|
6
|
Zhou J, He X, Zhang Z, Wu G, Liu P, Wang D, Shi P, Zhang XX. Chemical-toxicological insights and process comparison for estrogenic activity mitigation in municipal wastewater treatment plants. WATER RESEARCH 2024; 253:121304. [PMID: 38364463 DOI: 10.1016/j.watres.2024.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Efforts in water ecosystem conservation require an understanding of causative factors and removal efficacies associated with mixture toxicity during wastewater treatment. This study conducts a comprehensive investigation into the interplay between wastewater estrogenic activity and 30 estrogen-like endocrine disrupting chemicals (EEDCs) across 12 municipal wastewater treatment plants (WWTPs) spanning four seasons in China. Results reveal substantial estrogenic activity in all WWTPs and potential endocrine-disrupting risks in over 37.5 % of final effluent samples, with heightened effects during colder seasons. While phthalates are the predominant EEDCs (concentrations ranging from 86.39 %) for both estrogenic activity and major EEDCs (phthalates and estrogens), with the secondary and tertiary treatment segments contributing 88.59 ± 8.12 % and 11.41 ± 8.12 %, respectively. Among various secondary treatment processes, the anaerobic/anoxic/oxic-membrane bioreactor (A/A/O-MBR) excels in removing both estrogenic activity and EEDCs. In tertiary treatment, removal efficiencies increase with the inclusion of components involving physical, chemical, and biological removal principles. Furthermore, correlation and multiple liner regression analysis establish a significant (p < 0.05) positive association between solid retention time (SRT) and removal efficiencies of estrogenic activity and EEDCs within WWTPs. This study provides valuable insights from the perspective of prioritizing key pollutants, the necessity of integrating more efficient secondary and tertiary treatment processes, along with adjustments to operational parameters like SRT, to mitigate estrogenic activity in municipal WWTPs. This contribution aids in managing endocrine-disrupting risks in wastewater as part of ecological conservation efforts.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Zepeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Wang Y, Tian F, Zhou X, Wang M, Zhang H. Screening, identification and control of unknown estrogen-like compounds in Maillard reaction products of glucose-arginine/lysine model systems. Food Res Int 2023; 173:113285. [PMID: 37803598 DOI: 10.1016/j.foodres.2023.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
It was speculated that estrogen-like compounds may be produced by chemical reactions during food processing, such as Maillard reaction, which would disrupt the endocrine system of organisms. Herein, the Maillard reaction in the process of high temperature for long time was simulated by using model system, and unknown estrogen-like compounds produced during Maillard reaction were screened by colorimetric assay based on dual estrogen receptor (ER)-gold nanoparticles (AuNPs) and enzyme-linked immunosorbent assay (ELISA). Possible structures of estrogen-like compounds were inferred by ultra-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry (UPLC-QTOF/MS) in combination with a mass database, and finally the structure of estrogen-like compound, 2, 4-dihydroxy-1, 4-benzoxazin-3-one-2-o-β-D-glucopyranoside (DIBOA-glc), was identified by high resolution orbitrap mass spectrometry (Orbitrap HRMS). This is the first study of the screening and identification of unknown estrogen-like compounds produced in Maillard reaction. Additionally, strategy of controlling the formation of DIBOA-glc by adding vitamin B6 in Maillard reaction was proposed, providing effective proposals for the safety control in actual food processing.
Collapse
Affiliation(s)
- Ying Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Fangyuan Tian
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Xiuran Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China.
| |
Collapse
|
8
|
Ma X, Ji J, Song P, Mao C, Li X. Treatment of nanofiltration membrane concentrates integrated magnetic biochar pretreatment with anaerobic digestion. ENVIRONMENTAL RESEARCH 2023; 221:115245. [PMID: 36640939 DOI: 10.1016/j.envres.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
nanofiltration membrane concentrate (NMC) is an emerging type of wastewater with significant environmental concerns. which can be treated efficiently by an integrated method. In this study, magnetic biochar (MBC) pretreatment integrated with anaerobic digestion (AD) (MBC + AD) was used to treat NMC. Results showed that under the optimal MBC + AD conditions, 79%, 69.4%, 52.9%, and 86.5% of COD, total nitrogen (TN), chromaticity, and light absorbing substances were reduced. For heavy metals removal, 18.3%, 70.0%, 96.4%, 43.8% and 97.5% of Cr (VI), Cd, Pb, Cu and Zn were removed, respectively. LC-MS analysis indicated that p-nitrophenol (4-NP) diethyl and phthalate (DEP) were the main organic pollutants in NMC with a removal rate of 60% and 90%. Compared with single AD, in MBC + AD samples, bacterial activity was improved, and genus DMER64 (23.2%) was dominant. The predominant archaea were Methanocorpusculum (53.3%) and Methanosarcina (25.3%), with microbial restructuring and slight methane generation. Additionally, metabolic pathway prediction revealed that both bacterial and archaeal metabolism were significantly enhanced, contributing to the central functional pathways, namely microbial activity metabolism and biodegradation metabolism. In addition, the significantly increased genera Syner-01, Vulcanibacillus, Methanocorpusculum, and Norank_c_Bathyarchaeia were significantly positively related to metabolic function. This finding demonstrated that MBC + AD enhanced contaminant removal, mainly by regulating bacterial diversity and activity. Moreover, the toxicity of NMC decreased after MBC + AD treatment. This study provides a potential biological strategy for the treatment of membrane concentrates and water recovery.
Collapse
Affiliation(s)
- Xiaobiao Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China
| |
Collapse
|
9
|
Gwak J, Lee J, Cha J, Kim M, Hur J, Cho J, Kim MS, Jang KS, Giesy JP, Hong S, Khim JS. Molecular Characterization of Estrogen Receptor Agonists during Sewage Treatment Processes Using Effect-Directed Analysis Combined with High-Resolution Full-Scan Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13085-13095. [PMID: 35973975 DOI: 10.1021/acs.est.2c03428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endocrine-disrupting potential was evaluated during the sewage treatment process using in vitro bioassays. Aryl hydrocarbon receptor (AhR)-, androgen receptor (AR)-, glucocorticoid receptor (GR)-, and estrogen receptor (ER)-mediated activities were assessed over five steps of the treatment process. Bioassays of organic extracts showed that AhR, AR, and GR potencies tended to decrease through the sewage treatment process, whereas ER potencies did not significantly decrease. Bioassays on reverse-phase high-performance liquid chromatography fractions showed that F5 (log KOW 2.5-3.0) had great ER potencies. Full-scan screening of these fractions detected two novel ER agonists, arenobufagin and loratadine, which are used pharmaceuticals. These compounds accounted for 3.3-25% of the total ER potencies and 4% of the ER potencies in the final effluent. The well-known ER agonists, estrone and 17β-estradiol, accounted for 60 and 17% of the ER potencies in F5 of the influent and primary treatment, respectively. Fourier transform ion cyclotron resonance mass spectrometry analysis showed that various molecules were generated during the treatment process, especially CHO and CHOS (C: carbon, H: hydrogen, O: oxygen, and S: sulfur). This study documented that widely used pharmaceuticals are introduced into the aquatic environments without being removed during the sewage treatment process.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Min Sung Kim
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyoung-Soon Jang
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon SK S7N5B3, Canada
- Department of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Paszkiewicz M, Godlewska K, Lis H, Caban M, Białk-Bielińska A, Stepnowski P. Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zhang D, Liu W, Wang S, Zhao J, Xu S, Yao H, Wang H, Bai L, Wang Y, Gu H, Tao J, Shi P. Risk assessments of emerging contaminants in various waters and changes of microbial diversity in sediments from Yangtze River chemical contiguous zone, Eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149982. [PMID: 34487908 DOI: 10.1016/j.scitotenv.2021.149982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, increasing chemical contamination has greatly affected aquatic life and human health, even though most contaminants are present at low concentrations. The large-scale chemical industrial parks (CIPs) concentrated in the Yangtze River Delta account for over half of the total in China, and Jiangsu Province occupies one fifth of the Yangtze River Delta. Inevitably, the ecosystems could be affected by these CIPs. In this study, we collected 35 water and 12 sediment samples from the Yangtze River (Taizhou section) surrounding waters adjacent to concentrated CIPs and determined their cumulative chemical levels to be 0.2 to 28.4 μg/L and cumulative detections to be 11 to 39 contaminants with a median of 20 contaminants. 61 out of 153 screened chemicals were detected from at least one sampling site, and 6 contaminants, mostly semi-volatile organic compounds, appeared at all sites. Among these detected chemicals, di-n-octyl phthalate and dibutyl phthalate were at the highest levels. Ecological assessment revealed that 4-chloroaniline, phenol and dibutyl phthalate possibly would induce adverse effects on Yangtze River (Taizhou) ecosystems. Further aided with an evaluation of integrated biomarker response (IBR) index, it was found that site W06 (downstream of Binjiang CIP wastewater inlet) was the location in greatest need of urgent action. As a result, the microbial diversity of sediments in the Yangtze River mainstream was significantly higher than that of tributaries, where CIPs wastewater entered.
Collapse
Affiliation(s)
- Dan Zhang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Wei Liu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China.
| | - Shui Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Jing Zhao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Shuhui Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongye Yao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Hao Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Lisen Bai
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Ying Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Huanglin Gu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Jingzhong Tao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
McCord JP, Groff LC, Sobus JR. Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. ENVIRONMENT INTERNATIONAL 2022; 158:107011. [PMID: 35386928 PMCID: PMC8979303 DOI: 10.1016/j.envint.2021.107011] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical risk assessments follow a long-standing paradigm that integrates hazard, dose-response, and exposure information to facilitate quantitative risk characterization. Targeted analytical measurement data directly support risk assessment activities, as well as downstream risk management and compliance monitoring efforts. Yet, targeted methods have struggled to keep pace with the demands for data regarding the vast, and growing, number of known chemicals. Many contemporary monitoring studies therefore utilize non-targeted analysis (NTA) methods to screen for known chemicals with limited risk information. Qualitative NTA data has enabled identification of previously unknown compounds and characterization of data-poor compounds in support of hazard identification and exposure assessment efforts. In spite of this, NTA data have seen limited use in risk-based decision making due to uncertainties surrounding their quantitative interpretation. Significant efforts have been made in recent years to bridge this quantitative gap. Based on these advancements, quantitative NTA data, when coupled with other high-throughput data streams and predictive models, are poised to directly support 21st-century risk-based decisions. This article highlights components of the chemical risk assessment process that are influenced by NTA data, surveys the existing literature for approaches to derive quantitative estimates of chemicals from NTA measurements, and presents a conceptual framework for incorporating NTA data into contemporary risk assessment frameworks.
Collapse
Affiliation(s)
- James P. McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
- Corresponding author. (J.P. McCord)
| | - Louis C. Groff
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| | - Jon R. Sobus
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
| |
Collapse
|
13
|
Corrêa JMM, Sanson AL, Machado CF, Aquino SF, Afonso RJCF. Occurrence of contaminants of emerging concern in surface waters from Paraopeba River Basin in Brazil: seasonal changes and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30242-30254. [PMID: 33586100 DOI: 10.1007/s11356-021-12787-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
This study describes the application of gas chromatography coupled to mass spectrometry (GC-MS) to evaluate the occurrence of 12 CECs-contaminants of emerging concern (bisphenol A, diclofenac, 17β-estradiol, estriol, estrone, 17α-ethinylestradiol, gemfibrozil, ibuprofen, naproxen, 4-nonylphenol, 4-octylphenol, and acetaminophen) in surface waters from Paraopeba River Basin, Minas Gerais State, Brazil. The analytical procedure was validated and applied to 60 surface water samples collected across four sampling campaigns along the upper and middle watershed. Methods for CECs determination involved sample filtration, and solid-phase extraction (SPE) with subsequent derivatization of the target compounds prior to their analysis by GC-MS. The LOQ varied from 3.6 to 14.4 ng/L and extraction recoveries ranged from 46.1 to 107.1% for the lowest spiked concentration level (10 ng/L). The results showed a profile of spatial distribution of compounds, as well as the influence of rainfall. Ibuprofen (1683.9 ng/L), bisphenol (1587.7 ng/L), and naproxen (938.4 ng/L) occurred in higher concentrations during the rainy season, whereas during the dry season, the concentrations of bisphenol (1057.7 ng/L), estriol (991.0 ng/L), and estrone (978.4 ng/L) were highlighted. The risk assessment of human exposure shows that for most contaminants, the concentration is well below the estimated thresholds for chronic toxicity from water intake. However, estradiol and 17α-ethinylestradiol showed concentrations in the same order of magnitude as the guide values estimated for babies.
Collapse
Affiliation(s)
- Joane M M Corrêa
- Molecular Characterization/Mass Spectrometry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Ananda L Sanson
- Molecular Characterization/Mass Spectrometry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil.
| | - Célia F Machado
- Molecular Characterization/Mass Spectrometry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Sérgio F Aquino
- Technological and Environmental Chemistry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Robson J C F Afonso
- Molecular Characterization/Mass Spectrometry Laboratory, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| |
Collapse
|
14
|
Hu J, Liu J, Li J, Lv X, Yu L, Wu K, Yang Y. Metal contamination, bioaccumulation, ROS generation, and epigenotoxicity influences on zebrafish exposed to river water polluted by mining activities. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124150. [PMID: 33131937 DOI: 10.1016/j.jhazmat.2020.124150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Epigenetic mechanisms are important for gene expression regulation, which is closely related to human health, and epigenetic effects of polluted water bodies have gained increasing research attention. Le'an River suffers from severe trace metal pollution owing to mining activities. In this study, zebrafish was used as a biological model to study pollution of Le'an River after seven consecutive days of exposure. The results showed that midstream and downstream sections of the river were seriously polluted by trace metals. The liver and gill of zebrafish were enriched with trace metals, and cadmium had the highest bioaccumulation factor. Trace metals caused oxidative stress in zebrafish cells, with increases in reactive oxygen species levels. Significant increase of global DNA methylation in liver of middle and downstream section were observed, with values from 125.67% to 165.45% compared with control. Changes in DNA methylation in the promoter region cause significant increase or decrease of the expression of repair genes and apoptosis genes in liver and gill. In summary, Le'an River water exhibited significant epigenetic effects, and it is necessary to consider epigenetic effects in the evaluation of pollution and health risks of river water.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808 Guangdong, PR China
| | - Jinhuan Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808 Guangdong, PR China
| | - Jinyun Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808 Guangdong, PR China
| | - Xiaomei Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808 Guangdong, PR China
| | - Lili Yu
- Shenzhen People's Hospital, The 2nd Clinical Medical College of Jinan University, Shenzhen 518020, PR China
| | - Kangming Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808 Guangdong, PR China
| | - Yan Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China.
| |
Collapse
|
15
|
He X, Qi Z, Gao J, Huang K, Li M, Springael D, Zhang XX. Nonylphenol ethoxylates biodegradation increases estrogenicity of textile wastewater in biological treatment systems. WATER RESEARCH 2020; 184:116137. [PMID: 32750586 DOI: 10.1016/j.watres.2020.116137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The formation of estrogenic intermediates, i.e. nonylphenol diethoxylate (NP2EO), nonylphenol monoethoxylate (NP1EO), and nonylphenol (NP), following nonylphenol ethoxylates (NPEOs) biodegradation in textile wastewater raises concerns about its endocrine disruptive activity, but the estrogenicity changes of textile wastewater throughout biological treatment processes remain unknown. In the present study, the estrogenicity of textile wastewater sampled from 10 wastewater treatment plants (WWTPs) were investigated using the reporter gene-based T47D-KBluc bioassay. Results showed that the estrogenicity of the textile wastewater significantly increased after either anaerobic or aerobic treatment in all WWTPs, with an average fold change of 3.21, although traditional pollutants were effectively removed. The estradiol equivalents of the effluent (ranging from 1.50 to 4.12 ng-E2/L) were generally higher than published effect based trigger values, indicating an increased risk for the receiving waters. Removal efficiency was high (84.46%) for NPEOs, but was low for NP2EO and NP1EO in the biological treatment processes. Nevertheless, NP had increased concentrations after the treatment. Bioanalytical equivalent concentration of the textile wastewater and that of NP2EO, NP1EO, and NP showed a good linear correlation, of which NP alone contributed more than 70% to the observed estrogenicity. Extending hydraulic retention time was found effective in reducing the estrogenicity as it allows relatively complete degradation of NP, which was further confirmed by running lab-scale A/O reactors fed with NP10EO. The results may extend our knowledge regarding the estrogenicity of textile wastewater and its reduction technologies used in WWTPs.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhaodong Qi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20, BE-3001, Leuven, Belgium
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Brennan JC, Gale RW, Alvarez DA, Berninger JP, Leet JK, Li Y, Wagner T, Tillitt DE. Factors Affecting Sampling Strategies for Design of an Effects-Directed Analysis for Endocrine-Active Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1309-1324. [PMID: 32362034 DOI: 10.1002/etc.4739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 05/26/2023]
Abstract
Effects-directed analysis (EDA) is an important tool for identifying unknown bioactive components in a complex mixture. Such an analysis of endocrine-active chemicals (EACs) from water sources has promising regulatory implications but also unique logistical challenges. We propose a conceptual EDA (framework) based on a critical review of EDA literature and concentrations of common EACs in waste and surface waters. Required water volumes for identification of EACs under this EDA framework were estimated based on bioassay performance (in vitro and in vivo bioassays), limits of quantification by mass spectrometry (MS), and EAC water concentrations. Sample volumes for EDA across the EACs showed high variation in the bioassay detectors, with genistein, bisphenol A, and androstenedione requiring very high sample volumes and ethinylestradiol and 17β-trenbolone requiring low sample volumes. Sample volume based on the MS detector was far less variable across the EACs. The EDA framework equation was rearranged to calculate detector "thresholds," and these thresholds were compared with the literature EAC water concentrations to evaluate the feasibility of the EDA framework. In the majority of instances, feasibility of the EDA was limited by the bioassay, not MS detection. Mixed model analysis showed that the volumes required for a successful EDA were affected by the potentially responsible EAC, detection methods, and the water source type, with detection method having the greatest effect on the EDA of estrogens and androgens. The EDA framework, equation, and model we present provide a valuable tool for designing a successful EDA. Environ Toxicol Chem 2020;39:1309-1324. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer C Brennan
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Robert W Gale
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - David A Alvarez
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Jason P Berninger
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Jessica K Leet
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Yan Li
- North Carolina Division of Marine Fisheries, North Carolina Department of Environmental Quality, Morehead City, North Carolina, USA
| | - Tyler Wagner
- Pennsylvania Cooperative Fish and Wildlife Research Unit, US Geological Survey, Pennsylvania State University, University Park, Pennsylvania
| | - Donald E Tillitt
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| |
Collapse
|