1
|
Chen B, Liang H, Li A, Ji B, Zhang X, Liu Y. Impact of ibuprofen on microalgal-bacterial granular sludge: Metabolic pathways, functional gene responses and biodegradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138180. [PMID: 40215934 DOI: 10.1016/j.jhazmat.2025.138180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025]
Abstract
Ibuprofen (IBU), a persistent and toxic emerging pollutant widely used as a nonsteroidal anti-inflammatory drug, poses significant challenges for wastewater treatment. This study investigates the effects of IBU on the microalgal-bacterial granular sludge (MBGS) process, a promising approach for wastewater treatment. Results indicate that MBGS can enhance its resilience by secreting more extracellular polymeric substances for effective adsorption. Proteobacteria displayed high adaptability to IBU, while the abundance of Cyanobacteria exhibited considerable fluctuations, leading to cellular structural deformation and a decrease in abundance under 1 mg/L IBU stress. The abundance of functional genes involved in nitrogen and organic matter metabolism, including GDH2, ACSS1_2, and mqo, was significantly influenced by IBU stress, thereby affecting overall system performance. Additionally, several degradation by-products of IBU which have lower toxicity were identified, suggesting the effective biodegradation within the MBGS system. Structural equation modeling indicated that IBU exerted a greater negative impact on microalgae than on bacteria. This study confirms the adaptability of the MBGS system to wastewater containing IBU, highlighting its promising application in treating wastewater with emerging contaminants.
Collapse
Affiliation(s)
- Bingheng Chen
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hua Liang
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiaoyuan Zhang
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Wang Q, Li Y, Chen N, Zhang X, Ma Y, Song Y. Impact of ibuprofen on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox system. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137192. [PMID: 39823876 DOI: 10.1016/j.jhazmat.2025.137192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Ibuprofen (IBU), a commonly used non-steroidal anti-inflammatory drug, is frequently detected in wastewater treatment systems, where it can interfere with nitrogen removal. This study investigated the effects of IBU on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox (SAD/A) system. Moreover, key parameters, such as nitrogen removal efficiency, microbial activity, community structure, and IBU degradation products, were carefully monitored. While IBU concentrations of up to 1 mg/L had negligible impacts on nitrogen removal efficiency due to the counteracting effects of slight inhibition on anammox and enhancement of sulfur autotrophic denitrification, a significant inhibition of ammonia removal occurred when the concentration increased to 10 mg/L. Quantum chemical analyses revealed that IBU underwent biotransformation through decarboxylation and hydroxylation pathways, leading to the formation of two biotransformation products with high ecological toxicity. This study is the first to elucidate the mechanisms by which IBU influences microbial communities and metabolic activities in SAD/A systems. In addition, it highlights the resilience of these systems in maintaining nitrogen removal efficiency under varying IBU concentrations, as well as the environmental risks posed by the biotransformation products of IBU.
Collapse
Affiliation(s)
- Qiong Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yuqi Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Na Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
3
|
Zhou S, Qiao L, Jia Y, Khanal SK, Sun L, Lu H. Micro-nano bubble ozonation for effective treatment of ibuprofen-laden wastewater and enhanced anaerobic digestion performance. WATER RESEARCH 2025; 273:123006. [PMID: 39721508 DOI: 10.1016/j.watres.2024.123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The pharmaceutical industry plays a crucial role in driving global economic growth but also poses substantial environmental challenges, particularly in the efficient treatment of production wastewater. This study investigates the efficacy of micro-nano bubble (MNB) ozonation for treating high-strength ibuprofen (IBU)-laden wastewater (49.9 ± 2.3 mg/L) and mitigating its inhibitory effects on the anaerobic digestion (AD) of intralipid (IL)-laden wastewater. Our findings demonstrated that MNB ozonation achieved a 99.0 % removal efficiency of IBU within 70 min, significantly surpassing the 69.8 % efficiency observed with conventional ozonation under optimal conditions. Both conventional and MNB ozonation primarily transformed IBU through oxidation processes, including hydroxylation and the conversion of CH bonds to C = O groups, along with carbon cleavage. However, MNB ozonation markedly reduced the toxicity of IBU-laden wastewater by further transforming toxic by-products, particularly under mildly alkaline conditions (pH 7.2 and 9.0). This reduction in toxicity led to a significant improvement in subsequent AD performance; specifically, a 70-min MNB ozonation pretreatment enhanced methane production by 48.1 %, increased chemical oxygen demand removal by 35.6 %, and reduced fatty acid accumulation compared to the control without pretreatment. Additionally, the effluent from MNB ozonation positively impacted the microbial community, particularly by enriching syntrophic bacteria and methanogens. Overall, these findings offered new insights into the behavior and toxicity of IBU oxidation by-products in both conventional and MNB ozonation processes. Furthermore, this study proposed a novel strategy for the combined treatment of IBU- and IL-laden wastewaters, establishing a robust foundation for advancing MNB ozonation technology in engineered pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lei Qiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Ma̅noa, Honolulu, HI, United States; Department of Environmental Engineering, Korea University Sejong Campus, Sejong-ro 2511 Sejong 2511, Korea
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
4
|
Aguilar-Romero I, Madrid F, Villaverde J, Alonso E, Santos JL, Morillo E. Removal of Ibuprofen in Water by Bioaugmentation with Labrys neptuniae CSW11 Isolated from Sewage Sludge-Assessment of Biodegradation Pathway Based on Metabolite Formation and Genomic Analysis. J Xenobiot 2024; 15:5. [PMID: 39846537 PMCID: PMC11755648 DOI: 10.3390/jox15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Ibuprofen (IBP) is one of the most consumed drugs in the world. It is only partially removed in wastewater treatment plants (WWTPs), being present in effluent wastewater and sewage sludge, causing the widespread introduction of IBP as an emergent xenobiotic in different environmental compartments. This study describes the use of Labrys neptuniae CSW11, recently described as an IBP degrader, through bioaugmentation processes for the removal of IBP from water under different conditions (additional carbon sources, various concentrations of glucose and IBP). L. neptuniae CSW11 showed very good results in a wide range of IBP concentrations, with 100% removal in only 4 days for 1 and 5 mg L-1 IBP and 7 days for 10 mg L-1, and up to 48.4% removal in 28 days for IBP 100 mg L-1 when using glucose 3 g L-1 as an additional carbon source. Three IBP metabolites were identified during the biotransformation process: 1-hydroxyibuprofen (1-OH-IBP), 2-hydroxyibuprofen (2-OH-IBP), and carboxyibuprofen (CBX-IBP), whose concentrations declined drastically in the presence of glucose. IBP metabolites maintained a certain degree of toxicity in solution, even when IBP was completely removed. The results indicate that L. neptuniae CSW11 can be quite effective in degrading IBP in water, but the bioaugmentation method should be improved using CSW11 in consortia with other bacterial strains able to degrade the toxic metabolites produced. A genome-based analysis of L. neptuniae CSW11 revealed different enzymes that could be involved in IBP biodegradation, and a potential metabolic pathway was proposed based on the metabolites observed and genome analysis.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain; (I.A.-R.); (F.M.); (J.V.)
| | - Fernando Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain; (I.A.-R.); (F.M.); (J.V.)
| | - Jaime Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain; (I.A.-R.); (F.M.); (J.V.)
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011 Seville, Spain; (E.A.); (J.L.S.)
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011 Seville, Spain; (E.A.); (J.L.S.)
| | - Esmeralda Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain; (I.A.-R.); (F.M.); (J.V.)
| |
Collapse
|
5
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
6
|
Carneiro RB, Gil-Solsona R, Subirats J, Restrepo-Montes E, Zaiat M, Santos-Neto ÁJ, Gago-Ferrero P. Biotransformation pathways of pharmaceuticals and personal care products (PPCPs) during acidogenesis and methanogenesis of anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135444. [PMID: 39153297 DOI: 10.1016/j.jhazmat.2024.135444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Jessica Subirats
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
7
|
Sun S, Yan P, Zhang M, Fan Y, Gu X, Chachar A, He S. Reveling the micromolecular biological mechanism of acetate, thiosulfate and Fe 0 in ecological floating beds for treating low C/N wastewater: Insight into nitrogen removals and greenhouse gases reductions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174042. [PMID: 38908573 DOI: 10.1016/j.scitotenv.2024.174042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Selecting an appropriate electron donor to enhance nitrogen removal for treating low C/N wastewater in ecological floating beds (EFBs) is controversy. In this study, a systematic and comprehensive evaluation of sodium acetate (EFB-C), sodium thiosulfate (EFB-S) and iron scraps (EFB-Fe) was performed in a 2-year experiment on long-term viability including nitrogen removal and greenhouse gas emissions associated with key molecular biological mechanisms. The results showed that EFB-C (43-85 %) and EFB-S (40-88 %) exhibited superior total nitrogen (TN) removal. Temperature and hydraulic retention time (HRT) have significant impacts on TN removal of EFB-Fe, however, it could reach 86 % under high temperature (30-35 °C) and a long HRT (3 days), and it has lowest N2O (0-6.2 mg m-2 d-1) and CH4 (0-5.3 mg m-2 d-1) fluxes. Microbial network analysis revealed that the microbes changed from competing to cooperating after adding electron donors. A higher abundance of anammox genera was enriched in EFB-Fe. The Mantel's test and structural equation model provided proof of the differences, which showed that acetate and thiosulfate were similar, whereas Fe0 was different in the nitrogen removal mechanism. Molecular biology analyses further verified that heterotrophic, autotrophic, and mixotrophic coupled with anammox were the main TN removal pathways for EFB-C, EFB-S, and EFB-Fe, respectively. These findings provide a better understanding of the biological mechanisms for selecting appropriate electron donors for treating low C/N wastewater.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Azharuddin Chachar
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
8
|
Lara‐Moreno A, Costa MC, Vargas‐Villagomez A, Carlier JD. New bacterial strains for ibuprofen biodegradation: Drug removal, transformation, and potential catabolic genes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13320. [PMID: 39187308 PMCID: PMC11347016 DOI: 10.1111/1758-2229.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/13/2024] [Indexed: 08/28/2024]
Abstract
Ibuprofen (IBU) is a significant contaminant frequently found in wastewater treatment plants due to its widespread use and limited removal during treatment processes. This leads to its discharge into the environment, causing considerable environmental concerns. The use of microorganisms has recently been recognized as a sustainable method for mitigating IBU contamination in wastewater. In this study, new bacteria capable of growing in a solid medium with IBU as the only carbon source and removing IBU from a liquid medium were isolated from environmental samples, including soil, marine, mine, and olive mill wastewater. Four bacterial strains, namely Klebsiella pneumoniae TIBU2.1, Klebsiella variicola LOIBU1.1, Pseudomonas aeruginosa LOIBU1.2, and Mycolicibacterium aubagnense HPB1.1, were identified through 16S rRNA gene sequencing. These strains demonstrated significant IBU removal efficiencies, ranging from 60 to 100% within 14 days, starting from an initial IBU concentration of 5 mg per litre. These bacteria have not been previously reported in the literature as IBU degraders, making this work a valuable contribution to further studies in the field of bioremediation in environments contaminated by IBU. Based on the IBU removal results, the most promising bacteria, K. pneumoniae TIBU2.1 and M. aubagnense HPB1.1, were selected for an in silico analysis to identify genes potentially involved in IBU biodegradation. Interestingly, in the tests with TIBU2.1, a peak of IBU transformation product(s) was detected by high-performance liquid chromatography, while in the tests with HPB1.1, it was not detected. The emerging peak was analysed by liquid chromatography-mass spectrometry, indicating the presence of possible conjugates between intermediates of IBU biodegradation. The proteins encoded on their whole-genome sequences were aligned with proteins involved in an IBU-degrading pathway reported in bacteria with respective catabolic genes. The analysis indicated that strain HPB1.1 possesses genes encoding proteins similar to most enzymes reported associated with the IBU metabolic pathways used as reference bacteria, while strain TIBU2.1 has genes encoding proteins similar to enzymes involved in both the upper and the lower part of that pathway. Notably, in the tests with the strain having more candidate genes encoding IBU-catabolic enzymes, no IBU transformation products were detected, while in the tests with the strain having fewer of these genes, detection occurred.
Collapse
Affiliation(s)
- Alba Lara‐Moreno
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
- Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of SevilleSevilleSpain
| | - Maria Clara Costa
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
- Faculty of Sciences and TechnologiesUniversity of the Algarve, Gambelas CampusFaroPortugal
| | | | - Jorge Dias Carlier
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
| |
Collapse
|
9
|
Chalipa Z, Hosseinzadeh M, Nikoo MR. Performance evaluation of a new sponge-based moving bed biofilm reactor for the removal of pharmaceutical pollutants from real wastewater. Sci Rep 2024; 14:14240. [PMID: 38902342 PMCID: PMC11190270 DOI: 10.1038/s41598-024-64442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Pharmaceutical pollutants, a group of emerging contaminants, have attracted outstanding attention in recent years, and their removal from aquatic environments has been addressed. In the current study, a new sponge-based moving bed biofilm reactor (MBBR) was developed to remove chemical oxygen demand (COD) and the pharmaceutical compound Ibuprofen (IBU). A 30-L pilot scale MBBR was constructed, which was continuously fed from the effluent of the first clarifier of the Southern Tehran wastewater treatment plant. The controlled operational parameters were pH in the natural range, Dissolved Oxygen of 1.5-2 mg/L, average suspended mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids (MLVSS) of 1.68 ± 0.1 g/L and 1.48 ± 0.1 g/L, respectively. The effect of hydraulic retention time (HRT) (5 h, 10 h, 15 h), filling ratio (10%, 20%, 30%), and initial IBU concentration (2 mg/L, 5 mg/L, 10 mg/L) on removal efficiencies was assessed. The findings of this study revealed a COD removal efficiency ranging from 48.9 to 96.7%, with the best removal efficiency observed at an HRT of 10 h, a filling ratio of 20%, and an initial IBU concentration of 2 mg/L. Simultaneously, the IBU removal rate ranged from 25 to 92.7%, with the highest removal efficiency observed under the same HRT and filling ratio, albeit with an initial IBU concentration of 5 mg/L. An extension of HRT from 5 to 10 h significantly improved both COD and IBU removal. However, further extension from 10 to 15 h slightly enhanced the removal efficiency of COD and IBU, and even in some cases, removal efficiency decreased. Based on the obtained results, 20% of the filling ratio was chosen as the optimum state. Increasing the initial concentration of IBU from 2 to 5 mg/L generally improved COD and IBU removal, whereas an increase from 5 to 10 mg/L caused a decline in COD and IBU removal. This study also optimized the reactor's efficiency for COD and IBU removal by using response surface methodology (RSM) with independent variables of HRT, filling ratio, and initial IBU concentration. In this regard, the quadratic model was found to be significant. Utilizing the central composite design (CCD), the optimal operating parameters at an HRT of 10 h, a filling ratio of 21%, and an initial IBU concentration of 3 mg/L were pinpointed, achieving the highest COD and IBU removal efficiencies. The present study demonstrated that sponge-based MBBR stands out as a promising technology for COD and IBU removal.
Collapse
Affiliation(s)
- Zohreh Chalipa
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 1684613114, Iran
| | - Majid Hosseinzadeh
- School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 1684613114, Iran.
| | - Mohammad Reza Nikoo
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
10
|
Aguilar-Romero I, Madrid F, Villaverde J, Morillo E. Ibuprofen-enhanced biodegradation in solution and sewage sludge by a mineralizing microbial consortium. Shift in associated bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132970. [PMID: 37976863 DOI: 10.1016/j.jhazmat.2023.132970] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Ibuprofen (IBP) is a widely used drug of environmental concern as emerging contaminant due to its low elimination rates by wastewater treatment plants (WWTPs), leading to the contamination of the environment, where IBP is introduced mainly from wastewater discharge and sewage sludge used as fertilizer. This study describes the application of a consortium from sewage sludge and acclimated with ibuprofen (consortium C7) to accelerate its biodegradation both in solution and sewage sludge. 500 mg L-1 IBP was degraded in solution in 28 h, and 66% mineralized in 3 days. IBP adsorbed in sewage sludge (10 mg kg-1) was removed after bioaugmentation with C7 up to 90% in 16 days, with a 5-fold increase in degradation rate. This is the first time that bioaugmentation with bacterial consortia or isolated bacterial strains have been used for IBP degradation in sewage sludge. The bacterial community of consortium C7 was significantly enriched in Sphingomonas wittichii, Bordetella petrii, Pseudomonas stutzeri and Bosea genosp. after IBP degradation, with a special increase in abundance of S. wittichii, probably the main potential bacterial specie responsible for IBP mineralization. Thirteen bacterial strains were isolated from C7 consortium. All of them degraded IBP in presence of glucose, especially Labrys neptuniae. Eight of these bacterial strains (B. tritici, L. neptuniae, S. zoogloeoides, B. petrii, A. denitrificans, S. acidaminiphila, P. nitroreducens, C. flaccumfaciens) had not been previously described as IBP-degraders. The bacterial community that makes up the indigenous consortium C7 appears to have a highly efficient biotic degradation potential to facilitate bioremediation of ibuprofen in contaminated effluents as well as in sewage sludge generated in WWTPs.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Fernando Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Jaime Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Esmeralda Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| |
Collapse
|
11
|
Camparotto NG, de Figueiredo Neves T, de Souza Vendemiatti J, Dos Santos BT, Vieira MGA, Prediger P. Adsorption of contaminants by nanomaterials synthesized by green and conventional routes: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12683-12721. [PMID: 38253828 DOI: 10.1007/s11356-024-31922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Nanomaterials, due to their large surface area and selectivity, have stood out as an alternative for the adsorption of contaminants from water and effluents. Synthesized from green or traditional protocols, the main advantages and disadvantages of green nanomaterials are the elimination of the use of toxic chemicals and difficulty of reproducing the preparation of nanomaterials, respectively, while traditional nanomaterials have the main advantage of being able to prepare nanomaterials with well-defined morphological properties and the disadvantage of using potentially toxic chemicals. Thus, based on the particularities of green and conventional nanomaterials, this review aims to fill a gap in the literature on the comparison of the synthesis, morphology, and application of these nanomaterials in the adsorption of contaminants in water. Focusing on the adsorption of heavy metals, pesticides, pharmaceuticals, dyes, polyaromatic hydrocarbons, and phenol derivatives in water, for the first time, a review article explored and compared how chemical and morphological changes in nanoadsorbents synthesized by green and conventional protocols affect performance in the adsorption of contaminants in water. Despite advances in the area, there is still a lack of review articles on the topic.
Collapse
Affiliation(s)
| | | | | | - Bruna Toledo Dos Santos
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil.
| |
Collapse
|
12
|
Xu N, Guo J, Huang C, Li H, Hou Y, Han Y, Song Y, Zhang D. Effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems with two filling modes: Performance and toxic response mechanism. ENVIRONMENTAL RESEARCH 2023; 239:117251. [PMID: 37783323 DOI: 10.1016/j.envres.2023.117251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
To investigate the effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems, two individual reactors with the layered filling (L-SCPAD) and mixed filling (M-SCPAD) systems were established via sulfur and calcined pyrite. Effluent NO3--N concentration of the L-SCPAD and M-SCPAD systems was first increased to 6.44, 0.93 mg/L under 0.5 mg/L IBU exposure and gradually decreased to 1.66 mg/L, 0 mg/L under 4.0 mg/L IBU exposure, indicating that NO3--N removal performance of the M-SCPAD system was better than that of the L-SCPAD system. The variation of extracellular polymeric substances (EPS) characteristics demonstrated that more EPS was secreted in the M-SCPAD system compared to the L-SCPAD system, which contributed to forming a more stable biofilm structure and protecting microorganisms against the toxicity of IBU in the M-SCPAD system. Moreover, the increased electron transfer impedance and decreased cytochrome c implied that IBU inhibited the electron transfer efficiency of the L-SCPAD and M-SCPAD systems. The decreased adenosine triphosphate (ATP) and electron transfer system activity (ETSA) content showed that IBU inhibited metabolic activity, but the M-SCPAD system exhibited higher metabolic activity compared to the L-SCPAD system. In addition, the analysis of the bacterial community indicated a more stable abundance of nitrogen removal function bacteria (Bacillus) in the M-SCPAD system compared to the L-SCPAD system, which was conducive to maintaining a stable denitrification performance. The toxic response mechanism based on the biogeobattery effect was proposed in the SCPAD systems under IBU exposure. This study provided an important reference for the long-term toxic effect of IBU on the SCPAD systems.
Collapse
Affiliation(s)
- Nengyao Xu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Daohong Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
13
|
Bangia S, Bangia R, Daverey A. Pharmaceutically active compounds in aqueous environment: recent developments in their fate, occurrence and elimination for efficient water purification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1344. [PMID: 37857877 DOI: 10.1007/s10661-023-11858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
The existence of pharmaceutically active compounds (PhACs) in the water is a major concern for environmentalists due to their deleterious effects on living organisms even at minuscule concentrations. This review focuses on PhACs such as analgesics and anti-inflammatory compounds, which are massively excreted in urine and account for the majority of pharmaceutical pollution. Furthermore, other PhACs such as anti-epileptics, beta-blockers and antibiotics are discussed because they also contribute significantly to pharmaceutical pollution in the aquatic environment. This review is divided into two parts. In the first part, different classes of PhACs and their fate in the wastewater environment are presented. In the second part, recent advances in the removal of PhACs by conventional wastewater treatment plants, including membrane bioreactors (MBRs), activated carbon adsorption and bench-scale studies concerning a broad range of advanced oxidation processes (AOPs) that render practical and appropriate strategies for the complete mineralization and degradation of pharmaceutical drugs, are reviewed. This review indicates that drugs like diclofenac, naproxen, paracetamol and aspirin are removed efficiently by conventional systems. Activated carbon adsorption is suitable for the removal of diclofenac and carbamazepine, whereas AOPs are leading water treatment strategies for the effective removal of reviewed PhACs.
Collapse
Affiliation(s)
- Saulab Bangia
- Hamburg University of Technology, 21073, Hamburg, Germany
| | - Riya Bangia
- Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India.
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
14
|
Xu N, Li H, Guo T, Hou Y, Han Y, Song Y, Zhang D, Guo J. Effect of ibuprofen on the sulfur autotrophic denitrification process and microbial toxic response mechanism. BIORESOURCE TECHNOLOGY 2023:129261. [PMID: 37277006 DOI: 10.1016/j.biortech.2023.129261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The effect of ibuprofen (IBU) on the sulfur autotrophic denitrification (SAD) process and microbial toxic response mechanism were investigated. Nitrate removal performance was inhibited by high IBU concentrations (10 and 50 mg/L), and the effect of low IBU concentrations (1 mg/L) on nitrate removal performance was negligible. The low IBU concentration induced basal oxidative stress for microbial self-protection, while the high IBU concentration induced high-intensity oxidative stress to damage the microbial cell membrane structure. Electrochemical characterization showed that the low IBU concentration stimulated the electron transfer efficiency, which was inhibited at the high IBU concentration. Moreover, the variation content of nicotinamide adenine dinucleotide (NADH) and nitrate reductase showed that metabolic activity increased at low IBU concentrations and decreased at high IBU concentrations during the sulfur autotrophic nitrate reduction process. This study proposed the hormesis toxic response mechanism of the SAD process to IBU exposure.
Collapse
Affiliation(s)
- Nengyao Xu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Tingting Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Daohong Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
15
|
Chen R, Huang J, Li X, Yang C, Wu X. Functional characterization of an efficient ibuprofen-mineralizing bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130751. [PMID: 36641849 DOI: 10.1016/j.jhazmat.2023.130751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Ibuprofen (IBU) is a widely used non-steroidal anti-inflammatory drug (NSAID), which has attracted widespread attention due to its high frequency of environmental detection, non-degradability and potential ecological risks. However, little is known about the functional characterization of the highly efficient IBU-mineralizing consortium. In this study, an IBU-mineralizing consortium C6 was obtained by continuous enrichment of the original consortium C1 accumulated the metabolite of 2-Hydroxyibuprofen (2HIBU). Methylobacter, Pseudomonas, and Dokdonella spp. were significantly enriched in the consortium C6. Streptomyces sp. had a relative abundance of about 0.01 % in the consortium C1 but extremely low (< 0.001 %) in the consortium C6. Subsequently, two IBU degraders, Streptomyces sp. D218 and Pseudomonas sp. M20 with detection of 2HIBU or not, were isolated from the consortia C1 and C6, respectively. These results imply that the degradation of IBU in the consortia C1 and C6 may be mainly mediated by key players of Streptomyces and Pseudomonas, respectively. This study showed that the composition of the core functional strains of the bacterial community structure was changed by continuous enrichment, which affected the degradation process of IBU. These findings provide new insights into our understanding of the biotransformation process of NSAIDs and provide valuable strain resources for bioremediation.
Collapse
Affiliation(s)
- Ruomu Chen
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiaomeng Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Chen Yang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
16
|
Xu S, Yan Y, Shuang C, Zhou Q, Ji R, Li A. Biological magnetic ion exchange resin on advanced treatment of synthetic wastewater. BIORESOURCE TECHNOLOGY 2023; 372:128613. [PMID: 36640820 DOI: 10.1016/j.biortech.2023.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In this work, three biological ion exchange systems and one biological activated carbon (BAC) system were established by employing magnetic ion exchange resin (MIEX), non-magnetic resin (NIEX), polystyrenic resin (DIEX) and granular activated carbon as the biocarrier for advanced treatment of wastewater. Dissolved organic carbon (DOC) removal of four systems all stabilized at about 84% due to biodegradation. The start-up period of bio-MIEX (nearly 40 d) was greatly shorter than that of others (nearly 190 d). Ibuprofen removal was ascribed to adsorption in the initial stage, which subsequently changed to the effect of biodegradation. After the start-up period, ibuprofen removal was nearly 100% (bio-MIEX), 60% (bio-NIEX), 61% (bio-DIEX) and 89% (BAC). According to the surface observation, ATP and protein measurement and metagenomic analysis, the superior performance of bio-MIEX could be attributed to its highest biological activity resulted from the presence of Fe3O4 rather than polymer matrix and surface roughness.
Collapse
Affiliation(s)
- Shanshan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunbao Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Shi K, Wang Y, Xu A, Zhu H, Gu L, Liu X, Shen J, Han W, Wei K. Integrated electro-Fenton system based on embedded U-tube GDE for efficient degradation of ibuprofen. CHEMOSPHERE 2023; 311:137196. [PMID: 36370765 DOI: 10.1016/j.chemosphere.2022.137196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Ibuprofen (IBP) is a carcinogenic non-steroidal anti-inflammatory drug (NSAID). It is of certain hazard to aquatic animals and may cause potential harm to human health. As traditional methods cannot effectively remove such a pollutant, many advanced oxidation processes (AOPs) have been developed for its degradation. The electro-Fenton process has the advantages of strong oxidative ability, a synergistic effect of various degradation processes, and a wide application range. This study developed a high-performance gas diffusion electrode (GDE) for electrochemical hydrogen peroxide (H2O2) production. The optimum system performance was found at the current density of 10 mA cm-2, pH of 7.0, and air flow rate at 0.6 L min-1, where the accumulation of H2O2 could reach as high as 769.82 mg L-1. The computational fluid dynamics (CFD) simulation results revealed a fast mass-transfer property in this electro-Fenton system with U-tube GDEs, which resulted in a deep-level degradation (∼100%) of the pollutant (IBP) and a low-concentration degradation of 10 mg L-1 within a 120-min reaction period. The high-performance liquid chromatography-mass spectrometry (LC-MS) studies demonstrated that the hydroxyl radicals were the primary active species in the electro-Fenton system and that the degradation intermediates of IBP were mainly 1-(4-isobutylphenyl) ethanol and 2-hydroxy-2-(4-isobutyl phenyl) propanoic acid through four probable electro-Fenton degradation pathways. This report provides a facile and efficient way to construct a high-performance electro-Fenton reactor, which could be effectively used in advanced oxidation processes (AOPs) to remove emerging contaminants in wastewater and natural water.
Collapse
Affiliation(s)
- Kaiqiang Shi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yi Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Anlin Xu
- Nanjing Tech University, School of Environmental Science and Engineering, Nanjing 211816, Jiangsu, China.
| | - Hongwei Zhu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Liankai Gu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Xiaodong Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
18
|
Wang Z, Liang B, Hou Y, Li S, Xie L, Peng L, Zhang P, Wang A, Yun H, Li X. Weak electrostimulation enhanced the microbial transformation of ibuprofen and naproxen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155522. [PMID: 35489501 DOI: 10.1016/j.scitotenv.2022.155522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Ibuprofen (IBU) and naproxen (NPX) are commonly used non-steroidal anti-inflammatory drugs (NSAIDs) with high-risk quotients and are frequently detected in various aquatic environments. A weak electrostimulated biofilm not only had improved removal efficiencies to IBU and NPX, but also transformed different enantiomers with comparable efficiency and without configuration inversion. IBU was transformed mainly by oxidation (hydroxyl-IBU, carboxy-IBU), while NPX was mainly detoxified. The microbial analysis of IBU and NPX biofilm showed that the shared core consortia (> 1%) contained typical electro-active bacteria (Geobacter, Desulfovibrio), fermenters (Petrimonas, Acetobacterium) and potential degraders (Pandoraea, Nocardiaceae), which exhibited synergistic interactions by exchanging the additional electrons, H+, coenzyme NAD(H) or NAD(P) (H) and energy. The fungal community has a significant correlation to those core bacteria and they may also play transformation roles with their diverse enzymes. Plenty of nonspecific oxidoreductase, decarboxylase, hydrolase, cytochrome P450, and other enzymes relating to xenobiotic degradation were high-abundance encoded by the core consortia and could potentially participate in IBU and NPX biotransformation. This study offers new insights into the functional microbes and enzymes working on complex NSAIDs biotransformation and provided a feasible strategy for the enhanced removal of NSAIDs (especially IBU and NPX).
Collapse
Affiliation(s)
- Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Li Xie
- Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Core Facility for Life Science Research, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatan Road #1272, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
19
|
Li Y, Thompson J, Wang Z, Bräunig J, Zheng Q, Thai PK, Mueller JF, Yuan Z. Transformation and fate of pharmaceuticals, personal care products, and per- and polyfluoroalkyl substances during aerobic digestion of anaerobically digested sludge. WATER RESEARCH 2022; 219:118568. [PMID: 35598466 DOI: 10.1016/j.watres.2022.118568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Post-anaerobic aerobic digestion (PAAD) is a promising strategy to further reduce the volume and improve the quality of anaerobically digested sludge (ADS). However, the effect of PAAD process on the fate of pharmaceuticals and personal care products (PPCPs) and per- and polyfluoroalkyl substances (PFAS) remains largely unknown. In this study, fourteen PPCPs and fifteen PFAS were detected in ADS and evaluated regarding their fate and transformation in a laboratory aerobic digester operated with a hydraulic retention time of 13 days under 22 ℃. Twelve PPCPs demonstrated significant (p < 0.05) decrease in their total concentrations (dissolved and adsorbed fractions combined) with six compounds presenting substantial transformation (> 80%) after aerobic digestion. On the contrary, PFAS were not removed and their concentrations were either increased (increasing ratio: 91 - 571%) or consistent in the sludge during PAAD process, suggesting their recalcitrance to post aerobic digestion. More than half of PPCPs and PFAS demonstrated medium to strong sorption onto solids with their solid fraction higher than 50% in the ADS. After PAAD process, sorption of four PPCPs and three PFAAs to solids was enhanced in sludge.
Collapse
Affiliation(s)
- Yijing Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jack Thompson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Zou R, Tang K, Hambly AC, Chhetri RK, Andersen HR, Zhang Y. Elimination of recalcitrant micropollutants by medium pressure UV-catalyzed bioelectrochemical advanced oxidation process: Influencing factors, transformation pathway and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154543. [PMID: 35302016 DOI: 10.1016/j.scitotenv.2022.154543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Bio-electro-Fenton (BEF) processes have been widely studied in recent years to remove recalcitrant micropollutants from wastewater. Though promising, it still faces the critical challenge of residual iron and iron sludge in the treated effluent. Thus, an innovative medium-pressure ultraviolet-catalyzed bio-electrochemical system (MUBEC), in which medium-pressure ultraviolet was employed as an alternative to iron for in-situ H2O2 activation, was developed for the removal of recalcitrant micropollutants. The influence of operating parameters, including initial catholyte pH, cathodic aeration rate, and input voltage, on the system performance, was explored. Results indicated that complete reduction of 10 mg L-1 of model micro-pollutants ibuprofen (IBU) and carbamazepine (CBZ) was achieved at pH 3, with an aeration rate of 1 mL min-1 and a voltage of 0.3 V, following pseudo-first-order kinetics. Moreover, potential transformation pathways and the associated intermediates during the degradation were deduced and detected, respectively. Thus, the MUBEC system shows the potential for the efficient and cost-effective degradation of recalcitrant micropollutants from wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ravi Kumar Chhetri
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
21
|
Chopra S, Kumar D. Characteristics and growth kinetics of biomass of Citrobacter freundii strains PYI-2 and Citrobacter portucalensis strain YPI-2 during the biodegradation of Ibuprofen. Int Microbiol 2022; 25:615-628. [PMID: 35553276 DOI: 10.1007/s10123-022-00248-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
Ibuprofen (IBU) is the third most commonly used analgesic drug in the world. It enters the water system as a result of human excretion-based wastewater discharges. Hence, it attracts the attention of environmentalists for its ecological fate and degradation behavior. In this study, the two IBU degrading bacterial strains, Citrobacter freundii strain PYI-2 (MT039504) and Citrobacter portucalensis strain YPI-2 (MN744335), were isolated from industrial wastewater samples using an enrichment culture method, identified, and characterized. Physiological and batch culture degradation studies have indicated that these strains involved in IBU degradation and the intermediates produced during the process were analyzed. These strains degrade IBU in the batch culture. The optimum pH was reported for degradation of the PYI2 strain (6.9) and YPI2 strain (5.8), and the optimum temperatures were 42°C and 32°C, respectively. Biomass kinetic analysis of these strains was performed based on physical parameters (temperature, pH, and rpm) and confirmed by the experimental study. As indicated in the GC-MS chromatogram peaks, viz., hydroxyibuprofen, 2-(4-hydroxyphenylpropionic acid), 1,4-hydroquinone, and 2-hydroxy-1,4-quinol various intermediates compounds of degradation pathway were observed. Finally, through the GC-MS data, the metabolic pathway for degradation was predicted. In the study, it was confirmed that Citrobacter freundii strain PYI-2 and Citrobacter portucalensis strain YPI-2 exhibit metabolic potential for the biodegradation of IBU and can be further deployed in bioremediation.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
22
|
Shen C, Wang Y, Fu J. Urchin-like Co3O4 anchored on reduced graphene oxide with enhanced performance for peroxymonosulfate activation in ibuprofen degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114572. [PMID: 35085963 DOI: 10.1016/j.jenvman.2022.114572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/29/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Urchin-like Co3O4 anchored on reduced graphene oxide was easily prepared with hydrothermal reaction by using a cheap and green agent. First, the surface morphology and physicochemical properties of Co3O4-rGO were characterized. Compared with Co3O4, Co3O4-rGO possessed excellent activity in peroxymonosulfate (PMS) activation for ibuprofen (IBU) degradation. Then, the influences of Co3O4-rGO dosage, IBU concentration, PMS concentration and pH on IBU and TOC removal were investigated, respectively. Furthermore, both ·OH and SO4•- were identified to be the main active species, and SO4•- made the predominant contribution. In addition, residual PMS and SO4•- quantification demonstrated that Co3O4-rGO could activate PMS more effectively, and produce more SO4•-. The mechanistic study revealed that the valence state conversion of Co2+/Co3+ was the critical PMS activation mechanism. Moreover, the enhanced activity of Co3O4-rGO is accounted for the combination of multiple unique characteristics, including excellent electronic transmission (Co2+ to Co3+, Co2+ to PMS), more active sites, and chemical bonds between Co3O4 and rGO. 13 degradation products were determined and possible degradation routes were proposed based on the results of LC-MS/MS. Finally, the Co3O4-rGO/PMS system also exhibited satisfactory removal of IBU in real water matrices.
Collapse
Affiliation(s)
- Chanchan Shen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China; College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China.
| | - Ying Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Jun Fu
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China.
| |
Collapse
|
23
|
Unraveling pharmaceuticals removal in a sulfur-driven autotrophic denitrification process: Performance, kinetics and mechanisms. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Zhao Q, Guo W, Luo H, Xing C, Wang H, Liu B, Si Q, Li D, Sun L, Ren N. Insights into removal of sulfonamides in anaerobic activated sludge system: Mechanisms, degradation pathways and stress responses. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127248. [PMID: 34560488 DOI: 10.1016/j.jhazmat.2021.127248] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The fate of antibiotics in activated sludge has attracted increasing interests. However, the focus needs to shift from concerning removal efficiencies to understanding mechanisms and sludge responding to antibiotic toxicity. Herein, we operated two anaerobic sequencing batch reactors (ASBRs) for 200 days with sulfadiazine (SDZ) and sulfamethoxazole (SMX) added. The removal efficiency of SMX was higher than that of SDZ. SDZ was removed via adsorption (9.91-21.18%) and biodegradation (10.20-16.00%), while biodegradation (65.44-86.26%) was dominant for SMX removal. The mechanisms involved in adsorption and biodegradation were investigated, including adsorption strength, adsorption sites and the roles of enzymes. Protein-like substance (tryptophan) functioned vitally in adsorption by forming complexes with sulfonamides. P450 enzymes may catalyze sulfonamides degradation via hydroxylation and desulfurization. Activated sludge showed distinct responses to different sulfonamides, reflected in the changes of microbial communities and functions. These responses were related to sulfonamides removal, corresponding to the stronger adsorption capacity of activated sludge in ASBR-SDZ and degradation capacity in ASBR-SMX. Furthermore, the reasons for different removal efficiencies of sulfonamides were analyzed according to steric and electronic effects. These findings propose insights into antibiotic removal and broaden the knowledge for self-protection mechanisms of activated sludge under chronic toxicities of antibiotics.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Chuanming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Denian Li
- Laboratory for Integrated Technology of "Urban and Rural Mines" Exploitation, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Nengyuan Road, Wushan, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
Kennes-Veiga DM, Gónzalez-Gil L, Carballa M, Lema JM. Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: A review. BIORESOURCE TECHNOLOGY 2022; 344:126291. [PMID: 34752884 DOI: 10.1016/j.biortech.2021.126291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Biotransformation of trace-level organic micropollutants (OMPs) by complex microbial communities in wastewater treatment facilities is a key process for their detoxification and environmental impact reduction. Therefore, understanding the metabolic activities and mechanisms that contribute to their biotransformation is essential when developing approaches aiming to minimize their discharge. This review addresses the relevance of cometabolic processes and discusses the main enzymatic activities currently known to take part in OMPs removal under different redox environments in the compartments of wastewater treatment plants. Furthermore, the most common methodologies to decipher such enzymes are discussed, including the use of in vitro enzyme assays, enzymatic inhibitors, the analysis of transformation products and the application of several -omic techniques. Finally, perspectives on major challenges and future research requirements to improve OMPs biotransformation are proposed.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Lorena Gónzalez-Gil
- Defence University Centre, Spanish Naval Academy, Plaza de España, 36920 Marín, Spain
| | - Marta Carballa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
26
|
Liu Y, Zheng X, Zhang S, Sun S. Enhanced removal of ibuprofen by heterogeneous photo-Fenton-like process over sludge-based Fe 3O 4-MnO 2 catalysts. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:291-304. [PMID: 35050884 DOI: 10.2166/wst.2021.612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterogeneous photo-Fenton-like catalysts with low cost, little hazard, high effectiveness and facile separation from aqueous solution were highly desirable. In this study, sludge-based catalysts combining nano Fe3O4-MnO2 and sludge activated carbon were successfully synthesized by high-temperature calcination method and then characterized. These synthetic materials were applied to remove ibuprofen in the heterogeneous photo-Fenton process. The preparation conditions of sludge-based catalysts optimized by orthogonal experiments were 2.0 M of ZnCl2, a temperature of 500 °C, a pyrolysis time of 60 min, and a sludge ratio: Fe3O4-MnO2 of 25:2. In batch experiments, the optimal experimental conditions were determined as catalyst dosage of 0.4 g·L-1, hydrogen peroxide concentration of 3.0 mL·L-1, pH value of 3.3, and contact time of 2.5 h. The degradation rate sludge/Fe3O4-MnO2 catalyst to ibuprofen is up to 95%. The removal process of ibuprofen fitted the pseudo-second-order kinetic model, and the photocatalytic degradation process was the main factor controlling the reaction rate. The catalytic mechanism was proposed according to the Fourier transform infrared analysis and mass spectrometry product analysis; it was mainly attributed to the interaction between hydroxyl groups and benzene rings.
Collapse
Affiliation(s)
- Yanjun Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China E-mail:
| | - Xiaoqian Zheng
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China E-mail:
| | - Shufen Zhang
- Comprehensive Management Service Center of Taian, Taian, Shandong 271018, China
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China E-mail:
| |
Collapse
|
27
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
28
|
Ivshina IB, Tyumina EA, Bazhutin GA, Vikhareva EV. Response of Rhodococcus cerastii IEGM 1278 to toxic effects of ibuprofen. PLoS One 2021; 16:e0260032. [PMID: 34793540 PMCID: PMC8601567 DOI: 10.1371/journal.pone.0260032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
The article expands our knowledge on the variety of biodegraders of ibuprofen, one of the most frequently detected non-steroidal anti-inflammatory drugs in the environment. We studied the dynamics of ibuprofen decomposition and its relationship with the physiological status of bacteria and with additional carbon and energy sources. The involvement of cytoplasmic enzymes in ibuprofen biodegradation was confirmed. Within the tested actinobacteria, Rhodococcus cerastii IEGM 1278 was capable of complete oxidation of 100 μg/L and 100 mg/L of ibuprofen in 30 h and 144 h, respectively, in the presence of an alternative carbon source (n-hexadecane). Besides, the presence of ibuprofen induced a transition of rhodococci from single- to multicellular lifeforms, a shift to more negative zeta potential values, and a decrease in the membrane permeability. The initial steps of ibuprofen biotransformation by R. cerastii IEGM 1278 involved the formation of hydroxylated and decarboxylated derivatives with higher phytotoxicity than the parent compound (ibuprofen). The data obtained indicate potential threats of this pharmaceutical pollutant and its metabolites to biota and natural ecosystems.
Collapse
Affiliation(s)
- Irina B. Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- * E-mail:
| | - Elena A. Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Grigory A. Bazhutin
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Elena V. Vikhareva
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
29
|
Abbott T, Kor-Bicakci G, Eskicioglu C. Examination of single-stage anaerobic and anoxic/aerobic and dual-stage anaerobic-anoxic/aerobic digestion to remove pharmaceuticals from municipal biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148237. [PMID: 34126479 DOI: 10.1016/j.scitotenv.2021.148237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Many trace contaminants of emerging concern (CECs) including a number of pharmaceutically active compounds are not effectively removed during conventional wastewater treatment processes and instead accumulate in wastewater sludge. Unfortunately, many existing sludge stabilization treatments such as anaerobic digestion (AD) also have limited effectiveness against many of these CECs including the four pharmaceuticals ibuprofen, diclofenac, carbamazepine, and azithromycin which can then enter the environment through the disposal or land application of biosolids. Single-stage AD, single-stage cycling aerobic-anoxic (AERO/ANOX) and sequential digesters (AD followed by an AERO/ANOX digester) at sludge retention times (SRT) of 5 to 20-days were evaluated side-by-side to assess their effectiveness in removing pharmaceuticals and conventional organic matter. Single-stage ADs (35 °C) and AERO/ANOX (22 °C) digesters effectively removed total solids while sequential AD + AERO/ANOX digesters offered further improvements. Ibuprofen was not effectively removed during AD and resulted in up to a 23 ± 8% accumulation. However, ibuprofen was completely removed during AERO/ANOX digestion and in several sequential digestion scenarios. Each type of digestion was less effective against carbamazepine with slight (3 ± 2%) accumulations to low levels (14 ± 1%) of removals in each type of digestion studied. Diclofenac was more effectively removed with up 30 ± 3% to 39 ± 4% reductions in the single-stage digesters (AD and AERO/ANOX, respectively). While sequential digestion scenarios with the longest aerobic SRTs significantly increased diclofenac removals from their first-stage digesters, scenarios with the longest anaerobic SRTs actually decreased removals from first-stage digesters, possibly due to reversible biotransformation of diclofenac conjugates/metabolites. Up to 43 ± 6% of azithromycin was removed in AERO/ANOX digesters, while the best performing sequential-digester scenario removed up to 63 ± 7% of azithromycin. This study shows that different digester configurations can reduce the CEC burden in biosolids while also greatly reducing their volumes for disposal, although none can remove CECs completely.
Collapse
Affiliation(s)
- Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, Canada
| | - Gokce Kor-Bicakci
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, Canada
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Avenue, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
30
|
Mulkiewicz E, Wolecki D, Świacka K, Kumirska J, Stepnowski P, Caban M. Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148251. [PMID: 34139498 DOI: 10.1016/j.scitotenv.2021.148251] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The presence of the non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is a fact, and aquatic and soil organisms are chronically exposed to trace levels of these emerging pollutants. This review presents the current state of knowledge on the metabolic pathways of NSAIDs in organisms at various levels of biological organisation. More than 150 publications dealing with target or non-target analysis of selected NSAIDs (mainly diclofenac, ibuprofen, and naproxen) were collected. The metabolites of phase I and phase II are presented. The similarity of NSAIDs metabolism to that in mammals was observed in bacteria, microalgae, fungi, higher plants, invertebrates, and vertebrates. The differences, such as newly detected metabolites, the extracellular metabolism observed in bacteria and fungi, or phase III metabolism in plants, are highlighted. Metabolites detected in plants (conjugates with sugars and amino acids) but not found in any other organisms are described. Selected, in-depth studies with isolated bacterial strains showed the possibility of transforming NSAIDs into assimilable carbon sources. It has been found that some of the metabolites show higher toxicity than their parent forms. The presence of metabolites of NSAIDs in the environment is the cumulative effect of their introduction with wastewaters, their formation in wastewater treatment plants, and their transformation by non-target wild-living organisms.
Collapse
Affiliation(s)
- Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Daniel Wolecki
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
31
|
Sánchez-Aceves L, Pérez-Alvarez I, Gómez-Oliván LM, Islas-Flores H, Barceló D. Long-term exposure to environmentally relevant concentrations of ibuprofen and aluminum alters oxidative stress status on Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109071. [PMID: 33992815 DOI: 10.1016/j.cbpc.2021.109071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Despite the ubiquitous presence of multiple pollutants in aqueous environments have been extensively demonstrated, the ecological impact of chemical cocktails has not been studied in depth. In recent years, environmental studies have mainly focused on the risk assessment of individual chemical substances neglecting the effects of complex mixtures even though it has been demonstrated that combined effects exerted by pollutants might represent a greater hazard to the biocenosis. The current study evaluates the effects on the oxidative stress status induced by individual forms and binary mixtures of ibuprofen (IBU) and aluminum (Al) on brain, gills, liver and gut tissues of Danio rerio after long-term exposure to environmentally relevant concentrations (0.1-11 μg L-1 and 0.05 mg L-1- 6 mg L-1, respectively). Lipid peroxidation (LPO), Protein carbonyl content (PCC) and activity of Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GPX) were evaluated. Moreover, concentrations of both toxicants and the metabolite 2-OH-IBU were quantified on test water and tissues. Results show that ibuprofen (IBU) and aluminum (Al) singly promote the production of radical species and alters the oxidative stress status in all evaluated tissues of zebrafish, nevertheless, higher effects were elicited by mixtures as different interactions take place.
Collapse
Affiliation(s)
- Livier Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| |
Collapse
|
32
|
Melo A, Costa J, Quintelas C, Ferreira EC, Mesquita DP. Effect of ibuprofen on extracellular polymeric substances (EPS) production and composition, and assessment of microbial structure by quantitative image analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112852. [PMID: 34091137 DOI: 10.1016/j.jenvman.2021.112852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
A Sequencing Batch Reactor (SBR) with activated sludge was operated with synthetic wastewater containing ibuprofen (IBU) to investigate the biomass stress-responses under long-term IBU exposure. There were 3 different phases: phase I as the control without IBU for 56 days, phase II (40 days), and phase III (60 days) containing IBU at 10 and 5 mg L-1 each. The overall performance of the SBR as well as the extracellular polymeric substances (EPS) in terms of polysaccharides, proteins, and humic acid substances were estimated. Morphological parameters of microbial aggregates in the presence of IBU (phase II and phase III) were assessed by quantitative image analysis (QIA). Removal efficiencies of chemical oxygen demand (COD) and ammonium (NH4+) were significantly reduced by IBU. Loosely bound EPS (LB-EPS) decreased during phase II and phase III, and tightly bound EPS (TB-EPS) was slightly higher in phase II than phase I. TB-EPS proteins were greater in phase II, perhaps to protect microbial cells from IBU exposure. These findings provided insight into both activated sludge stress-responses and EPS composition under long-term IBU exposure. Spearman correlation showed that EPS and morphological parameters significantly affected sludge settleability and flocculation. QIA also proved to be a powerful technique in investigating dysfunctions in activated sludge under IBU exposure.
Collapse
Affiliation(s)
- António Melo
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Costa
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Cristina Quintelas
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eugénio C Ferreira
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Daniela P Mesquita
- CEB - Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
33
|
Du YD, Zhang XQ, Shu L, Feng Y, Lv C, Liu HQ, Xu F, Wang Q, Zhao CC, Kong Q. Safety evaluation and ibuprofen removal via an Alternanthera philoxeroides-based biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40568-40586. [PMID: 32564323 DOI: 10.1007/s11356-020-09714-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are a representative class of emerging contaminants. This study aimed to investigate the PPCP removal performance and application safety of a biochar fabricated using the invasive plant Alternanthera philoxeroides (APBC). According to scanning electron microscopy and pore size analyses, APBC exhibited a porous structure with a specific surface area of 857.5 m2/g. A Fourier transform infrared spectroscopy analysis indicated the presence of surface functional groups, including phosphorus-containing groups, C=O, C=C, and -OH. The adsorption experiment showed that the maximum removal efficiency of ibuprofen was 97% at an initial concentration of 10 mg/L and APBC dosage of 0.8 g/L. The adsorption kinetics were fitted by the pseudo-second-order model with the highest correlation coefficient (R2 = 0.9999). The adsorption isotherms were well described by the Freundlich model (R2 = 0.9896), which indicates a dominant multilayer adsorption. The maximum adsorption capacity of APBC was 172 mg/g. A toxicity evaluation, based on Chlorella pyrenoidosa and human epidermal BEAS-2B cells, was carried out using a spectrum analysis, thiazolyl blue tetrazolium bromide assay, and flow cytometry. The results of the above showed the low cytotoxicity of APBC and demonstrated its low toxicity in potential environmental applications.
Collapse
Affiliation(s)
- Yuan-da Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xin-Qian Zhang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Li Shu
- School of Engineering, RMIT University, 402 Swanston Street, Melbourne, VIC, 3000, Australia
| | - Yu Feng
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cui Lv
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Hong-Qiang Liu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cong-Cong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China.
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
34
|
Zhu M, Zhang M, Yuan Y, Zhang P, Du S, Ya T, Chen D, Wang X, Zhang T. Responses of microbial communities and their interactions to ibuprofen in a bio-electrochemical system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112473. [PMID: 33819654 DOI: 10.1016/j.jenvman.2021.112473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Ibuprofen has caused great concerns due to their potential environmental risks. However, their removal efficiency and their effects on microbial interactions in bio-electrochemical system remain unclear. To address these issues, a lab-scale bio-electrochemical reactor integrated with sulfur/iron-mediated autotrophic denitrification (BER-S/IAD) system exposing to 1000 μg L-1 ibuprofen was operated for about two months. Results revealed that the BER-S/IAD system obtained efficient simultaneous denitrification (98.93%) and phosphorus (82.67%) removal, as well as an excellent ibuprofen removal performance (96.98%). Ibuprofen had no significant impacts on the nitrate (NO3--N) removal and the ammonia (NH4+-N) accumulation, but decreased the total nitrogen (TN) and total phosphorus (TP) removal efficiencies. MiSeq sequencing analysis revealed that ibuprofen significantly (P < 0.05) decreased the microbial community diversity and changed their overall structure. Some bacteria related to denitrification and phosphorus removal, such as Pseudomonas and Thiobacillus, decreased significantly (P < 0.05). Moreover, molecular ecological network (MEN) analysis revealed that ibuprofen decreased the network's size and complexity, and enhanced the negative correlations of Proteobacteria and Firmicutes. Besides, ibuprofen decreased the links of some keystone bacteria related to denitrification and phosphorus removal. This research could provide a new dimension for our comprehending of the responses of microbial communities and their interactions to ibuprofen in bio-electrochemical system.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Peilin Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuai Du
- Beijing Guo Dian Fu Tong Science and Technology Development Co., Ltd., Beijing, 100090, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Daying Chen
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
35
|
Gong H, Chu W, Huang Y, Xu L, Chen M, Yan M. Solar photocatalytic degradation of ibuprofen with a magnetic catalyst: Effects of parameters, efficiency in effluent, mechanism and toxicity evolution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116691. [PMID: 33601200 DOI: 10.1016/j.envpol.2021.116691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The environmental-friendly photocatalytic process with a magnetic catalyst CoFe2O4/TiO2 mediated by solar light for ibuprofen (IBP) degradation in pure water, wastewater effluent and artificial seawater was investigated systematically. The study aims to reveal the efficiency, the mechanism and toxicity evolution during IBP degradation. Hydroxyl radicals and photo-hole (h+) were found to contribute to the IBP decay. The presence of SO42- showed no significant effect, while NO3- accelerated the photodegradation, and other anions including HCO3-, Cl-, F-, and Br- showed significant inhibition. The removal efficiency was significantly elevated with the addition of peroxymonosulfate (PMS) or persulfate (PS) ([Oxidant]0:[IBP]0 = 0.4-4), with reaction rate of 5.3-13.1 and 1.3-2.9 times as high as the control group, respectively. However, the reaction was slowed down with the introduction of H2O2. A mathematic model was employed to describe the effect of ferrate, high concentration or stepwise addition of ferrate was suggested to play a positive role in IBP photodegradation. Thirteen transformation products were identified and five of them were newly reported. The degradation pathways including hydroxylation, the benzene ring opening and the oxidation of carbon were proposed. IBP can be efficiently removed when spiked in wastewater and seawater despite the decreased degradation rate by 41% and 56%, respectively. Compared to the IBP removal, mineralization was relatively lower. The adverse effect of the parent compound IBP to the green algae Chlorella vulgaris was gradually eliminated with the decomposition of IBP. The transformation product C178a which possibly posed toxicity to rotifers Brachionus calyciflorus can also be efficiently removed, indicating that the photocatalysis process is effective in IBP removal, mineralization and toxicity elimination.
Collapse
Affiliation(s)
- Han Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shan Xi, China
| | - Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
36
|
Enhanced catalytic ozonation of ibuprofen using a 3D structured catalyst with MnO2 nanosheets on carbon microfibers. Sci Rep 2021; 11:6342. [PMID: 33737579 PMCID: PMC7973777 DOI: 10.1038/s41598-021-85651-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Heterogeneous catalytic ozonation is an effective approach to degrade refractory organic pollutants in water. However, ozonation catalysts with combined merits of high activity, good reusability and low cost for practical industrial applications are still rare. This study aims to develop an efficient, stable and economic ozonation catalyst for the degradation of Ibuprofen, a pharmaceutical compound frequently detected as a refractory pollutant in treated wastewaters. The novel three-dimensional network-structured catalyst, comprising of δ-MnO2 nanosheets grown on woven carbon microfibers (MnO2 nanosheets/carbon microfiber), was synthesized via a facile hydrothermal approach. Catalytic ozonation performance of Ibuprofen removal in water using the new catalyst proves a significant enhancement, where Ibuprofen removal efficiency of close to 90% was achieved with a catalyst loading of 1% (w/v). In contrast, conventional ozonation was only able to achieve 65% removal efficiency under the same operating condition. The enhanced performance with the new catalyst could be attributed to its significantly increased available surface active sites and improved mass transfer of reaction media, as a result of the special surface and structure properties of this new three-dimensional network-structured catalyst. Moreover, the new catalyst displays excellent stability and reusability for ibuprofen degradation over successive reaction cycles. The facile synthesis method and low-cost materials render the new catalyst high potential for industrial scaling up. With the combined advantages of high efficiency, high stability, and low cost, this study sheds new light for industrial applications of ozonation catalysts.
Collapse
|
37
|
Alenzi A, Hunter C, Spencer J, Roberts J, Craft J, Pahl O, Escudero A. Pharmaceuticals effect and removal, at environmentally relevant concentrations, from sewage sludge during anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 319:124102. [PMID: 32977100 DOI: 10.1016/j.biortech.2020.124102] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 05/16/2023]
Abstract
This paper investigates the performance of AD in the presence of high-risk pharmaceuticals found in sewage sludge and its removal capacity. The digestion process of synthetic sewage sludge was observed in two 7L glass reactors (D1 and D2) at 38 °C (OLR 1.3 gVS L-1 d-1 and HRT 43 d). Environmentally relevant pharmaceuticals (clarithromycin, clotrimazole, erythromycin, fluoxetine, ibuprofen, sertraline, simvastatin and tamoxifen) were added in D2 at predicted environmental (sludge) conditions. The results demonstrated that long-term presence of pharmaceuticals can affect AD and induce instability resulting in an accumulation of VFAs. This study showed a concurrent effect on AD microbial composition, increasing the percentage of Firmicutes (>70%) and decreasing the percentages of Bacteroidetes and Euryarchaeota (<5%), which seems to be the cause of VFA accumulation and resultant the decrease in the biogas production. However, it seems that anaerobic microorganisms offer enhanced removal of the antibiotics clarithromycin and erythromycin over aerobic techniques.
Collapse
Affiliation(s)
- Asma Alenzi
- Glasgow Caledonian University, Glasgow, Scotland, UK; University of Tabuk, Tabuk, Saudi Arabia
| | - Colin Hunter
- Glasgow Caledonian University, Glasgow, Scotland, UK
| | | | | | - John Craft
- Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Ole Pahl
- Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Ania Escudero
- Glasgow Caledonian University, Glasgow, Scotland, UK.
| |
Collapse
|
38
|
Jia Y, Khanal SK, Yin L, Sun L, Lu H. Influence of ibuprofen and its biotransformation products on different biological sludge systems and ecosystem. ENVIRONMENT INTERNATIONAL 2021; 146:106265. [PMID: 33227585 DOI: 10.1016/j.envint.2020.106265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Ibuprofen (IBU) is one of the frequently detected non-steroidal anti-inflammatory drugs (NSAIDs) in wastewater treatment plants (WWTPs) and aquatic environment. However, little is known about the effect of IBU and its biotransformation products (TPs) on different biological sludge systems and aquatic environment. The effects and toxicity of IBU and TPs on three biological sludge systems (i.e., activated sludge (AS), sulfate-reducing bacteria (SRB)-enriched sludge and anaerobic methanogenic (AnM) sludge systems) and aquatic environment were comprehensively evaluated through a long-term operation of three bioreactors and a series of batch experiments. Both of the SRB-enriched sludge and AnM sludge systems were not affected under a long-term exposure to IBU, based on removing organic carbon and sulfur and producing methane. This could be attributed to the high tolerance of functional microbes in the SRB-enriched sludge (e.g., genus Desulfobacter) and AnM sludge systems (e.g., genus Candidatus Methanomethylicus) for IBU. In contrast, IBU had some apparently inhibitory effects on the AS system, such as reduced organic removal efficiency and poor sludge settling. The analysis on microbial community revealed that IBU significantly inhibited the genera involved in organic degradation (e.g., genus Candidatus Competibacter) and also stimulated those genera (e.g., genus Brachymonas) to secret excess extracellular polymeric substances (EPS), which thus caused sludge bulking in the AS system. The toxicity of IBU and its TPs in the effluent of the AS system was also investigated with Vibrio fischeri bioluminescence inhibition tests and quantitative structure activity relationship (QSAR) analysis by ecological structure-activity relationship (ECOSAR) program. The results indicated that the AS system could effectively eliminate the acute toxicity of both IBU and TPs, but a potential chronic toxicity of IBU could still existed, which could be more harmful to aquatic organisms than that of its TPs. These findings provide an insight into the toxic effects of IBU and its TPs on biological sludge systems and ecosystem.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; School of Ecology, Sun Yat-Sen University, Guangzhou, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Linwan Yin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen, PR China.
| |
Collapse
|
39
|
Muñiz-González AB. Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: Effects on Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103537. [PMID: 33157253 DOI: 10.1016/j.etap.2020.103537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The concern about pharmaceuticals has been increased over the last decade due to their burgeoning consumption. Ibuprofen has an extensive presence in surface water with risks for the aquatic biota. This study focuses on the effects of ibuprofen at environmental concentrations on the survival, transcriptional level, and enzymatic activity for 24, 96 h on Chironomus riparius. Ibuprofen developed a substantial effect on survival by all the conditions. mRNA levels of EcR, Dronc, and Met (endocrine system), hsp70, hsp24, and hsp27 (stress response), and Proph and Def (immune system) were modified, joined to increased GST and PO activity. The results confirmed alterations on the development of C. riparius, as well as two essential mechanisms, involved in protection against external toxicological challenge. Ibuprofen poses an incipient risk to C. riparius and could at an organismal level by compromising their survival, development, and ability to respond to adverse conditions on the future populations.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Toxicology and Biology Group, Department of Mathematics and Fluid Physics, UNED, Spain.
| |
Collapse
|
40
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Methanogenic potential of diclofenac and ibuprofen in sanitary sewage using metabolic cosubstrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140530. [PMID: 32629260 DOI: 10.1016/j.scitotenv.2020.140530] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Diclofenac (DCF) and ibuprofen (IBU) are widely used anti-inflammatory drugs and are frequently detected in wastewater from Wastewater Treatment Plants and in aquatic environments. In this study, the methanogenic potential (P) of anaerobic sludge subjected to DCF (7.11 ± 0.02 to 44.41 ± 0.05 mg L-1) and IBU (6.11 ± 0.01 to 42.61 ± 0.05 mg L-1), in sanitary sewage, was investigated in batch reactors. Cosubstrates (200 mg L-1 of organic matter) in the form of ethanol, methanol:ethanol and fumarate were tested separately for the removal of drugs. In the DCF assays, P was 6943 ± 121 μmolCH4, 9379 ± 259 μmolCH4, 9897 ± 212 μmolCH4 and 11,530 ± 368 μmolCH4 for control, fumarate, methanol:ethanol and ethanol conditions, respectively. In the IBU assays, under the same conditions, P was 6145 ± 101 μmolCH4, 6947 ± 66 μmolCH4, 8141 ± 191 μmolCH4and 10,583 ± 512 μmolCH4, respectively. Without cosubstrates, drug removal was below 18% for 43.10 ± 0.01 mgDCF L-1 and 43.12 ± 0.03 mgIBU L-1, respectively. Higher P and removal of DCF (28.24 ± 1.10%) and IBU (18.72 ± 1.60%) with ethanol was observed for 43.20 ± 0.01 mgDCF L-1 and 43.42 ± 0.03 mgIBU L-1, respectively. This aspect was better evidenced with DCF due to its molecular structure, a condition that resulted in a higher diversity of bacterial populations. Through the 16S rRNA sequencing, bacteria genera capable of performing aromatic ring cleavage, β-oxidation and oxidation of ethanol and fatty acids were identified. Higher relative abundance (>0.6%) was observed for Smithella, Sulfuricurvum and Synthophus for the Bacteria Domain and Methanosaeta (>79%) for the Archaea Domain. The use of ethanol favored greater mineralization of organic matter and greater methane production, which can directly assist in the metabolic pathways of microorganisms.
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil
| | - Pedro S Fadini
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| |
Collapse
|
41
|
Posselt M, Mechelke J, Rutere C, Coll C, Jaeger A, Raza M, Meinikmann K, Krause S, Sobek A, Lewandowski J, Horn MA, Hollender J, Benskin JP. Bacterial Diversity Controls Transformation of Wastewater-Derived Organic Contaminants in River-Simulating Flumes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5467-5479. [PMID: 32251587 PMCID: PMC7304871 DOI: 10.1021/acs.est.9b06928] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 05/22/2023]
Abstract
Hyporheic zones are the water-saturated flow-through subsurfaces of rivers which are characterized by the simultaneous occurrence of multiple physical, biological, and chemical processes. Two factors playing a role in the hyporheic attenuation of organic contaminants are sediment bedforms (a major driver of hyporheic exchange) and the composition of the sediment microbial community. How these factors act on the diverse range of organic contaminants encountered downstream from wastewater treatment plants is not well understood. To address this knowledge gap, we investigated dissipation half-lives (DT50s) of 31 substances (mainly pharmaceuticals) under different combinations of bacterial diversity and bedform-induced hyporheic flow using 20 recirculating flumes in a central composite face factorial design. By combining small-volume pore water sampling, targeted analysis, and suspect screening, along with quantitative real-time PCR and time-resolved amplicon Illumina MiSeq sequencing, we determined a comprehensive set of DT50s, associated bacterial communities, and microbial transformation products. The resulting DT50s of parent compounds ranged from 0.5 (fluoxetine) to 306 days (carbamazepine), with 20 substances responding significantly to bacterial diversity and four to both diversity and hyporheic flow. Bacterial taxa that were associated with biodegradation included Acidobacteria (groups 6, 17, and 22), Actinobacteria (Nocardioides and Illumatobacter), Bacteroidetes (Terrimonas and Flavobacterium) and diverse Proteobacteria (Pseudomonadaceae, Sphingomonadaceae, and Xanthomonadaceae). Notable were the formation of valsartan acid from irbesartan and valsartan, the persistence of N-desmethylvenlafaxine across all treatments, and the identification of biuret as a novel transformation product of metformin. Twelve additional target transformation products were identified, which were persistent in either pore or surface water of at least one treatment, indicating their environmental relevance.
Collapse
Affiliation(s)
- Malte Posselt
- Department
of Environmental Science (ACES), Stockholm
University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
| | - Jonas Mechelke
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, CH 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zürich, Switzerland
| | - Cyrus Rutere
- Department
of Ecological Microbiology, University of
Bayreuth, Bayreuth, Germany
| | - Claudia Coll
- Department
of Environmental Science (ACES), Stockholm
University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, CH 8600 Dübendorf, Switzerland
| | - Anna Jaeger
- Department
Ecohydrology, Leibniz-Institute of Freshwater
Ecology and Inland Fisheries, Berlin, Germany
- Geography
Department, Humboldt University Berlin, Berlin, Germany
| | - Muhammad Raza
- Technical
University of Darmstadt, Institute of Applied
Geosciences, Darmstadt, Germany
- IWW
Water Centre, Mülheim an
der Ruhr, Germany
| | - Karin Meinikmann
- Department
Ecohydrology, Leibniz-Institute of Freshwater
Ecology and Inland Fisheries, Berlin, Germany
- Julius
Kühn-Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Stefan Krause
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, U.K.
| | - Anna Sobek
- Department
of Environmental Science (ACES), Stockholm
University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
| | - Jörg Lewandowski
- Department
Ecohydrology, Leibniz-Institute of Freshwater
Ecology and Inland Fisheries, Berlin, Germany
- Geography
Department, Humboldt University Berlin, Berlin, Germany
| | - Marcus A. Horn
- Department
of Ecological Microbiology, University of
Bayreuth, Bayreuth, Germany
- Institute
of Microbiology, Leibniz University of Hannover, Herrenhäuser Str. 2, DE-30167 Hannover, Germany
| | - Juliane Hollender
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, CH 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zürich, Switzerland
| | - Jonathan P. Benskin
- Department
of Environmental Science (ACES), Stockholm
University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
| |
Collapse
|