1
|
Zhao H, Yin K, Yue Q, Yin W, Gao B, Gao Y. Layered clay confined single-atom catalyst for enhanced radical pathway to achieve ultrafast degradation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137971. [PMID: 40127521 DOI: 10.1016/j.jhazmat.2025.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025]
Abstract
Seeking a technically promising method and cost-effective material to synthesize carrier-supported single-atom catalysts has attracted on-going research interests to overcome the low productivity and high costs for their industrial application. Montmorillonite (MT), a natural silicate clay mineral, has specific two-dimensional layered structure, and could be an excellent carrier, which creates a unique microenvironment to enhance molecule adsorption and interfacial reactions within the single atoms, free radicals and pollutants in the heterogeneous catalytic system. We synthesized cobalt single-atom catalyst (Co-SAC) by ball milling MT and cobalt salt using surface and spatial confinement strategy. Co-SAC/MT catalyst was used to activate peroxymonosulfate for degrading emerging contaminants bisphenol A (BPA). Characterization results revealed that Co single atoms were confined in the interlayer of MT as Co-O6-Si. Co-SAC/MT catalyst demonstrated remarkable molecular interaction capabilities to shorten mass transfer distance of free radical diffusion to the target pollutants, enhance the utilization rate of free radicals, and thus improve the efficiency of oxidation reaction. The BPA solution was completely degraded in 3 min, with a mineralization rate of 75.7 % in 10 min. This study provides a simple and efficient method for the preparation of single-atom catalysts, which is expected to achieve large-scale production of single-atom catalysts.
Collapse
Affiliation(s)
- Han Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Kexin Yin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
2
|
Long L, Mao Y, Liu L, Chen Y, Shao Q, Liu Z, Xie P. Prolonged degradation of organic contaminants by Fe(II)/peracetic acid: Unraveling the roles of coexisting H 2O 2 and pH. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137567. [PMID: 39952124 DOI: 10.1016/j.jhazmat.2025.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The Fe(II)-activated peracetic acid (PAA) system is a promising advanced oxidation process for the removal of refractory organic pollutants. Although previous studies have reported its mechanism, highlighting the rapid generation of Fe(IV) and radicals (R-O•) within one second, the effects of coexisting H2O2 and pH remain unclear. In this study, we explored these factors in greater detail. In the initial fast stage, the Fe(IV) yield was found to be slightly influenced by water matrix, suggesting a superiority of Fe(II)/PAA in producing Fe(IV) under real water background. Moreover, our findings confirm that coexisting H2O2 is activated by the residual Fe(II) after PAA consumption, broadening the applicability for pollutants removal. The fast stage tends to degrade electron-rich pollutants, while the slow stage can degrade electron-deficient and electron-rich pollutants. During this process, in-situ formed Fe(III) exhibited negligible reactivity towards PAA or H2O2. As the pH increased from 3.0 to 7.0, the overall production of Fe(IV) and •OH drastically declined, reducing the system's oxidizing capacity. Density functional theory (DFT) calculations further suggest that deprotonation at higher pH levels theoretically hinders PAA decomposition by Fe(II). Using sulfamethoxazole (SMX) as a model pollutant, we observed that acidic conditions improved both pollutant removal efficiency and the formation of less toxic by-products. This study significantly advances the understanding of the decontamination mechanisms in the Fe(II)/PAA system.
Collapse
Affiliation(s)
- Liying Long
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yuxin Mao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Lu Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Qing Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Bao W, Manickavasagam G, Oh WD. Exploring the Structural Properties of Waste-Derived Carbon Nanomaterials for Enhanced Persulfate-Driven Advanced Oxidation Processes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40415643 DOI: 10.1021/acs.langmuir.5c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The rapid accumulation of global solid waste poses a challenge to environmental health, human well-being, and resource sustainability. Solid waste, such as biomass and plastics, is increasingly recognized as a potential resource for producing functional materials. Through methods like pyrolysis, hydrothermal treatment, and chemical vapor deposition, solid waste can be upcycled into carbon-based catalysts for persulfate-driven advanced oxidation processes in environmental decontamination. This Perspective systematically explores waste-derived carbon nanomaterials for persulfate activation. Key structural and chemical factors influencing their catalytic behavior are evaluated, including carbon hybridization states (sp, sp2, and sp3), textural properties, oxygen-containing functional groups, structural defects, and heteroatom or metal doping. Special focus is given to how heteroatom/metal incorporation modulates the electronic structure, enabling persulfate activation through both radical and nonradical pathways. The novelty of this work lies in its integrated approach that bridges waste valorization and the rational design of functional catalysts. Consequently, this Perspective contributes to the advancement of sustainable and resource-efficient technologies for organic pollutant decontamination.
Collapse
Affiliation(s)
- Wenqi Bao
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | | | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| |
Collapse
|
4
|
Li X, Dai L, Huang X, Li A, Li D, Jiang J, Meng Y, Chen L, Chen X. Enhanced peroxymonosulfate photoactivation by nitrogen-doped multiwalled carbon nanotube-loaded CoFe 2O 4 for orange G degradation: Performance, mineralization and reaction mechanism. ENVIRONMENTAL RESEARCH 2025:121948. [PMID: 40419177 DOI: 10.1016/j.envres.2025.121948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/23/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
In this study, CF@N-MWCNT nanocomposites were successfully synthesized by anchoring cobalt ferrite (CoFe2O4, CF) on nitrogen-doped multiwalled carbon nanotube (N-MWCNT) and used to promote ultraviolet (UV) light-induced peroxymonosulfate (PMS) activation for the removal of the azo dye orange G (OG).The incorporation of N-MWCNT enhances the catalytic performance and photocatalytic activity of CF. A prominent synergistic effect on the removal of OG by UV irradiation, CF@N-MWCNT, and PMS was evident through comparisons of various reaction systems. Almost complete degradation (99.5%) of OG was achieved within 30 min at [OG]0 = 50 mg/L, [PMS]0 = 1 mM, CF@N-MWCNT = 0.1 g/L under pH = 7. Scavenging experiments indicated that non-radical pathways played a significant role in OG degradation apart from the contribution of hydroxyl radical (HO•) and sulfate radical (). The catalyst demonstrated superior catalytic performance across a broad pH range (3-11) while exhibiting strong resistance to interference from coexisting substances in aqueous environments. Furthermore, the UV/CF@N-MWCNT/PMS system can effectively remove numerous recalcitrant pollutants from dyeing wastewater. Overall, this study highlights the promising catalytic performance of the CF@N-MWCNT nanocomposite for UV-activated PMS, offering a potentially effective method for treating dyeing wastewater.
Collapse
Affiliation(s)
- Xinghao Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing, 210023, China; China Machinery International Engineering Design & Reaserch Institute Co.,Ltd, Changsha 410007, China
| | - Luxi Dai
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xu Huang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing, 210023, China; Yangtze River Innovation Center for Ecological Civilization.
| | - Dawei Li
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianhong Jiang
- China Machinery International Engineering Design & Reaserch Institute Co.,Ltd, Changsha 410007, China
| | - Yunxiang Meng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Lifang Chen
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xun Chen
- Yangtze River Innovation Center for Ecological Civilization
| |
Collapse
|
5
|
Kang H, Chen Y, Cheng M, Guo H, Zhang G, Shi Q, Zhou W, Zhao C, Zou B, Lv X, Yuan Z, Zeng G. State-Of-The-Art Structural Regulation Methods and Quantum Chemistry for Carbon-Based Single-Atom Catalysts in Advanced Oxidation Process: Critical Perspectives into Molecular Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505128. [PMID: 40401577 DOI: 10.1002/adma.202505128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Advanced oxidation processes (AOPs) by carbon-based single-atom catalysts (SACs) are recognized as an attractive scientific frontier for water treatment, with the outstanding benefits of ultra-effective and anti-interference capability. However, most of the research has paid more attention to the performance of SACs, while the in-depth understanding of catalytic regulation by molecular interaction is relatively deficient. This critical review delves into deciphering the catalytic mechanism through a micro-level, which makes it more convenient to interpret apparent catalytic phenomena. It first summarizes basic theories of quantum chemistry, which provide mechanism interpretation and prediction for molecular-oxidation systems. Additionally, corresponding oxidation pathways of common oxidants are underscored. Following the oxidants, state-of-the-art regulation methods are discussed with special attention to involved molecular interactions and pollutants. Particularly, the preliminary insights into the "oxidant-catalyst-pollutants" internal relationships are provided to help construct the SAC-AOP system from a molecular standpoint. Meanwhile, some cutting-edge laboratory devices and pilot-scale engineering are presented to illustrate the ultimate purpose of scientific molecular exploration. Eventually, relative challenges of SACs-AOPs upon the design of catalytic systems and investigation methods are provided. This review aims to promote the large-scale potential of SACs-based AOPs in practical water treatment by emphasizing the pivotal role of micro-insights.
Collapse
Affiliation(s)
- Huayue Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qingkai Shi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wencheng Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bin Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xinyue Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ziyue Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
6
|
Tao C, Wu K, Liu T, Yang S, Li Z. Promoting effect of oxygen vacancies in CuZnO x-2/peroxymonosulfate system on the p-arsanilic acid degradation and secondary arsenic species immobilization. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136742. [PMID: 39653638 DOI: 10.1016/j.jhazmat.2024.136742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 01/29/2025]
Abstract
Combining chemical oxidation and adsorption is highly desirable but challenging to remove organoarsenic compounds for water purification. Herein, we prepared a Zn-doped CuO (CuZnOx-2) catalyst by incorporating Zn atoms into the CuO lattice, which results in abundant surface oxygen vacancies (OVs) and modulates the electronic structure of Cu-OVs-Zn sites for PMS activation to degrade p-arsanilic acid (p-ASA) and adsorb the secondary arsenic species simultaneously. The elevated d-band centers for Cu upward to the Fermi level can significantly strengthen the adsorption of PMS, p-ASA, and the generated arsenic species. The OVs cause the charge redistribution to form electron-rich centers, which accelerate the electron transfer from Cu-OVs-Zn sites to adsorbed PMS, facilitating the cleavage of peroxide bond to produce SO4•-, •OH. Furthermore, the PMS adsorbed on the local environment of OVs with different configurations can directly decompose to produce 1O2 without undergoing PMS → O2•- → 1O2 or O2 → O2•- → 1O2 processes. The evolution process of the main arsenic species in solution and catalyst surface with oxidation was clarified. The ultimate removal of the total As involves 20 % As(III), 60 % As(V), and 20 % organic arsenic intermediates via forming inner-sphere complexes or electrostatic interaction. This contribution provides a brand-new perspective for the remediation of organoarsenic pollution over designing highly active catalysts.
Collapse
Affiliation(s)
- Chaonan Tao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beilin District, Xi'an 710055, Shaanxi, PR China
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beilin District, Xi'an 710055, Shaanxi, PR China.
| | - Ting Liu
- College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beilin District, Xi'an 710055, Shaanxi, PR China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beilin District, Xi'an 710055, Shaanxi, PR China
| |
Collapse
|
7
|
Li W, Xie Q. Ultrahigh-sensitivity vinyl-COF fluorescent sensor for trace organic arsenic detection. ANAL SCI 2025; 41:35-44. [PMID: 39300044 DOI: 10.1007/s44211-024-00671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Recently, the misuse of organic arsenic feed additives, such as roxarsone (ROX), has increasingly jeopardized both human health and the environment. In response, a unique electron-rich pyrazine-cored fluorescent covalent organic framework (COF) nanosheet, named as COF-TMP, was synthesized using an alkali-catalyzed reaction between 2, 3, 5, 6-tetramethylpyrazine (TMP) and terephthalaldehyde (TPA). Characterization demonstrated that COF-TMP boasted high porosity, pronounced fluorescence, and an abundance of (E)-2-styrylpyrazine (SPA) groups. These attributes render it an exceptional fluorescent sensor for the ultrahigh sensitivity detection of electron-deficient ROX molecules. The limit of detection (LOD) for COF-TMP in detecting ROX was found to be 0.015 ppb through fluorescence-quenching titration experiments-surpassing all previously reported fluorescent sensors. A combination of experimental results and theoretical calculations suggests that the extraordinary detection capability of COF-TMP for ROX arises from a static quenching mechanism. This study paves the way not only for a novel pyrazine-based fluorescent COF nanosheet with high porosity, exceptional fluorescent capabilities, and abundant SPA groups suitable for highly sensitive and selective ROX detection but also hints at its potential application as a fluorescent sensor for environmental pollution management and related domains.
Collapse
Affiliation(s)
- Wenyang Li
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China.
| | - Qiangrong Xie
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Tian Q, Chang J, Yu B, Jiang Y, Gao B, Yang J, Li Q, Gao Y, Xu X. Co-catalysis strategy for low-oxidant-consumption Fenton-like chemistry: From theoretical understandings to practical applications and future guiding strategies. WATER RESEARCH 2024; 267:122488. [PMID: 39306932 DOI: 10.1016/j.watres.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Recently, great effects have been made for the co-catalysis strategy to solve the bottlenecks of Fenton system. A series of co-catalysis strategies using various inorganic metal co-catalysts and organic co-catalysts have been developed in various oxidant (i.e., hydrogen peroxide (H2O2) and persulfate) systems with significantly promotion of catalytic performances and lower oxidant consumption (only 5-10 % of conventional Fenton/Fenton-like systems). However, the developments of these co-catalysis strategies from theoretical understandings to practical applications and future guiding strategies were overlooked, which was an essential problem that must be considered for the future scale-up applications of co-catalysis systems. In this paper, these co-catalysis strategies with low-oxidant-consumption characteristics have been reviewed by the comparison of their co-catalysis mechanisms, as well as their advantages and disadvantages. We also discussed the recent developments of amplifying devices based on the co-catalysis systems. The scale-up performances of co-catalysis strategies based on these amplifying devices have also been assessed. In addition, future guiding strategies for the development of co-catalysis strategy with low-oxidant-consumption characteristics have also been first time outlined by the combination of the technical-economic analysis (TEA), life cycle assessment (LCA) and machine learning (ML). Finally, the paper systematically discusses the development opportunities, technical bottlenecks and future development directions of co-catalysis strategies with the prospect of large-scale applications. Basically, this work provides a systematic review on co-catalysis strategy with low-oxidant-consumption characteristic from theoretical understandings to practical applications and future guiding strategies.
Collapse
Affiliation(s)
- Qingbai Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jiale Chang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Bingliang Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Jiang
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
9
|
Quan X, Chen Y, Yin L, Zuo W, Tian Y, Zhang J. Enhanced Selective Degradation of Pharmaceutical and Personal Care Products by β-Cyclodextrin-Decorated ZIF-67 Nanocomposites in Reclaimed Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34973-34987. [PMID: 38918892 DOI: 10.1021/acsami.4c05315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A peroxymonosulfate oxidation system was developed via modification of β-cyclodextrin (β-CD) on the surface of Fe2+-doped ZIF-67 (CD/Fe@ZIF-67) as an activator. The 99.7% carbamazepine, 91.3% bisphenol A (BPA), and 95.4% diclofenac (DCF) degradation efficiency were achieved within 10 min, 60, and 1 min, respectively. The hydrophobicity of these three pollutants is positively correlated with their adsorption kinetic constants by CD/Fe@ZIF-67 due to the introduction of β-CD. Scavenger experiments and electron spin resonance spectra confirmed that carbamazepine was preferentially oxidized by SO4•- [λ(SO4•-)(70.5%) > λ(•OH)(28.2%) > λ(O2•-)(1.3%)], where SO4•- and O2•- played dominant roles in the degradation of BPA [λ(SO4•-)(71.7%) > λ(O2•-)(22.8%) > λ(•OH)(5.5%)], and O2•- was responsible for DCF removal [λ(O2•-) = 93.2%]. Additionally, the particulate catalyst was immobilized in the shell side of a ceramic membrane in a membrane reactor for catalyst recovery. This reactor achieved nearly 100% removal efficiency under optimal conditions: 0.036 wt % catalyst loading, 0.5 mM peroxymonosulfate concentration, 1 L inflow, 10 mg/L initial carbamazepine concentration, and 0.012 L/min hydraulic retention time. In summary, this study elucidates the active role of β-CD in a polymetallic/peroxymonosulfate system and provides valuable insights into the development of effective oxidation methods for pharmaceutical and personal care products in wastewater.
Collapse
Affiliation(s)
- Xi Quan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Yifan Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Joint Research Center of Biomass Energy Development and Utilization, Harbin Institute of Technology, Harbin 150090, China
- Chongqing Research Institute of HIT, Chongqing 401151, China
| |
Collapse
|
10
|
Ma X, Liu X, Shang X, Zhao Y, Zhang Z, Lin C, He M, Ouyang W. Efficient roxarsone degradation by low-dose peroxymonosulfate with the activation of recycling iron-base composite material: Critical role of electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134087. [PMID: 38518697 DOI: 10.1016/j.jhazmat.2024.134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Pollutant degradation via electron transfer based on advanced oxidation processes (AOPs) provides an economical and energy-efficient method for pollution control. In this study, an iron-rich waste, heating pad waste (HPW), was recycled as a raw material, and a strong magnetic catalyst (Fe-HPW) was synthesized at high temperature (900 °C). Results showed that in the constructed Fe-HPW/PMS system, effective roxarsone (ROX) degradation and TOC removal (72.54%) were achieved at a low-dose of oxidant (PMS, 0.05 mM) and catalyst (Fe-HPW, 0.05 g L-1), the ratio of PMS to ROX was only 2.5:1. In addition, the released inorganic arsenic was effectively removed from the solution. The analysis of the experimental results showed that ROX was effectively degraded by forming PMS/catalyst surface complexes (Fe-HPW-PMS*) to mediate electron transfer in the Fe-HPW/PMS system. Besides, this system performed effective ROX degradation over a wide pH range (pH=3-9) and showed high resistance to different water parameters. Overall, this study not only provides a new direction for the recycling application of HPW but also re-emphasizes the neglected nonradical pathway in advanced oxidation processes.
Collapse
Affiliation(s)
- Xiaoyu Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875.
| | - Xiao Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
11
|
Hu Y, Yang K, Lin Y, Weng X, Jiang Y, Huang J, Lv Y, Li X, Liu Y, Lin C, Liu M. Performance and mechanistic studies of rapid atenolol degradation through peroxymonosulfate activation by V, Co, and bamboo carbon catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36761-36777. [PMID: 38753235 DOI: 10.1007/s11356-024-33657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
Developing the Co-based catalysts with high reactivity for the sulfate radical (SO4-·)-based advanced oxidation processes (SR-AOPs) has been attracting numerous attentions. To improve the peroxymonosulfate (PMS) activation process, a novel Co-based catalyst simultaneously modified by bamboo carbon (BC) and vanadium (V@CoO-BC) was fabricated through a simple solvothermal method. The atenolol (ATL) degradation experiments in V@CoO-BC/PMS system showed that the obtained V@CoO-BC exhibited much higher performance on PMS activation than pure CoO, and the V@CoO-BC/PMS system could fully degrade ATL within 5 min via the destruction of both radicals (SO4-· and O2-··) and non-radicals (1O2). The quenching experiments and electrochemical tests revealed that the enhancing mechanism of bamboo carbon and V modification involved four aspects: (i) promoting the PMS and Co ion adsorption on the surface of V@CoO-BC; (ii) enhancing the electron transfer efficiency between V@CoO-BC and PMS; (iii) activating PMS with V3+ species; (iv) accelerating the circulation of Co2+ and Co3+, leading to the enhanced yield of reactive oxygen species (ROS). Furthermore, the V@CoO-BC/PMS system also exhibited satisfactory stability under broad pH (3-9) and good efficiency in the presence of co-existing components (HCO3-, NO3-, Cl-, and HA) in water. This study provides new insights to designing high-performance, environment-friendly bimetal catalysts and some basis for the remediation of antibiotic contaminants with SR-AOPs.
Collapse
Affiliation(s)
- Yihui Hu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
| | - Kai Yang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
| | - Yule Lin
- School of Geographical Science, Fujian Normal University, Fuzhou, 350116, China
| | - Xin Weng
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
| | - Yanting Jiang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
| | - Jian Huang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China.
| | - Xiaojuan Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350116, Fujian, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian, 351100, China
| |
Collapse
|
12
|
Wang F, Long G, Zhou JL. Enhanced green remediation and refinement disposal of electrolytic manganese residue using air-jet milling and horizontal-shaking leaching. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133419. [PMID: 38183942 DOI: 10.1016/j.jhazmat.2023.133419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The reclamation and reuse of electrolytic manganese residue (EMR) as a bulk hazard solid waste are limited by its residual ammonia nitrogen (NH4+-N) and manganese (Mn2+). This work adopts a co-processing strategy comprising air-jet milling (AJM) and horizontal-shaking leaching (HSL) for refining and leaching disposal of NH4+-N and Mn2+ in EMR. Results indicate that the co-use of AJM and HSL could significantly enhance the leaching of NH4+-N and Mn2+ in EMR. Under optimal milling conditions (50 Hz frequency, 10 min milling time, 12 h oscillation time, 400 rpm rate, 30 ℃ temperature, and solid-to-liquid ratio of 1:30), NH4+-N and Mn2+ leaching efficiencies were optimized to 96.73% and 97.35%, respectively, while the fineness of EMR was refined to 1.78 µm. The leaching efficiencies of NH4+-N and Mn2+ were 58.83% and 46.96% higher than those attained without AJM processing. The AJM used strong airflow to give necessary kinetic energy to EMR particles, which then collided and sifted to become refined particles. The AJM disposal converted kinetic energy into heat energy upon particle collisions, causing EMR phase transformation, and particularly hydrated sulfate dehydration. The work provides a fire-new and high-efficiency method for significantly and simply leaching NH4+-N and Mn2+ from EMR.
Collapse
Affiliation(s)
- Fan Wang
- School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan 410075, China
| | - Guangcheng Long
- School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan 410075, China.
| | - John L Zhou
- School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan 410075, China; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
13
|
Li X, Liu H, Zhang Y, Mahlknecht J, Wang C. A review of metallurgical slags as catalysts in advanced oxidation processes for removal of refractory organic pollutants in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120051. [PMID: 38262282 DOI: 10.1016/j.jenvman.2024.120051] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
With the rapid growth of the metallurgical industry, there is a significant increase in the production of metallurgical slags. The waste slags pose significant challenges for their disposal because of complex compositions, low utilization rates, and environmental toxicity. One promising approach is to utilize metallurgical slags as catalysts for treatment of refractory organic pollutants in wastewater through advanced oxidation processes (AOPs), achieving the objective of "treating waste with waste". This work provides a literature review of the source, production, and chemical composition of metallurgical slags, including steel slag, copper slag, electrolytic manganese residue, and red mud. It emphasizes the modification methods of metallurgical slags as catalysts and the application in AOPs for degradation of refractory organic pollutants. The reaction conditions, catalytic performance, and degradation mechanisms of organic pollutants using metallurgical slags are summarized. Studies have proved the feasibility of using metallurgical slags as catalysts for removing various pollutants by AOPs. The catalytic performance was significantly influenced by slags-derived catalysts, catalyst modification, and process factors. Future research should focus on addressing the safety and stability of catalysts, developing green and efficient modification methods, enhancing degradation efficiency, and implementing large-scale treatment of real wastewater. This work offers insights into the resource utilization of metallurgical slags and pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Xingyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingshuang Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
14
|
Zhong X, Ji M, Wu W, Lu C, Liu W, Jiang F. Enhanced Degradation of Levofloxacin through Visible-Light-Driven Peroxymonosulfate Activation over CuInS 2/g-C 3N 4 Heterojunctions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:74. [PMID: 38202529 PMCID: PMC10781168 DOI: 10.3390/nano14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In this work, the heterojunctions of CuInS2 embedded in the g-C3N4 materials (xCuInS2/g-C3N4, abbreviated as xCIS/GCN) was successfully prepared for peroxymonosulfate (PMS) activation under visible light. The catalysts are characterized by different techniques, such as XRD, FTIR, SEM, TEM, and UV-vis. The unique heterojunction composites can suppress the recombination of photogenerated pairs. The catalytic results showed that the 3CIS/GCN exhibited excellent catalytic levofloxacin (LVF) degradation efficiency, while more than 98.9% of LVF was removed in 60 min over a wide pH range. SO4•-, O2•-, OH•, and 1O2 were verified as the main reactive species for LVF degradation via the quenching experiments and electron paramagnetic resonance technology (EPR). The synergetic effect of xCIS/GCN, PMS, and visible light irradiation was discussed. The possible LVF degradation pathway was proposed through byproducts analysis (LC-MS). Moreover, the 3CIS/GCN/vis-PMS system has very low metal leaching. Owing to xCIS/GCN having good properties for PMS activation, it has potential applications for LVF or other hazardous pollutants degradation.
Collapse
Affiliation(s)
- Xin Zhong
- Experimental and Practical Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (M.J.); (W.W.); (C.L.); (W.L.)
- Department of Environmental Engineering and Science, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Meihuan Ji
- Experimental and Practical Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (M.J.); (W.W.); (C.L.); (W.L.)
| | - Wenxin Wu
- Experimental and Practical Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (M.J.); (W.W.); (C.L.); (W.L.)
| | - Caicai Lu
- Experimental and Practical Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (M.J.); (W.W.); (C.L.); (W.L.)
| | - Wenping Liu
- Experimental and Practical Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (M.J.); (W.W.); (C.L.); (W.L.)
| | - Fubin Jiang
- Experimental and Practical Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (M.J.); (W.W.); (C.L.); (W.L.)
| |
Collapse
|
15
|
Yang L, Xu D, Luo X, Zhu X, Zhao J, Song J, Han Y, Li G, Gao X, Liu L, Liang H. Fe(II)-Modulated Microporous Electrocatalytic Membranes for Organic Microcontaminant Oxidation and Fouling Control: Mechanisms of Regulating Electron Transport toward Enhanced Reactive Oxygen Species Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19000-19011. [PMID: 37162466 DOI: 10.1021/acs.est.3c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Regulation of the fast electron transport process for the generation and utilization of reactive oxygen species (ROS) by achieving fortified electron "nanofluidics" is effective for electrocatalytic oxidation of organic microcontaminants. However, limited available active sites and sluggish mass transfer impede oxidation efficiency. Herein, we fabricated a conductive electrocatalytic membrane decorated with hierarchical porous vertically aligned Fe(II)-modulated FeCo layered double hydroxide nanosheets (Fe(II)-FeCo LDHs) in an electro-Fenton system to maximize exposure of active sites and expedite mass transfer. The nanospaced interlayers of Fe(II)-FeCo LDHs within the microconfined porous structure formed by its vertical nanosheets highly boost the micro/nanofluidic distribution of target pollutants to active centers/species, achieving accelerated mass transferability. Aliovalent substitution by Fe(II) activates in-plane metallics to maximize the available active sites and makes each Fe(II)-FeCo LDH nanosheet a geometrical nanocarrier for constructing a fast electron "nanofluidic" to accelerate Fe(II) regeneration in Fe(III)/Fe(II) cycles. As a result, the Fe(II)-FeCo LDHs exhibited improved reactivity in catalyzing H2O2 to •OH and 1O2. Accordingly, the membrane exhibited a higher atrazine degradation kinetic (0.0441 min-1) and degradation rate (93.2%), which were 4.7 and 2.1 times more than those of the bare carbon nanotube membrane, respectively. Additionally, the enhanced hydrophilic and strongly oxidized reactivity synergistically mitigated the organic fouling occurring in the pores and surface of the membrane. These findings clarify the activation mechanism of ROS over an innovative electrocatalytic membrane reactor design for organic microcontaminant treatment.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jialin Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yonghui Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xinlei Gao
- National Engineering Research Center of Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Luming Liu
- National Engineering Research Center of Water Resources Co., Ltd., Harbin Institute of Technology, Harbin 150090, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
16
|
Zhang J, Li R, Zhang Y, He W, Yang J, Wang Y. Study on mutual harmless treatment of electrolytic manganese residue and red mud. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59660-59675. [PMID: 37014596 DOI: 10.1007/s11356-023-26752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Electrolytic manganese residue (EMR) and red mud (RM) are solid waste by-products of the metal manganese and alumina industries, respectively. Under long-term open storage, ammonia nitrogen and soluble manganese ions in EMR and alkaline substances in RM severely pollute and harm the environment. In order to alleviate the pollution problem of EMR and RM. In this study, the alkaline substances in RM were used to treat ammonia nitrogen and soluble manganese ions in EMR. The results confirm the following suitable treatment conditions for the mutual treatment of EMR and RM: EMR-RM mass ratio = 1:1, liquid-solid ratio = 1.4:1, and stirring time = 320 min. Under these conditions, the elimination ratios of ammonia nitrogen (emitted in the form of ammonia gas) and soluble manganese ions (solidified in the form of Mn3.88O7(OH) and KMn8O16) are 85.87 and 86.63%, respectively. Moreover, the alkaline substances in RM are converted into neutral salts (Na2SO4 and Mg3O(CO3)2), achieving de-alkalinisation. The treatment method can also solidify the heavy metal ions-Cr3+, Cu2+, Ni2+, and Zn2+-present in the waste residue with leaching concentrations of 1.45 mg/L, 0.099 mg/L, 0.294 mg/L, and 0.449 mg/L, respectively. This satisfies the requirements of the Chinese standard GB5085.3-2007. In the mutual treatment of EMR and RM, the kinetics of ammonia nitrogen removal and manganese-ion solidification reactions are controlled via a combination of membrane diffusion and chemical reaction mechanisms.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Rui Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Weilong He
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Junjie Yang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
17
|
Gong Y, Shen J, Shen L, Zhao S, Wu Y, Zhou Y, Cui L, Kang J, Chen Z. Whose Oxygen Atom Is Transferred to the Products? A Case Study of Peracetic Acid Activation via Complexed Mn II for Organic Contaminant Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6723-6732. [PMID: 37043741 DOI: 10.1021/acs.est.2c09611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Identifying reactive species in advanced oxidation process (AOP) is an essential and intriguing topic that is also challenging and requires continuous efforts. In this study, we exploited a novel AOP technology involving peracetic acid (PAA) activation mediated by a MnII-nitrilotriacetic acid (NTA) complex, which outperformed iron- and cobalt-based PAA activation processes for rapidly degrading phenolic and aniline contaminants from water. The proposed MnII/NTA/PAA system exhibited non-radical oxidation features and could stoichiometrically oxidize sulfoxide probes to the corresponding sulfone products. More importantly, we traced the origin of O atoms from the sulfone products by 18O isotope-tracing experiments and found that PAA was the only oxygen-donor, which is different from the oxidation process mediated by high-valence manganese-oxo intermediates. According to the results of theoretical calculations, we proposed that NTA could tune the coordination circumstance of the MnII center to elongate the O-O bond of the complexed PAA. Additionally, the NTA-MnII-PAA* molecular cluster presented a lower energy gap than the MnII-PAA complex, indicating that the MnII-peroxy complex was more reactive in the presence of NTA. Thus, the NTA-MnII-PAA* complex exhibited a stronger oxidation potential than PAA, which could rapidly oxidize organic contaminants from water. Further, we generalized our findings to the CoII/PAA oxidation process and highlighted that the CoII-PAA* complex might be the overlooked reactive cobalt species. The significance of this work lies in discovering that sometimes the metal-peroxy complex could directly oxidize the contaminants without the further generation of high-valence metal-oxo intermediates and/or radical species through interspecies oxygen and/or electron transfer.
Collapse
Affiliation(s)
- Yingxu Gong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Linlu Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yining Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yanchi Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lei Cui
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
18
|
Li M, He Z, Zhong H, Sun W, Ye M, Tang Y. Highly efficient persulfate catalyst prepared from modified electrolytic manganese residues coupled with biochar for the roxarsone removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116945. [PMID: 36512947 DOI: 10.1016/j.jenvman.2022.116945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The contamination of organoarsenic is becoming increasingly prominent while SR-AOPs were confirmed to be valid for their remediation. This study has found that the novel metal/carbon catalyst (Fe/C-Mn) prepared by solid waste with hierarchical pores could simultaneously degrade roxarsone (ROX) and remove As(V). A total of 95.6% of ROX (20 mg/L) could be removed at the concentration of 1.0 g/L of catalyst and 0.4 g/L of oxidant in the Fe/C-Mn/PMS system within 90 min. The scavenging experiment and electrochemical test revealed that both single-electron and two-electron pathways contributed to the ROX decomposition. Spectroscopic analysis suggested the ROX has been successfully mineralized while As(V) was fixed with the surface Fe and Mn. Density functional theory (DFT) calculation and chromatographic analysis indicated that the As7, N8, O9 and O10 sites of ROX molecule were vulnerable to being attacked by nucleophilic, electrophilic and radical, resulting in the formation of several intermediates such as phenolic compounds. Additionally, the low metal leaching concentration during recycling and high anti-interference ability in various water matrices manifested the practicability of Fe/C-Mn/PMS system.
Collapse
Affiliation(s)
- Mengke Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China.
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Mingqiang Ye
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha, 410100, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Tian X, Liu S, Zhang B, Wang S, Dong S, Liu Y, Feng L, Zhang L. Carbonized polyaniline-activated peracetic acid advanced oxidation process for organic removal: Efficiency and mechanisms. ENVIRONMENTAL RESEARCH 2023; 219:115035. [PMID: 36513128 DOI: 10.1016/j.envres.2022.115035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Recently, advanced oxidation processes (AOPs) based upon peracetic acid (PAA) with high efficiency for degrading aqueous organic contaminants have attracted extensive attention. Herein, a novel metal-free N-doped carbonaceous catalyst, namely, carbonized polyaniline (CPANI), was applied to activate PAA to degrade phenolic and pharmaceutical pollutants. The results showed that the CPANI/PAA system could effectively degrade 10 μM phenol in 60 min with low concentrations of PAA (0.1 mM) and catalyst (25 mg L-1). This system also performed well within a wide pH range of 5-9 and displayed high tolerance to Cl-, HCO3- and humic acid. The nonradical pathway [singlet oxygen (1O2)] was found to be the dominant pathway for degrading organic contaminants in the CPNAI/PAA system. Systematic characterization revealed that the graphitic N, pyridinic N, carbonyl groups (CO) and defects played the role of active sites on CPANI during the activation of PAA. The catalytic capacity of spent CPANI could be conveniently recovered by thermal treatment. The findings will be helpful for the application of metal-free carbonaceous catalyst/PAA processes in decontaminating water.
Collapse
Affiliation(s)
- Xing Tian
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shiqi Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Beining Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Sihan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shunqi Dong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
20
|
A novel multi-components hierarchical porous composite prepared from solid wastes for benzohydroxamic acid degradation. J Colloid Interface Sci 2023; 630:714-726. [PMID: 36347098 DOI: 10.1016/j.jcis.2022.10.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/08/2022]
Abstract
In this study, a novel carbon-wrapped-iron hierarchical porous catalyst (Fe/C-Mn800) was prepared from electrolytic manganese residue (EMR) and sewage sludge (SS), which showed outstanding degradation ability toward benzohydroxamic acid (BHA, nearly 90 % was removed within 60 min) with low metal leaching rate. Mechanism exploration found transition metal ions (Fe and Mn) can serve as electron acceptors and facilitate the generation of persistent free radicals (PFRs). These transition metal ions and PFRs mainly participated in the single-electron pathway via activating PMS to generate a large amount of reactive oxygen species (ROS). While the electron negative graphitic N and CO groups not only improve the electronegatively of catalyst, but also acted as the electron sacrificers to favor the electron transfer and directly oxidized the absorbed BHA through the ternary activated outer-sphere complexes. Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) analysis further demonstrated the crucial role of pre-adsorption during the degradation process. This work provided a deep insight into the degradation mechanism of metal/carbon composite and promising opportunity widened the horizon of the high-value utilization of EMR and SS.
Collapse
|
21
|
He N, Hu L, Jiang C, Li M. Remediation of chromium, zinc, arsenic, lead and antimony contaminated acidic mine soil based on Phanerochaete chrysosporium induced phosphate precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157995. [PMID: 35964759 DOI: 10.1016/j.scitotenv.2022.157995] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Microbial induced phosphate precipitation (MIPP) is an advanced bioremediation technology to reduce the mobility and bioavailability of heavy metals (HMs), but the high level of HMs would inhibit the growth of phosphate solubilizing microbes. This study proposed a new combination system for the remediation of multiple HMs contaminated acidic mine soil, which included hydroxyapatite (HAP) and Phanerochaete chrysosporium (P. chrysosporium, PC) that had high phosphate solubilizing ability and HMs tolerance. Experimental data suggested that in HAP/PC treatment after 35 d of remediation, labile Cr, Zn and As could be transformed into the stable fraction with the maximum immobilization efficiencies increased by 53.01 %, 22.43 %, and 35.65 %, respectively. The secretion of organic acids by P. chrysosporium was proved to promote the dissolution of HAP. Besides, the pH value, available phosphorus (AP) and organic matter (OM) increased in treated soil than in original soil, which also indicated the related dissolution-precipitation mechanism of HMs immobilization. Additionally, characterization results revealed that adsorption and ion exchange also played an important role in the remediation process. The overall results suggested that applying P. chrysosporium coupled with HAP could be considered as an efficient strategy for the remediation of multiple HMs contaminated mine soil and laid a foundation for the future exploration of soil microenvironment response during the remediation process.
Collapse
Affiliation(s)
- Ni He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Chunyangzi Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Mengke Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
22
|
Sriram B, Kogularasu S, Hsu YF, Wang SF, Sheu JK. Fabrication of Praseodymium Vanadate Nanoparticles on Disposable Strip for Rapid and Real-Time Amperometric Sensing of Arsenic Drug Roxarsone. Inorg Chem 2022; 61:16370-16379. [PMID: 36184926 DOI: 10.1021/acs.inorgchem.2c02388] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanomaterials have versatile properties owing to their high surface-to-volume ratio and can thus be used in a variety of applications. This work focused on applying a facile hydrothermal strategy to prepare praseodymium vanadate nanoparticles due to the importance of nanoparticles in today's society and the fact that their synthesis might be a challenging endeavor. The structural and morphological characterizations were carried out to confirm the influence of the optimizations on the reaction's outcomes, which revealed praseodymium vanadate (PrVO4) with a tetragonal crystal system. In this regard, the proposed development of electrochemical sensors based on the PrVO4 nanocatalyst for the real-time detection of arsenic drug roxarsone (RXS) is a primary concern. The detection was measured by amperometric (i-t) signals where PrVO4/SPCE, as a new electrochemical sensing medium for RXS detection, increased the sensitivity of the sensor to about ∼2.5 folds compared to the previously reported ones. In the concentration range of 0.001-551.78 μM, the suggested PrVO4/SPCE sensor has a high sensitivity for RXS, with a detection limit of 0.4 nM. Furthermore, the impact of several selected potential interferences, operational stability (2000 s), and reproducibility measurements have no discernible effect on RXS sensing, making it the ideal sensing device feasible for technical analysis. The real-time analysis reveals the excellent efficiency and reliability of the prosed sensor toward RXS detection with favorable recovery ranges between ±97.00-99.66% for chicken, egg, water, and urine samples.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | | | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan701, Taiwan
| |
Collapse
|
23
|
Environmental Behavior and Remediation Methods of Roxarsone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roxarsone (ROX) is used extensively in the broiler chicken industry, and most is excreted in poultry litter. ROX degradation produces inorganic arsenic, which causes arsenic contamination of soil and aquatic environment. Furthermore, elevated arsenic concentrations are found in livers of chickens fed ROX. Microorganisms, light, and ions are the main factors that promote ROX degradation in the environment. The adsorption of ROX on different substances and its influencing factors have also been studied extensively. Additionally, the remediation method, combining adsorption and degradation, can effectively restore ROX contamination. Based on this, the review reports the ecological hazards, discussed the transformation and adsorption of ROX in environmental systems, documents the biological response to ROX, and summarizes the remediation methods of ROX contamination. Most previous studies of ROX have been focused on identifying the mechanisms involved under theoretical conditions, but more attention should be paid to the behavior of ROX under real environmental conditions, including the fate and transport of ROX in the real environment. ROX remediation methods at real contaminated sites should also be assessed and verified. The summary of previous studies on the environmental behavior and remediation methods of ROX is helpful for further research in the future.
Collapse
|
24
|
He D, Luo Z, Zeng X, Chen Q, Zhao Z, Cao W, Shu J, Chen M. Electrolytic manganese residue disposal based on basic burning raw material: Heavy metals solidification/stabilization and long-term stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153774. [PMID: 35192822 DOI: 10.1016/j.scitotenv.2022.153774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Solidification/stabilization (S/S) is an option for the treatment of electrolytic manganese residue (EMR). Basic burning raw material (BRM) could successfully solidify/stabilize EMR, though heavy metals S/S mechanism and long-term stability remain unclear. Herein, Mn2+ and NH4+ S/S behavior, hydrated BRM and S/S EMR characterization, Mn2+ long-term leaching behavior, phase and morphology changes for long-term leaching were discussed in detail to clarify these mechanisms. Mn2+ and NH4+ leaching concentrations as well as pH value in S/S EMR were respectively 0.02 mg/L, 0.68 mg/L and 8.75, meeting the regulations of Chinese standard GB 8978-1996. Long-term stability of EMR was significantly enhanced after S/S. Mn2+ leaching concentration, Mn2+ migration, Mn2+ cumulative release, Mn2+ apparent diffusion coefficient and conductivity of EMR reduced to 0.05 mg/L, 5.5 × 10-6 mg/(m2·s), ~ 9 mg/m2, 6.30 × 10-15 m2/s and 435 μs/cm. Mechanism studies showed that the hydration of BRM forms OH-, calcium silicate hydrate gels (C-S-H) and ettringite. Therefore, during S/S process, NH4+ was escaped as NH3, Mn2+ was solidified/stabilized as tephroite (Mn2SiO4), johannsenite (CaMnSi2O6) and davreuxite (MnAl6Si4O17(OH)2), and Pb2+, Cu2+, Ni2+, Zn2+ were solidified/stabilized by C-S-H and ettringite via substitution and encapsulation. This study provides a good choice for EMR long-term stable storage.
Collapse
Affiliation(s)
- Dejun He
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Zhenggang Luo
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Xiangfei Zeng
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Qiqi Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Zhisheng Zhao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Wenxing Cao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China.
| |
Collapse
|
25
|
Yang Y, Ali A, Su J, Chang Q, Xu L, Su L, Qi Z. Phenol and 17β-estradiol removal by Zoogloea sp. MFQ7 and in-situ generated biogenic manganese oxides: Performance, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128281. [PMID: 35066225 DOI: 10.1016/j.jhazmat.2022.128281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The pollution of multifarious pollutants such as heavy metal, organic compounds, and nitrate are a hot research topic at present. In this study, the functions of Zoogloea sp. MFQ7 and its biological precipitation formed during bacterial manganese oxidation on the removal of phenol and 17β-estradiol (E2) were investigated. Strain MFQ7, a manganese-oxidizing bacteria, can remove 98.34% of phenol under pH of 7.1, a temperature of 30 ℃ and Mn2+ concentration of 24.34 mg L-1, additionally, the optimum E2 removal by strain MFQ7 was 100.00% at pH of 7.1, temperature of 28 ℃ and Mn2+ concentration of 28.45 mg L-1 by using response surface methodology (RSM) based on Box-Behnken design (BBD) model. The maximum adsorption capacity of bio-precipitation for phenol and E2 was 201.15 mg g-1 and 65.90 mg g-1, respectively. Furthermore, adsorption kinetics and isotherms analysis, XPS, FTIR spectra, Mn(III) trapping experiments elucidated chemical adsorption and Mn(III) oxidation contribute to the removal of phenol and E2 by biogenic manganese oxides. These findings indicated that the adsorption and oxidation of manganese are expected to be one of the effective means to remove these typical organic pollutants containing phenol and E2.
Collapse
Affiliation(s)
- Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| |
Collapse
|
26
|
He D, Shu J, Zeng X, Wei Y, Chen M, Tan D, Liang Q. Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152175. [PMID: 34896487 DOI: 10.1016/j.scitotenv.2021.152175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Electrolytic manganese residue (EMR) contains high concentrations of NH4+ and heavy metals, such as Mn2+, Zn2+, Cu2+, Pb2+, Ni2+ and Co2+, while carbide slag (CS) contains high amount of OH- and CO32-, both posing a serious threat to the ecosystem. In this study, EMR and CS synergistic stabilization/solidification (S/S) was discussed science CS could stabilize or solidify EMR and simultaneously reduce its corrosive. The results showed that after the synergistic S/S for 24 h when liquid-solid ratio was 17.5% and CS dosage was 7%, Mn2+ and NH4+ leaching concentrations of the S/S EMR were below the detection limits (0.02 mg/L and 0.10 mg/L) with a pH value of 8.8, meeting the requirements of the Chinese integrated wastewater discharge standard (GB 8978-1996). Mn2+ was stabilized as MnFe2O4, Mn2SiO4, CaMnSi2O6, and NH4+ escaped as NH3. Zn2+, Cu2+, Pb2+, Ni2+ and Co2+ in EMR can also be stabilized/solidified because of the react with OH- and CO32- in CS. Chemical cost was only $ 0.54 for per ton of EMR synergistic harmless treatment with CS. This study provided a new idea for EMR cost-effective and environment-friendly harmless treatment.
Collapse
Affiliation(s)
- Dejun He
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Xiangfei Zeng
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Yifan Wei
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China.
| | - Daoyong Tan
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Qian Liang
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| |
Collapse
|
27
|
Li X, He J, Lu J, Zhou Y, Zhou Y. In-situ production and activation of H 2O 2 for enhanced degradation of roxarsone by FeS 2 decorated resorcinol-formaldehyde resins. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127650. [PMID: 34801302 DOI: 10.1016/j.jhazmat.2021.127650] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Fenton technology performs well in high-risk roxarsone (ROX) removal, but it is limited by the high H2O2 transportation and storage risks. Herein, FeS2 decorated resorcinol-formaldehyde resins (FeS2-RFR) were successfully prepared to in-situ produce and utilize H2O2 for efficient removal of ROX. Under solar light illumination, resorcinol-formaldehyde resins (RFR) efficiently generated a high concentration of H2O2, with a yield of 500 μmol g-1 h-1. FeS2 can in-situ decompose H2O2 to generate ·OH, participating in the oxidation of ROX. As a result, the FeS2-RFR catalyst degraded more than 97% of ROX within 2 h and ROX was selectively degraded into low-toxic As(V), which can be simply removed by traditional adsorption or precipitation processes. During the degradation of ROX, ·OH played a dominant role. Moreover, the cations (Na+, K+, and Ca2+), anions (SO42-, Cl-), and humic acid had no noticeable inhibition effect on ROX removal. Furthermore, FeS2-RFR can still remove 70% of ROX even after three cycles, proving that this in-situ photo-Fenton system exhibited stability. This study innovatively proposed a double-active site FeS2-RFR photocatalyst for in-situ production and activation of H2O2 and showed a sustainable and eco-friendly way for organoarsenic compounds degradation.
Collapse
Affiliation(s)
- Xia Li
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jie He
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jian Lu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai 200092, China
| | - Yi Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China.
| | - Yanbo Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, No. 1515 Zhongshan Second North Road, Shanghai 200092, China.
| |
Collapse
|
28
|
Liu HY, Niu CG, Guo H, Huang DW, Liang C, Yang YY, Tang N, Zhang XG. Integrating the Z-scheme heterojunction and hot electrons injection into a plasmonic-based Zn 2In 2S 5/W 18O 49 composite induced improved molecular oxygen activation for photocatalytic degradation and antibacterial performance. J Colloid Interface Sci 2021; 610:953-969. [PMID: 34865737 DOI: 10.1016/j.jcis.2021.11.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The semiconductor-based photocatalysts with local surface plasmon resonance (LSPR) effect can extend light response to near-infrared region (NIR), as well as promote charge-carriers transfer, which provide a novel insight into designing light-driven photocatalyst with excellent photocatalytic performance. Here, we designed cost-effective wide-spectrum Zn2In2S5/W18O49 composite with enhanced photocatalytic performance based on a dual-channel charge transfer pathway. Benefiting from the synergistic effect of Z-scheme heterostructure and unique LSPR effect, the interfacial charge-carriers transfer rate and light-absorbing ability of Zn2In2S5/W18O49 were enhanced significantly under visible and NIR (vis-NIR) light irradiation. More reactive oxygen species (ROS) were formed by efficient molecular oxygen activation, which were the critical factors for both Escherichia coli (E. coli) photoinactivation and tetracycline (TC) photodegradation. The enhancement of molecular oxygen activation (MOA) ability was verified via quantitative analyses, which evaluated the amount of ROS through degrading nitrotetrazolium blue chloride (NBT) and p-phthalic acid (TA). By combining theoretical calculations with diverse experimental results, we proposed a credible photocatalytic reaction mechanism for antibiotic degradation and bacteria inactivation. This study develops a new insight into constructing promising photocatalysts with efficient photocatalytic activity in practical wastewater treatment.
Collapse
Affiliation(s)
- Hui-Yun Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Cheng-Gang Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Hai Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Da-Wei Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Chao Liang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ya-Ya Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xue-Gang Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|