1
|
Xia W, Zhang TX, Li X, Gao Y, Jordan RW, Su H, Jiang SJ, Gu YG. Nutrients and metal(loid)s in surface sediments of the Chishui River: A DGT-based assessment of the last natural tributary of the upper Yangtze River (China). ENVIRONMENTAL RESEARCH 2025; 275:121455. [PMID: 40122498 DOI: 10.1016/j.envres.2025.121455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
This study investigates the distribution and probabilistic ecotoxicological risk assessment of nutrients and metal(loid)s in the Chishui River, the last natural tributary of the upper Yangtze River, which plays a crucial role in maintaining regional biodiversity and water quality. Understanding the impact of contaminants in this ecologically significant river is essential for effective environmental management. Sediment samples were analyzed using diffusive gradients in thin films (DGT) to measure labile concentrations of nutrients and metal(loid)s, revealing significant spatial variability. Concentrations of PO4-P, NH4-N, NO3-N, and metal(loid)s such as Mn, Fe, Cu, and Zn varied notably across sampling sites. Risk quotient (RQ) analysis identified Mn as posing the highest ecological risk, followed by Cu and Fe. A combined probabilistic risk assessment using the SPI (Species Sensitivity Distribution-Probabilistic Risk Assessment-Inclusion-Exclusion Principle) model indicated a 32.46 % probability of toxic effects from nutrient and metal(loid) mixtures on aquatic organisms. This study underscores the effectiveness of DGT technology in assessing bioavailable contaminants and highlights the need for targeted risk management strategies to mitigate ecological impacts in the Chishui River.
Collapse
Affiliation(s)
- Wei Xia
- Department of Resources and Environment, Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Tian-Xin Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xue Li
- Department of Resources and Environment, Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Yanpeng Gao
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Richard W Jordan
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Hong Su
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shi-Jun Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
2
|
Rozirwan, Khotimah NN, Putri WAE, Fauziyah, Aryawati R, Diansyah G, Nugroho RY. Biomarkers of heavy metals pollution in mangrove ecosystems: Comparative assessment in industrial impact and conservation zones. Toxicol Rep 2025; 14:102011. [PMID: 40230513 PMCID: PMC11994975 DOI: 10.1016/j.toxrep.2025.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Heavy metal contamination from industrial activities in coastal regions can lead to pollution in mangrove ecosystems. Mangroves produce antioxidant compounds to mitigate the impact of free radicals. This study aimed to analyze the correlation between the concentration of heavy metals Pb and Cu and antioxidant activity in Avicennia alba and Excoecaria agallocha mangroves from areas affected by industrial activities and conservation areas, Banyuasin, South Sumatra, Indonesia. This study was conducted in September 2023 with sampling locations in the Payung Island area and the Barong River conservation area, Berbak Sembilang National Park. The samples taken included sediment and mangrove leaves. The concentration of heavy metals Pb and Cu was measured by atomic absorption spectrometry. Antioxidant activity test using the DPPH test, total phenol using the Folin-Ciocalteu method, and phytochemical profile screening using GCMS. Statistical analysis of the correlation between antioxidant activity and heavy metal concentration using the Pearson correlation. The results showed that the highest concentration of heavy metals in sediment and mangrove leaves was found in the area affected by industrial activity, with a range of Pb values of 0.67 ± 0.16-18.70 ± 0.48 mg/kg and Cu values of 3.39 ± 0.20-6.07 ± 0.37 mg / kg. The results of sediment pollution assessment for heavy metals Pb and Cu at Igeo < 0 indicates uncontaminated, 1 < Cf < 3 indicates low contamination, and PLI 0-2 indicates not polluted. While the results of heavy metal bioaccumulation in leaves were BCF < 1, indicates low bioaccumulation. E. agallocha leaves from the Pulau Payung area showed very strong antioxidant activity of 21.63 μg/ml, and the highest total phenol content reached 398.80 mg GAE/g. Analysis of compounds with the highest antioxidant activity identified the presence of esters, aldehydes, alcohols, fatty acids, glycosides, flavonoids, terpenoids, and steroids. Correlation analysis shows that higher heavy metal concentrations correspond to increased antioxidant activity and total phenol content (r ≠ 0). These findings are expected to contribute to scientific knowledge that enhances environmental sustainability, supporting effective management of coastal natural resources.
Collapse
Affiliation(s)
- Rozirwan
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Nadila Nur Khotimah
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, Indonesia
| | - Wike Ayu Eka Putri
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Fauziyah
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Riris Aryawati
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Gusti Diansyah
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| | - Redho Yoga Nugroho
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra 30862, Indonesia
| |
Collapse
|
3
|
Zhang C, Lu J, Wu J, Xiong B. Neglected Biogeochemical Process for Ocean Health: Seagrass Detritus Simultaneously Enhances Phenolic Endocrine-Disrupting Chemical Capture and Organic Carbon Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40405652 DOI: 10.1021/acs.est.5c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
This study presents the first comprehensive investigation on an easily neglected biogeochemical process of phenolic endocrine-disrupting chemical (EDC) capture and carbon sequestration by seagrass detritus. The results showed that Zostera marina L. detritus captured nonylphenol (NP) and bisphenol A (BPA) with high efficiency (>90%) and enhanced organic carbon sequestration in marine ecosystems. Under various seawater-sediment scenarios (pure seawater, nonburial, and burial systems), phenolic EDC rerelease rates were low (<20%), while total organic carbon (TOC) stocks increased by 21.5%-28.8% in EDC-treated groups compared to controls. Kinetic analyses revealed that NP and BPA were rapidly captured onto heterogeneous active sites of the detritus surface, with capture efficiency influenced by the physicochemical properties of contaminants, environmental factors, and the specific characteristics of the detritus. Laser scanning confocal microscopy (LSCM) and density functional theory (DFT) were employed to investigate synergistic mechanisms between phenolic EDCs and carbon at cellular and molecular levels. The lipids mediated NP sequestration through hydrophobic interactions with lipid-rich sites (such as phospholipids), while polysaccharides facilitated BPA binding via electrostatic interactions, highlighting their crucial roles in capturing phenolic EDCs. These findings reinforced the importance of seagrass meadows in capturing emerging contaminants and storing carbon in marine ecosystems.
Collapse
Affiliation(s)
- Cui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, Shandong, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Wu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, P. R. China
| | - Bitao Xiong
- School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, P. R. China
| |
Collapse
|
4
|
Bielski A, Prus Z. Accumulation of selected heavy metals in a sediment sample on the example of Lake Bagry (Poland): Modelling studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179650. [PMID: 40398160 DOI: 10.1016/j.scitotenv.2025.179650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The presence of heavy metals (HMs) in aquatic environments poses significant environmental risks due to their persistence, toxic properties, and potential for bioaccumulation in organisms. Their increased concentrations are found in many water bodies, especially post-mining lakes such as Bagry Lake in Cracow. This paper presents the modelling study on the adsorption of Cu, Pb, Zn, Cd, and Co in the bottom sediment of Bagry Lake, considering the temperature effect and the type of fraction (mineral and volatile). The HM concentrations from the clay-silty fraction (<0.06 mm) sediment were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). HM content in water solutions was determined by Atomic Absorption Spectroscopy (AAS). The Freundlich model shows that the organic fraction has the highest sorption capacity, especially for Pb and Cd. In contrast, the mineral fraction had the lowest sorption efficiency, whereas the sorption was at an intermediate level for the mix of sediment fractions. A developed Thermodynamic Adsorption Model (TAM) has shown that HM accumulation processes can be either spontaneous or non-spontaneous, exothermic or endothermic, with temperature influencing sorption efficiency. This study enhances the understanding of HM accumulation dynamics in sediment systems and provides insights into environmental remediation strategies.
Collapse
Affiliation(s)
- Andrzej Bielski
- Faculty of Environmental Engineering and Energy, Cracow University of Technology, Warszawska St. 24, 31-155 Cracow, Poland.
| | - Zuzanna Prus
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza Av. 30, 30-059 Cracow, Poland
| |
Collapse
|
5
|
Lou S, Zhang Z, Liu S, Yang Z, Chen S, Zou Y, Fedorova IV. Model-based kinetics of heavy metal enrichment in plants affected by hydrodynamics. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104610. [PMID: 40393304 DOI: 10.1016/j.jconhyd.2025.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
Heavy metal contamination threatens aquatic ecosystems by degrading water quality, biodiversity, and ecological stability. However, the role of hydrodynamics in modulating metal distribution and biogeochemical cycling, particularly in water-sediment-plant systems, remains unclear. Therefore, circular flume experiments were integrated with multiphase kinetic modeling to unravel cadmium (Cd) kinetics in water-sediment-plant systems under flow conditions. Affected by hydrodynamics, the distribution of Cd surged within 2 h and the Cd distribution coefficients showed a desorption peak within 8 h from the start of the experiment followed by reabsorption, and the hydrodynamic strength was negatively correlated with the resorption degree. Plant enrichment of heavy metals under hydrodynamics was observed initially, reaching a peak at the end of the experiment with phyto-sediment distribution coefficients of 0.22-0.25. The pseudo-second-order kinetic model effectively simulated the desorption of Cd from water, with r2 > 0.97. However, the Plant Enrichment Factor (PEF) failed to accurately describe the plant enrichment kinetics of the water-sediment-plant system under hydrodynamic conditions, with the r2 of cumulative Cd uptake kinetic of plants based on PEF lower than 0.77. Consequently, the nonlinear relationship of Cd in a multi-medium distribution was identified using the Artificial Neural Network (ANN), and a modified PEF was proposed, with r2 > 0.96. From the modified PEF, the competitive advantage of the phytobiological action was emphasized as the experiment proceeded. The modified model proposed in this study explains the physical process of Cd enrichment by plants in the water-sediment-plant system under hydrodynamics, providing a feasible tool for the study of pollutant transport in aquatic environments, and the results can contribute to theoretical support for optimizing wetland ecosystem protection strategies.
Collapse
Affiliation(s)
- Sha Lou
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zhirui Zhang
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
| | - Zhongyuan Yang
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Shizhe Chen
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China
| | - Yuwen Zou
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Irina Viktorovna Fedorova
- Institute of Earth Sciences, Saint Petersburg State University, 7-9 Universitetskaya Embankment, 199034 St Petersburg, Russia
| |
Collapse
|
6
|
Shen J, Kuang L, Wei W. Fabrication of porous lightweight calcium alginate-tannic acid composite beads for enhanced heavy metal ions removal. Int J Biol Macromol 2025; 311:144102. [PMID: 40350119 DOI: 10.1016/j.ijbiomac.2025.144102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/22/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Heavy metal pollution in water poses severe ecological and health risks, necessitating efficient remediation methods. This study introduces porous, lightweight calcium alginate-tannic acid (PCA/TA) composite beads, fabricated using sodium alginate (SA), tannic acid (TA), and CaCO₃. The decomposition of CaCO₃ in HCl releases Ca2+ and CO₂, crosslinking SA into a gel and creating a porous structure, as confirmed by SEM and XRD analyses. The buoyant beads exhibit excellent dispersion and recovery properties, making them highly suitable for water treatment applications. FTIR and XPS characterization revealed that TA enhances metal chelation through phenolic hydroxyl groups, significantly improving adsorption capacity. Systematic experiments demonstrated that PCA/TA beads achieve high adsorption capacities of 302.96 mg/g for Pb2+ and 238.39 mg/g for Cu2+, with the process following pseudo-second-order kinetics and the Langmuir isotherm, indicating chemisorption. DFT calculations further elucidated the adsorption mechanism, highlighting the synergistic effect between SA and TA. The beads also exhibited excellent regeneration potential, maintaining high efficiency over multiple cycles. This work presents a green, cost-effective solution for heavy metal removal, offering valuable insights for the design of sustainable adsorbents in large-scale water treatment applications.
Collapse
Affiliation(s)
- Jian Shen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China.
| | - Lei Kuang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| | - Wei Wei
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| |
Collapse
|
7
|
Ye J, Gao Y, Gao H, Zhao Q, Xu D, Zhou M, Shi M, Xue X. Effects of pristine and photoaged tire wear particles and their leachable additives on key nitrogen removal processes and nitrous oxide accumulation in estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137136. [PMID: 39793389 DOI: 10.1016/j.jhazmat.2025.137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/07/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Despite growing attention to the environmental pollution caused by tire wear particles (TWPs), the effects of pristine and photoaged TWPs (P-TWPs and A-TWPs) and their TWP leachates (TWPLs; P-TWPL and A-TWPL) on key nitrogen removal processes in estuarine sediments remain unclear. This study explores the responses of the denitrification rate, anammox rate, and nitrous oxide (N2O) accumulation to P-TWP, A-TWP, P-TWPL, and A-TWPL exposure in estuarine sediments, and assesses the potential biotoxic substances present in TWPLs. P-TWPs reduced the denitrification rate by 17.1 ± 10.0 % and increased N2O accumulation by 28.1 ± 18.7 %. The A-TWPs not only reduced the denitrification rate by 31.3 ± 8.3 % and increased N2O accumulation by 43.1 ± 22.0 %, but also decreased the anammox rate by 22.1 ± 13.3 %. A-TWPs further inhibited the denitrification rate by reducing nitrate reductase activity and the abundance of its gene (narG), while simultaneously decreasing hydrazine synthase activity and the abundance of its gene (hzo), thereby slowing the anammox rate. N2O accumulation after exposure to TWPs and TWPLs was positively correlated with the activity ratio of N2O-producing and N2O-consuming enzymes. Zinc (Zn) release in A-TWPL was 48.5 ± 6.9 % higher than that in P-TWPL, which is a crucial reason for the higher biotoxicity produced by A-TWPs. In addition, the abundance of denitrifying and anammox bacteria closely linked to the Zn, manganese, and arsenic concentrations in the TWPLs. This study provides insights into assessing the environmental risks posed by TWPs to estuarine ecosystems.
Collapse
Affiliation(s)
- Jinyu Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China.
| | - Yuan Gao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Huan Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Qingqing Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Dan Xu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China
| | - Minjie Zhou
- Pingyang County Aojiang River Basin Water Conservancy Project Management Center, Wenzhou, Zhejiang 325401, China
| | - Meng Shi
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xiangdong Xue
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China.
| |
Collapse
|
8
|
Hua P, Huang Q, Wang Z, Jiang S, Gao F, Zhang J, Ying GG. Impact of physicochemical and microbial drivers on the formation of disinfection by-products in drinking water distribution systems: A multivariate Bayesian network modeling approach. WATER RESEARCH 2025; 273:123001. [PMID: 39733531 DOI: 10.1016/j.watres.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
The formation of disinfection byproducts (DBPs) in drinking water distribution systems (DWDS) is significantly affected by numerous factors, including physicochemical water properties, microbial community composition and structure, and the characteristics of organic DBP precursors. However, the codependence of various factors remains unclear, particularly the contribution of microbial-derived organics to DBP formation, which has been inadequately explored. Herein, we present a Bayesian network modeling framework incorporating a Bayesian-based microbial source tracking method and excitation-emission fluorescence spectroscopy-parallel factor analysis to capture the critical drivers influencing DBP formation and explore their interactions. The results showed that the planktonic and suspended particle-associated bacteria in tap water mainly originated from bacteria in the treated water. Protein- and tryptophan-like fluorescence components were identified, illustrating their contribution to DBP formation cannot be ignored. The microbial abundance of Actinobacteria, Bacilli, and Bacteroidia is significantly related to the formation of trihalomethanes, haloacetic acids, and N-nitrosamines. These findings highlight the necessity for prioritizing management policies to control biofilm formation and minimize DBP formation in DWDSs.
Collapse
Affiliation(s)
- Pei Hua
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Qiuyun Huang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhenyu Wang
- Department Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Strasse 4, 06120 Halle (Saale), Germany
| | - Shanshan Jiang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fangzhou Gao
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, 210098 Nanjing, China
| | - Guang-Guo Ying
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
9
|
Basti S, Sahu C, Dash PK, Pati SS, Sahu SK. Sediment heavy metal speciation of Hirakud Reservoir-a Ramsar site in Mahanadi River in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:417. [PMID: 40100442 DOI: 10.1007/s10661-025-13898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Heavy metal speciation is an important tool for the assessment of sediment quality. This work was conducted to investigate the geochemical occurrence, distribution, and spatial variability of sediment heavy metals in the Hirakud Reservoir (a Ramsar site) of the Mahanadi River in India. Estimation based on a single-extraction (speciation) method revealed the dominance of Fe-Mn-bound (39.33%) fractions suggesting the potential mobility of heavy metals. Co-dominance of residual (35.03%) and organic matter-sulfide (23.02%) fractions indicate lattice-bound associations of elements under natural conditions and suggest anthropogenic organic input contribution respectively. The heavy metals distribution was spatially affected (p < 0.05). While, Ag, Cd, Hg, and Mo displayed extremely severe enrichment (EF > 50) and very strong geo-accumulation conditions (Igeo > 5); Cd and Hg displayed very high ecological risk (ERF > 320). However, the contamination factor for all heavy metals except Cd and Hg showcased low contamination (CF < 1). The principal component and cluster analysis revealed that the source of Mn, Mo, Hg, and Ag was mainly from anthropogenic or biogenic origin. The Fe and Al however displayed signs of being derived from multiple sources. However, the risk assessment code (RAC) results suggest that As exhibited a medium to very high risk (11 < RAC < 30) of bio-availability. Thus, the results of this study can be used for the formulation of strategies for the reduction of anthropogenic loads, planning for sediment quality management, and regular monitoring to curb the rising pollution issues of the reservoir.
Collapse
Affiliation(s)
- Sradhanjali Basti
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | - Chandan Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India.
- Gangadhar Meher University, Amruta Vihar, Sambalpur, 768004, India.
| | - Pratik Kumar Dash
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | - Sharada Shrinivas Pati
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
- State Pollution Control Board, Bhubaneswar, India
| | - Sanjat Kumar Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| |
Collapse
|
10
|
da Costa-Júnior WA, de Almeida R, de Sousa-Filho IF, de Carvalho DP, de Lacerda LD, Bastos WR. Seasonal dynamics of trace elements in water and sediments (suspension and bottom) in the Madeira River Basin, Western Amazon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:407. [PMID: 40095236 DOI: 10.1007/s10661-025-13855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Trace elements are ubiquitous global pollutants in modern society and are present in water and biota associated with natural and anthropogenic sources. In this context, this study reports the dynamics of trace elements in the Upper Madeira River Basin, a region that has undergone major environmental changes in the past decades, such as deforestation, mining, and the installation of two large hydroelectric power plants. Bottom sediment, water, and suspended particulate matter (SPM) were collected to determine water quality parameters and trace elements concentrations, quantified by ICP-OES. The average electrical conductivity of water was higher in the Madeira River (110.6 ± 44.4 µS cm-1) than in its tributaries (59.0 ± 49.1 µS cm-1). The Madeira River water has a pH close to neutral (7.0 ± 0.8), compared to the slightly acidic water of the tributaries (6.3 ± 0.9). The average dissolved oxygen in the Madeira River water samples was 6.9 mg L-1, significantly higher than in the tributaries (3.9 mg L-1). The sediment from the Madeira River has higher concentrations of As, Cu, Mn, Ni, Sr, and Zn than the tributaries but lower concentrations of Ba, Mn, Pb, Sr, V, and Zn in the SPM. Trace elements concentrations in the SPM remained relatively constant during the study period and were controlled by seasonality. The average concentrations of trace elements in water, suspended solids, and bottom sediments of the Madeira River Basin were comparable to other non-impacted aquatic ecosystems and can be considered regional environmental background values. In addition, concentrations were below the limits established by the World Health Organization and Brazilian regulations, for human consumption and conservation of aquatic life except, for occasional peaks of Ni and Pb concentrations.
Collapse
Affiliation(s)
- Walkimar Aleixo da Costa-Júnior
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
- Departamento de Química, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Ronaldo de Almeida
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
- Departamento de Química, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Izidro Ferreira de Sousa-Filho
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Luiz Drude de Lacerda
- Laboratório de Biogeoquímica Costeira, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wanderley Rodrigues Bastos
- Laboratório de Biogeoquímica Ambiental Wolfgang C. Pfeiffer, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil.
- Departamento de Biologia, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil.
| |
Collapse
|
11
|
Portugal MCS, Altafim GL, de Jesus SB, Alves AV, Rojas LAV, Zanardi-Lamardo E, Castro IB, Gallucci F, Choueri RB. Toxicity of PAHs-enriched sediments on meiobenthic communities under ocean warming and CO 2-driven acidification scenarios. MARINE POLLUTION BULLETIN 2025; 212:117489. [PMID: 39729829 DOI: 10.1016/j.marpolbul.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to assess the interactive effects of CO2-driven acidification, temperature rise, and PAHs toxicity on meiobenthic communities. Laboratory microcosms were established in a full factorial experimental design, manipulating temperature (25 °C and 27 °C), pH (8.1 and 7.6), and PAH contamination (acenaphthene + benzo(a)pyrene spiked sediments and negative control). Temperature rise and CO2-driven acidification led to a decrease in the densities of Copepoda. The density of nematodes Pseudochromadora and Daptonema also decreased, while Sphaerotheristus and Sabatieria densities increased, particularly in the absence of CO2-driven acidification. Ostracoda densities increased in the acidified scenario. PAH contamination resulted in decreased Daptonema densities but increased Turbellaria and certain Nematoda genera (e.g. Pseudochromadora). Overall, the results indicate that the changes of meiobenthic communities caused by CO2 acidification, warming, and PAH contamination are shaped by the vulnerability and tolerance of each taxonomic group, alongside indirect effects observed in Nematoda assemblages.
Collapse
Affiliation(s)
| | - Giam Luca Altafim
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Simone Brito de Jesus
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Aline Vecchio Alves
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Lino Angel Valcárcel Rojas
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Italo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Fabiane Gallucci
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | | |
Collapse
|
12
|
Sun C, Gong W, Pan G, Mortimer RJG, Yao E, Wen S, Chen M, Zhong J. Comprehensive effects of sediment dredging on environmental risk and bioavailability of heavy metals from the sediment of Lake Taihu, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136789. [PMID: 39647333 DOI: 10.1016/j.jhazmat.2024.136789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The comprehensive effects of environmental dredging on heavy metals (HM) are still uncertain. This study comprehensively evaluates the long-term effects of dredging on the environmental risk and bioavailability of HM (Cu, Ni, Zn, Pb, Cd, Cr, and As) in Lake Taihu, China, by comparing simulated dredged treated (D) and undredged (UD) sediment cores under in-situ conditions for one year. Threshold effect level (TEL), geological accumulation index (Igeo), potential ecological risk index (RI), and ratios of secondary phase and primary phase (RSP) methods were used to assess the environmental risk of sediment HM; and the diffusive gradient in thin-films (DGT) technique was applied to assess the bioavailability of sediment HM. The results indicate that Cd was the most polluted metal assessed by the Igeo and RI method, and that dredging significantly reduced the total content of sediment HM, particularly for Cu, Zn, and Cd, and its Igeo and RI index, but caused a slight effect on its fractionation and distinct effect on RSP index. These indices changed independently and seasonally. Porewater analysis suggested higher HM concentrations in summer and winter may cause corresponding deterioration in overlying water. DGT analysis suggested a large proportion of metal-DOM complexes and showed that dredging reduced the bioavailability of Ni, Cd, and As but had a mixed impact (effective and/or ineffective impact varied with seasons) on other metals. These findings highlight the complexity of dredging effects on sediment HM dynamics, underscoring the importance of seasonal monitoring and multi-geoengineering techniques targeted at total and specific metals.
Collapse
Affiliation(s)
- Chuanzhe Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, PR China
| | - Wanqing Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Gang Pan
- School of Humanities, York St John University, Lord Mayor's Walk, York YO31 7EX, UK; School of Chemical and Environmental Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Robert J G Mortimer
- School of Humanities, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| | - Enqin Yao
- Huzhou Ecological and Environmental Monitoring Center of Zhejiang Province, Huzhou, 313000, PR China
| | - Shuailong Wen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
13
|
Tan Y, Wang Y, Bing X, Jiang J, Guo G, Cui F, Wang K, Meng Z, Liu Y, Zhu Y. Coupling effect of cyanobacterial blooms with migration and transformation of typical pollutants in lake or reservoir: Enhanced or decreased? ENVIRONMENTAL RESEARCH 2025; 267:120734. [PMID: 39743008 DOI: 10.1016/j.envres.2024.120734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Eutrophication of lake and reservoir caused by cyanobacterial harmful algal blooms (cyanoHABs) become a global ecological problem because of massive destruction of ecosystems, which have attracted attentions widely. In addition to the production of cyanotoxins by certain bloom-forming species, there may also be direct or indirect interactions between cyanobacteria blooms and various pollutants in lakes or reservoirs. Based on bibliometrics, 19110 papers in Web of Science (WOS) and 2998 papers in the China National Knowledge Infrastructure (CNKI) on eutrophication and cyanobacterial blooms in lakes and reservoirs were analyzed, which showed that research on this topic has been ongoing for nearly 80 years with a gradual increase in its popularity. The research on the coupling process of cyanobacterial blooms with five typical pollutants, including microcystins (MCs), heavy metals, viruses, antibiotics and antibiotic resistance genes (ARGs), indicate that the coupling process between cyanobacteria blooms and certain pollutants is indeed generated through direct or indirect interactions by adsorption, changing the physical and chemical conditions of water environment, and changing the structure of microbial community. For instance, the production, toxicity would be likely enhanced by cyanobacteria blooms directly. And the microorganisms may play a significant role in the interaction between cyanobacteria blooms and ARGs. Generally, the risk of some typical pollutants would be likely enhanced or decreased directly or indirectly by these processes. It is recommended that further attention be paid to the interrelationships between the process of cyanobacterial bloom and typical pollutants' migration and transformation, to provide the scientific basis for the risk assessment and thus multi-objective synergistic control and management of nutrients and typical pollutants in eutrophic lakes or reservoirs.
Collapse
Affiliation(s)
- Yidan Tan
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuyao Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
| | - Xiaojie Bing
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Juan Jiang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangxi Cui
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kuo Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zirui Meng
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuxuan Liu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuanrong Zhu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
14
|
Reis AR, Vieira B, Roboredo M. Defining the quality of sediment in the context of the WFD monitoring plans: metal enrichment in two catchments from the north of Portugal. JOURNAL OF SOILS AND SEDIMENTS 2025; 25:1373-1391. [PMID: 40297211 PMCID: PMC12033116 DOI: 10.1007/s11368-025-03963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 04/30/2025]
Abstract
Purpose Riverbed sediment geochemistry provides useful information regarding metal contamination. To integrate sediment quality in river monitoring, within the WFD, the report of sediment quality to water quality managers must be expeditious. This study revisits the metal enrichment concept, applied to sediments from two mountain catchments, as a useful technique in river monitoring. Methods Riverbed sediment samples, collected at the end of the Dry and Wet Periods (DP, WP) were analysed for Cd, Cu, Pb, Zn, and Fe in fractions < 2 mm and < 63 µm. The metal enrichment factors (EFs) were referenced to distinct background values: average shale (AS), world rivers suspended sediments (WRSS) and Geochemical Atlas of Portugal (GAP). Results Cd, Cu, Pb and Zn contents are higher in the fraction < 63 µm, and at DP. The ranges of variation in fraction < 63 µm are (mg kg-1): a) River Vilariça, Cd (5-18 DP; 0.3 WP); Cu (103-341 DP; 22-218 WP); Pb -(24-55 DP; 11-42 WP); Zn (107-241 DP; 54-103 WP); b) River Vizela, -Cd (13-44 DP; 8-41 WP); Cu (267-444 DP; 18-168 WP); Pb -(44-132 DP; 20-42 WP); Zn (141-801 DP; 36-181 WP). Variations in metal contents are influenced by lithological, geomorphological, and microclimatic features, and anthropogenic pressures. EFs are higher when referenced to AS. In the River Vizela, the EFs reveal an enrichment of Cu, Pb and Zn relative to WRSS; Cd registers an enrichment relative to GAP. Conclusion Local/regional background, and EFs, are relevant when assessing environmental risks in freshwater systems: low EFs, when associated to natural enrichments, originate values of concern in terms of quality guidelines; high EFs may not imply risk to the fluvial environment. Using the fraction < 63 µm in river monitoring is considered adequate. In dynamic mountain streams, recent sediments and associated contaminants are retained, providing information on possible pollution sources. Identifying metals contamination (or natural enrichment) can help decision-makers to provide solutions for pollution sources. Supplementary Information The online version contains supplementary material available at 10.1007/s11368-025-03963-6.
Collapse
Affiliation(s)
- Anabela R. Reis
- Department of Geology, School of Life and Environmental Sciences, University of Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- CGeo - Geosciences Centre, University of Coimbra (Polo II), 3030-790 Coimbra, Portugal
| | - B. Vieira
- Chemistry Center Vila Real (previous affiliation), University of Trás-Os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Marta Roboredo
- Department of Biology and Environment, School of Life and Environmental Sciences, and CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-Os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
15
|
Zhou J, Liu Z, Li Z, Xie R, Jiang X, Cheng J, Chen T, Yang X. Heavy metals release in lead-zinc tailings: Effects of weathering and acid rain. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136645. [PMID: 39603131 DOI: 10.1016/j.jhazmat.2024.136645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Heavy metals (HMs) release from lead (Pb)-zinc (Zn) tailings poses significant environmental risks to surrounding areas. Furthermore, with the natural weathering and frequently happened acid rain events, the release of HMs could be elevated. This study conducted a series of laboratory column experiments with thermodynamics and hydrogeochemical analysis to investigate the environmental behavior of HMs release in Pb-Zn tailings under natural weathering conditions and acid rain events. Results showed that the weathering of calcite facilitates the release of Pb (17.9 mg/kg) and cadmium (Cd) (0.15 mg/kg), while acid rain promotes Zn release (10.5 mg/kg) from the Fe-Mn oxides, with no significant change for arsenic (As). Among the influencing factors during the column experiments, the oxidation-reduction potential (ORP) was identified as the primary indicator for the predictions of the HMs release behavior based upon the Random Forest model (R2 = 0.973 - 0.997). Correlation analysis revealed a strong relationship between coexistent ions and HM release patterns. Therefore, saturation index (SI) could effectively identify the influence range of each mineral phase on HM release. This study provides scientific evidence for effective management in carbonate-type tailings ponds.
Collapse
Affiliation(s)
- Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhen Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Ruoni Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xueqing Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiayi Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Khan K, Younas M, Yaseen M, Sher H, Maryam A, Ibrahim SM, Adnan A, Ali A, Fawad M, Khan AZ, Khan N, Shah IA. Heavy metals pollution in riverine sediments: Distribution, source, and environmental implications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:225. [PMID: 39893612 DOI: 10.1007/s10661-025-13623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/04/2023] [Indexed: 02/04/2025]
Abstract
This research reports heavy metal pollution in riverine sediments from River Kabul, Pakistan, which could endanger human health and ecology via the food web. The results revealed a substantial special variation in the average contents (mg/kg) of chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), lead (Pb), iron (Fe), and aluminum (Al) in riverine sediments, in the order of Fe (20,234.51) > Al (17,550.86) > Mn (375.45) > Zn (149.08) > Ni (89.11) > Cr (83.36) > Pb (45.29) > Cu (19.86) > Cd (7.48) > Co (6.28) > Hg (0.81). Among the heavy metals, Cd exhibited the highest degree of pollution along the river, followed by Hg > Ni > Zn > Pb > Al > Cr > Mn > Fe > Cu > Co. The overall contamination factor (CF) values for the sum of heavy metals were highest at monitoring site S-9, followed by S-8 > S-10 > S-6 > S-5 > S-7 > S-1 > S-4 > S-12 > S-3 > S-2 > S-1 with pollution load index (PLI) > 1, whereas the geo-accumulation index (Igeo) values of Cd and Hg fluctuated between Levels 3, 4, and 6, suggesting moderate to extreme pollution in the river. The correlation statistics determined the fate and distribution of heavy metals by establishing significant positive correlations between the specific metals of bounded sediments. The cluster analysis separates the correlated metals into Groups A and B, and Groups 1 and 2. While the principal component analysis evaluates the qualitative behavior of clustering by discerning industrial, agrochemicals, mining, and domestic wastewater discharges, leakages of lubricants along with multiple geogenic inputs, erosion of mafic and ultramafic rocks, and minimal atmospheric deposition are all potential sources of Cr, Mn, Co, Ni, Cu, Zn, Cd, Hg, Pb, Fe, and Al contamination. In terms of risk, the contaminations of Mn, Co, Cu, Zn, and Pb in riverine sediments were 85, 100, 100, 17, and 11%, respectively, representing a rare biological influence because their value is less than their corresponding threshold effect concentrations (TECs), whereas the levels of Mn, Ni, Cd, and Hg were above their probable effect concentrations (PECs) of 100, 100, 81, and 52%, respectively, representing prominent adverse biological influence. Based on consensus-based TECs and PECs, the contamination levels of Cr, Mn, Zn, Cd, Hg, and Pb were 100, 85, 83, 19, 48, and 90%, respectively, indicating occasionally exhibited adverse biological effects on the riverine population. Besides, the overall potential ecological risk index (PERI) of Cd and Hg, in particular, exhibited the maximum pollution level ( E r i ≥ 320), suggesting a very high potential ecological risk in the drainage that requires special attention from pollution control authorities.
Collapse
Affiliation(s)
- Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19120, Pakistan.
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19120, Pakistan
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, 19120, Pakistan
| | - Afsheen Maryam
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19120, Pakistan
- Department of Environmental Science-ACES-b (Institution for Miljovetenskap), Stockholm University, Stockholm, 10691, Sweden
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Adnan Adnan
- Institute of Chemical Sciences, University of Swat, Swat, 19120, Pakistan
| | - Ahmad Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Swat, 19120, Pakistan
| | - Muhammad Fawad
- Department of Environmental Sciences, The University of Haripur, Haripur, 22620, Pakistan
| | - Akhtar Zeb Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19120, Pakistan
| | - Nasrullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19120, Pakistan
| | - Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Mortazavi MS, Sharifian S, Nozar SLM, Koohkan H. Spatial distribution and the ecological risks posed by heavy metals and total petroleum hydrocarbons (TPHs) in the sediments of mangrove and coral habitats of Northeast Persian Gulf. J Trace Elem Med Biol 2025; 87:127574. [PMID: 39632299 DOI: 10.1016/j.jtemb.2024.127574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Heavy metals and total petroleum hydrocarbons (TPHs) are important pollutants in the aquatic ecosystem, and their long-term resistance, bio-accumulation, and bio-magnification during the food chain may cause adverse ecological and health risks. METHODS In here, the distribution and risk assessment of six heavy metals Cd, Pb, Ni, Cu, Zn, Cr, and TPHs were performed in the sediments of 32 regions situated in two mangroves (Tiab and Azini estuaries, Hara Mangrove forest protected area) and coral habitats (Larak and Hengam Islands) in Northeast of the Persian Gulf during 2020-2021. An atomic absorption device was used to determine the concentrations of heavy metals. Ecological risk of heavy metals is assessed through indices contamination factor (CF), contamination degree (CD), modified contamination degree (MCD), pollution load index (PLI), potential ecological risk index (PERI), and geoaccumulation index (Igeo). The spatial distribution of heavy metals was mapped through the inverse distance weighting (IDW) method in ArcMap. RESULTS The concentration of heavy metals indicated significant differences in spatial distribution. The maximum concentration of Cd 1.64 ± 0.001, Cr 18.41 ± 0.41 and Cu 40.5 ± 0.28 µg/g was observed at the regions situated in the Hara Mangrove forest protected area. Azini estuary had the maximum value of Zn 94.61 ± 30.74 and TPHs 4.47 ± 1.93 µg/g and finally, the highest value of concentration Ni 135.22 ± 1.85 µg/g and Pb 17.87 ± 2.17 g/gµ was found in Tiab estuary. The studied regions in the Tiab estuary and Hara Mangrove forest protected area were more contaminated than others and had considerable risks of Ni and Cd. Average ecological indices indicated the sediments of these areas especially Tiab, Hara Mangrove forest protected area, and Azini are moderately to considerably contaminated with Cd and Ni. Tiab was identified as the most contaminated area and all stations except Hengam Island were exposed to considerable ecological risks. Cadmium was found to be the riskiest heavy metal in the investigated region. The distribution of TPHs indicated there is no pollution of TPHs in the region. In all studied stations, the PELq (Toxicity of TPHs) and CF values showed the absence of potential risks of TPHs in sediments. CONCLUSIONS The findings indicated considerable contamination of Cd and Ni in the mangrove areas, especially Tiab, and it seems necessary to identify, manage, and control possible sources of contamination.
Collapse
Affiliation(s)
- Mohammad Seddiq Mortazavi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Sana Sharifian
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Seyedeh Laili Mohebbi Nozar
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Hadi Koohkan
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
18
|
Hearst S, Selby T, Kazery J, Everman S, Feng M, Sisson L, Nwaiwu C, Cevallos A, Lock J, Sinclair M. Fish as environmental sentinels for metal contaminants of human health concern in the Lower Mississippi River Basin. J Trace Elem Med Biol 2025; 87:127593. [PMID: 39827526 PMCID: PMC11795509 DOI: 10.1016/j.jtemb.2025.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Industrial expansion and population growth have lowered water quality, polluting aquatic ecosystems world-wide. Metal pollution in the rivers across the United States are a major health concern. The level of metal contamination in fish from the Lower Mississippi River Basin and their threat to public health were last evaluated 20 years ago. The goals of this study were to measure metal contamination in various fish species from the Lower Mississippi River Basin, evaluate the human consumption risk, and estimate bioindicator potential of these species for monitoring toxic metals on a larger scale. Various fish species (n = 203) were analyzed for 15 metal contaminants (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, and Zn). Species included: blue catfish (Ictalurus furcatus), channel catfish (Ictalurus punctatus), flathead catfish (Pylodictis olivaris), bigmouth buffalo (Ictiobus cyprinellus), smallmouth buffalo (Ictiobus bubalus), alligator gar (Atractosteus spatula), spotted gar (Lepisosteus oculatus), American gizzard shad (Dorosoma cepedianum), freshwater drum, (Aplodinotus grunniens), and white crappie (Pomoxis annularis). Fish consumption safety revealed toxic metals (As, Cd, Cr, Hg, and Pb) are a major human health concern in the Lower Mississippi River. Non-cancerous health hazard assessments indicated blue catfish, flathead catfish, gar species, and freshwater drum as species of concern. Consumption of all species posed human cancer risks. Computational modeling, with an accuracy of 98.5 %, identified Hg, Pb, Zn, Cr, Co, As, and Cd as major drivers of fish consumption safety. Using bioaccumulation factor analysis, we estimated the bioindicator potential of toxic metals for each fish species, finding Hg and Cd to be greatly bioaccumulative in predatory gar species. Overall, our data indicated that gar can serve as select environmental sentinels useful for monitoring toxic metal pollutants of public health concerns providing valuable insight to research scientist and monitoring agencies throughout the Lower Mississippi River Basin.
Collapse
Affiliation(s)
- Scoty Hearst
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States.
| | - Trent Selby
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Joseph Kazery
- The Department of Biology, Mississippi College, Clinton, MS, United States
| | - Steven Everman
- The Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Manliang Feng
- The Department of Chemistry, Tougaloo College, Tougaloo, MS, United States
| | - Lillian Sisson
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Chinaza Nwaiwu
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Alison Cevallos
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - James Lock
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Matthew Sinclair
- The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| |
Collapse
|
19
|
Talpur SA, Cinosi A, Stoppa F, Talpur HA, Novembre D, Rosatelli G. Heavy metals pollution of Pescara River (southern Italy): Risk assessment based on total reflection X-ray fluorescence analyses. MARINE POLLUTION BULLETIN 2025; 211:117397. [PMID: 39667133 DOI: 10.1016/j.marpolbul.2024.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
This study evaluates heavy metal (Cr, Fe, Ni, Cu, Zn, Hg, Pb, and As) contamination in the Pescara River, Italy, using Total Reflection X-ray Fluorescence, focusing on the impact of Bussi landfills. Analyses revealed that most heavy metals exceed WHO drinking water standards, particularly in upstream areas near industrial sites. Pollution indices resulted: Nemerow Pollution Index (0.43-23.75), Contamination Factor (0.09-104.49), Pollution Load Index (0.14-5.83), Heavy Metal Pollution Index (1.01-1304). Ecological Risk Index identified severe ecosystem threats in one-third of samples, while Human Health Risk Assessment revealed substantial non-carcinogenic risks with Hazard Quotients exceeding safety thresholds for both adults (3.57) and children (2.00). Specific concerns emerge for children's exposure due to their enhanced vulnerability to heavy metal toxicity. Water Quality Index classified 46.6 % of samples as "Very Poor" for drinking purposes. Principal component analysis and Pearson's correlation indicated anthropogenic sources as primary contributors, highlighting the urgent need for sustainable management strategies.
Collapse
Affiliation(s)
- Shakeel Ahmed Talpur
- DiSPUTer, Department of Psychological, Health and Territory Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy; DATA - U.D'A Analytical High-Tech Laboratory, "G. d'Annunzio" University, 66100 Chieti, Italy.
| | - Amedeo Cinosi
- GNR s.r.l., via Torino 7, 28010 Agrate Conturbia NO, Italy
| | - Francesco Stoppa
- DiSPUTer, Department of Psychological, Health and Territory Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy; DATA - U.D'A Analytical High-Tech Laboratory, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Hafeez Ahmed Talpur
- Department of Engineering and Geology, University "G. d' Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Daniela Novembre
- Department Ingeo, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Gianluigi Rosatelli
- DiSPUTer, Department of Psychological, Health and Territory Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy; DATA - U.D'A Analytical High-Tech Laboratory, "G. d'Annunzio" University, 66100 Chieti, Italy.
| |
Collapse
|
20
|
Chen F, Ma J, Pan K. Synergistic effect of silicon availability and salinity on metal adsorption in a common estuarine diatom. J Environ Sci (China) 2025; 148:364-374. [PMID: 39095171 DOI: 10.1016/j.jes.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Increasing nitrogen and phosphorus discharge and decreasing sediment input have made silicon (Si) a limiting element for diatoms in estuaries. Disturbances in nutrient structure and salinity fluctuation can greatly affect metal uptake by estuarine diatoms. However, the combined effects of Si and salinity on metal accumulation in these diatoms have not been evaluated. In this study, we aimed to investigate how salinity and Si availability combine to influence the adsorption of metals by a widely distributed diatom Phaeodactylum tricornutum. Our data indicate that replete Si and low salinity in seawater can enhance cadmium and copper adsorption onto the diatom surface. At the single-cell level, surface potential was a dominant factor determining metal adsorption, while surface roughness also contributed to the higher metal loading capacity at lower salinities. Using a combination of non-invasive micro-test technology, atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, we demonstrate that the diversity and abundance of the functional groups embedded in diatom cell walls vary with salinity and Si supply. This results in a change in the cell surface potential and transient metal influx. Our study provides novel mechanisms to explain the highly variable metal adsorption capacity of a model estuarine diatom.
Collapse
Affiliation(s)
- Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
21
|
Liang H, Wang G, Guo H, Niu L, Yang Q. Evaluation of heavy metal accumulation and sources in surface sediments of the Pearl River Estuary (China). MARINE ENVIRONMENTAL RESEARCH 2025; 204:106948. [PMID: 39778254 DOI: 10.1016/j.marenvres.2025.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away. The metal values along the western coast tended to be significantly elevated compared to that of the eastern seaboard, which may relate to anthropogenic pollution, the discharge of industrial and domestic effluents in the region. The geological accumulation index (Igeo) was utilized to evaluate the pollution status, categorized as ranging from light to moderate pollution levels. The homology of metal elements was determined through Pearson correlation analysis and principal component analysis (PCA). A receptor model of positive matrix factorization (PMF) was developed to quantify the contributions of various sources to the accumulation of metal elements in the PRE. Industrial sources contributed the most to sediment metals (37.07%), followed by agricultural and natural sources, with transportation sources contributing the least (11.17%).
Collapse
Affiliation(s)
- Haihan Liang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Guojuan Wang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Hongying Guo
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China
| | - Lixia Niu
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.
| | - Qingshu Yang
- School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China
| |
Collapse
|
22
|
Chen W, Xu J, Wang S, Chen Z, Dong S. Key drivers of heavy metal bioavailability in river sediments and microbial community responses under long-term high-concentration pollution. ENVIRONMENTAL RESEARCH 2025; 265:120375. [PMID: 39608434 DOI: 10.1016/j.envres.2024.120375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/20/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Given the urgent need for effective environmental management of metal-polluted ecosystems, understanding the drivers of heavy metal bioavailability and microbial adaptation is crucial. The Dongdagou River, a major pollution source to the upper Yellow River, presents significant risks to regional water quality and biodiversity. This study investigates heavy metal bioavailability and its drivers, alongside microbial community responses, in 39 surface sediment samples from the river. The results revealed severe contamination, particularly with cadmium (Cd). Statistical analysis revealed that effective sulfur (ES) plays a crucial role in driving bioavailability. High-throughput sequencing indicated that bacterial communities were primarily dominated by Proteobacteria, with increased microbial diversity observed downstream. Functional predictions highlighted the prevalence of chemoheterotrophy and nitrogen cycling processes, alongside a significant presence of metal-resistance genes and enzymes, such as Cu-Zn superoxide dismutase and metal-efflux transporters. These adaptations imply that microbial communities are developing mechanisms of resilience in response to prolonged heavy metal exposure. These findings offer valuable insights for formulating targeted remediation strategies in environments affected by heavy metal pollution.
Collapse
Affiliation(s)
- Weijie Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Guangdong Engineering &Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, MEE, Guangzhou, 510535, China
| | - Jun Xu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengli Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Zhaoming Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suhang Dong
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Wang L, Wang S, Ren P, Li J, Lu X, Li W, Tang Y. Enhanced immobilization of trace nickel by nanoplastic-Fe-Mn oxide complexes in sedimentary systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177913. [PMID: 39662419 DOI: 10.1016/j.scitotenv.2024.177913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Fe/Mn oxides are widely distributed mineral components in marine sediments and act as significant scavengers of trace metals. The emergence of plastic-rock complexes has led to an increasing recognition that plastics may influence the environmental behavior of minerals. Plastics, especially nanoplastics, can affect the formation of Fe/Mn oxides and their ability to immobilize heavy metals. In this study, the role of polystyrene nanoplastics (PS NPs) in the mineralization of FeMn oxides and their effects on the immobilization of heavy metals (using Ni(II) as an example) at the trace concentrations in the environment were investigated. Characterization analysis indicated that PS NPs not only adsorb Fe and Mn ions from the environment through electrostatic attraction (the force that draws together objects with opposite electrical charges) but also serve as a substrate for the heterogeneous nucleation and growth of FeMn oxides. The large specific surface area of the PS NPs provides a site for the growth of FeMn. This results in smaller particle sizes and larger specific surface areas for the generated FeMn oxides. Consequently, Fe-PS-Mn@SiO2 exhibits significantly greater adsorption efficiency for Ni(II) under various environmental conditions (such as different pH and salinity) compared to Fe-Mn@SiO2. Additionally, Fe-PS-Mn@SiO2 remained stable under sunlight at 60 °C over 1.5 years. These findings presented new insights into the impact of NPs on mineral formation and environmental behavior, expanding our understanding of the actual fate of NPs in sediment environments.
Collapse
Affiliation(s)
- Lijuan Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Siqing Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Pengju Ren
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Jiangpeng Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Xiao Lu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Wenqiu Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Yuanyuan Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
24
|
Xu F, Liao Y, Bai S, Yang R, Li Y, Yuan J. The effects of phosphorus on the fate and transformation of sediment-associated cadmium from river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177812. [PMID: 39637545 DOI: 10.1016/j.scitotenv.2024.177812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The coexistence of phosphorus (P) and cadmium (Cd) in river sediments poses a significant challenge for remediating these contaminants in aquatic environments, given the ongoing debates regarding their interactions. This study aimed to elucidate the impact of water-soluble phosphorus (PO43-) on the fate and transformation of sediment-associated Cd under varying conditions. The findings revealed that the impact of PO43- on the release of sediment-associated Cd depends on the presence or absence of cations such as Ca2+ and Mg2+, with Ca2+ exerting a more pronounced effect than Mg2+. In the absence of Ca2+ and Mg2+, PO43- effectively inhibits the release of sediment-associated Cd by facilitating the formation of more stable precipitates, including (Cd)3(PO4)2. Conversely, when Ca2+ and Mg2+ are present, they compete with Cd for PO43- binding sites, reducing the formation of (Cd)3(PO4)2 and indirectly enhancing the release of sediment-associated Cd. Furthermore, redox conditions play a significant role in Cd release from sediments depending on its fractions. However, this influence may be less prominent compared to that caused by PO43-. Notably, increasing sediment ageing time diminishes the enhancing effect exerted by PO43-, likely attributed to the conversion of Cd into a more stable residual fraction. This study offers further insights into the impact of PO43- on the fate and transformation of sediment-associated Cd within river sediments, necessitating simultaneous consideration of multiple variables such as cations, redox conditions, and sediment ageing.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yuhui Liao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Shihao Bai
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Rui Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Yaoming Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, People's Republic of China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, People's Republic of China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, People's Republic of China
| | - Jianfei Yuan
- Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu 610218, People's Republic of China.
| |
Collapse
|
25
|
Wang L, Wei Y, Wang B, Hu J, Zhao C, Yu D, Wang J, Liu Z. Co-exposure of microplastics with heavy metals increases environmental pressure in the endangered and rare wildlife reserve: A case study of the zhalong wetland red-crowned crane nature reserve, northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125287. [PMID: 39528136 DOI: 10.1016/j.envpol.2024.125287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) exposure to remote areas, including endangered and rare wildlife reserves, has attracted increasing concern. Compared with previous research mostly draws attention to the single exposure of MPs to the environment, greater emphasis should be placed on understanding the complex environmental behaviors of MPs. Therefore, the potential risks of MPs to ecosystems need to be explored in combination with their coexistence with other contaminants, but this is not well-understood. The presented study, taking Zhalong National Nature Reserve (Zhalong wetland), the largest habitat and breeding site for migratory Red-crowned cranes (Grus japonensis) in China, as an example, reveals the possibility of the co-exposure of MPs with various heavy metals. The average abundance of MPs in surface water and sediments in Zhalong Wetland is 738 particles/L and 7332 particles/kg, respectively, which is at a high level of MP pollution worldwide. The obtained results figure out that MPs are also widely found in Red-crowned cranes' feces and feathers. Notably, this study confirms that MP co-exposes to the wetland with Cr, Cd, and As via common sources, exposure routes, and the vector effect of MP. Importantly, we develop the methods of the environmental pressure for individual contaminants and achieve a comprehensive risk assessment of MPs co-exposure with other contaminants in the wetland ecosystem for the first time. It is found that co-exposure to heavy metal can increase the ecological risks of MPs. This is conducive to making a more standardized and reliable framework to estimate the environmental impacts of MP pollution and to formulate prevention and control policies.
Collapse
Affiliation(s)
- Lei Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yuchen Wei
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Bing Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Jufang Hu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Chuntao Zhao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Dongmei Yu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Jianping Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Ze Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China.
| |
Collapse
|
26
|
Jiang CC, Yu GH, Zhou XJ, Sun FS, Liu CQ. Biogeochemical process governing cadmium availability in sediments of typical coastal wetlands driven by drying-wetting alternation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135980. [PMID: 39342848 DOI: 10.1016/j.jhazmat.2024.135980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Fluctuations in water levels within coastal wetlands can significantly affect cadmium (Cd) cycling and behavior in sediments. Understanding the effects of drying-wetting cycles on Cd availability and binding mechanisms is crucial. However, information regarding this subject remains limited. This study conducted incubation experiments employing chemical extraction, high-resolution mass spectrometry, and microbiological analysis to investigate the Cd behavior under these conditions. The results from a 40-day anaerobic incubation followed by a 20-day aerobic phase indicated that the drying-wetting cycles triggered fluctuations in physicochemical parameters (e.g., pH, EC, and reactive iron (Fed)), affecting Cd mobility. The mobility of Cd was closely linked to nanozyme activity (R2=0.63), exhibiting a strong correlation with Fed (R2=0.51). This suggested that the drying-wetting cycles induced Fed changes, which regulated the nanozyme activity, thereby affecting Cd availability. The changes in Cd availability were strongly linked to transformations in iron oxides and organic functional groups (carboxylic-OH and aliphatic C-H), whereas the bacterial community composition, particularly Bacilli and Clostridia, notably influenced Cd accessibility. These findings offer valuable insights into the geochemical dynamics of Cd in coastal wetland sediments under alternating drying-wetting cycles, enhancing our understanding of its biogeochemical cycling and potential risks.
Collapse
Affiliation(s)
- Cheng-Cheng Jiang
- Institute of Surface-Earth System Science, School of Earth System Science Tianjin University, Tianjin 300072, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science Tianjin University, Tianjin 300072, China
| | - Xiao-Jie Zhou
- National Center for Protein Sciences Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fu-Sheng Sun
- Institute of Surface-Earth System Science, School of Earth System Science Tianjin University, Tianjin 300072, China.
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science Tianjin University, Tianjin 300072, China
| |
Collapse
|
27
|
Alves AV, Kureki RK, Trevizani TH, Figueira RCL, Choueri RB. Effects of metals in sediment under acidification and temperature rise scenarios on reproduction of the copepod Nitokra sp. MARINE POLLUTION BULLETIN 2024; 209:117125. [PMID: 39437611 DOI: 10.1016/j.marpolbul.2024.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The potential effects of trace metal pollution in sediment under scenarios of warming and CO2-driven acidification on the fecundity of the copepod Nitokra sp. were assessed. Ovigerous females were exposed to laboratory-spiked sediments at two different concentrations of a mixture of metals (Cu, Pb, Zn, and Hg) and to the control (non-spiked sediments), in combinations of two pH (7.7 and 7.1) and two temperatures (25 °C and 27 °C). The results revealed that CO2-driven acidification affected the fecundity of Nitokra sp. by interacting with temperature rise and metal contamination. While rising temperatures generally increased Nitokra sp. fecundity, when combined with metal addition and a CO2 acidified environment, warming led to a decline in offspring production. This is the first study with copepods to demonstrate the interactive effects of sediment contamination by metals, CO2-driven acidification, and temperature increase. Preliminary experiments are required to understand the complex interactive effects of multiple drivers.
Collapse
Affiliation(s)
- Aline Vecchio Alves
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil.
| | - Rafael Keiji Kureki
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil
| | - Tailisi Hoppe Trevizani
- University of São Paulo (USP), Oceanographic Institute, Marine Inorganic Chemistry Laboratory, Praça do Oceanográfico, 191, Cidade Universitária, 05508-120 São Paulo, SP, Brazil
| | - Rubens Cesar Lopes Figueira
- University of São Paulo (USP), Oceanographic Institute, Marine Inorganic Chemistry Laboratory, Praça do Oceanográfico, 191, Cidade Universitária, 05508-120 São Paulo, SP, Brazil
| | - Rodrigo Brasil Choueri
- Federal University of São Paulo, Institute of the Sea, Department of Marine Sciences, Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil; Postgraduate Program in Bioproducts and Bioprocesses, Federal University of São Paulo, Campus Baixada Santista, Santos, São Paulo, Brazil
| |
Collapse
|
28
|
Adeola AO, Paramo L, Fuoco G, Naccache R. Emerging hazardous chemicals and biological pollutants in Canadian aquatic systems and remediation approaches: A comprehensive status report. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176267. [PMID: 39278485 DOI: 10.1016/j.scitotenv.2024.176267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Emerging contaminants can be natural or synthetic materials, as well as materials of a chemical, or biological origin; these materials are typically not controlled or monitored in the environment. Canada is home to nearly 7 % of the world's renewable water supply and a wide range of different kinds of water systems, including the Great Lake, rivers, canals, gulfs, and estuaries. Although the majority of these pollutants are present in trace amounts (μg/L - ng/L concentrations), several studies have reported their detrimental impact on both human health and the biota. In Canadian aquatic environments, concentrations of pharmaceuticals (as high as 115 μg/L), pesticides (as high as 1.95 μg/L), bioavailable heavy metals like dissolved mercury (as high as 135 ng/L), and hydrocarbon/crude oil spills (as high as 4.5 million liters) have been documented. Biological threats such as genetic materials of the contagious SARS-CoV-2 virus have been reported in the provinces of Québec, Ontario, Saskatchewan and Manitoba provinces, as well as in the Nunavut territory, with a need for more holistic research. These toxins and emerging pollutants are associated with nefarious short and long-term health effects, with the potential for bioaccumulation in the environment. Hence, this Canadian-focused report provides the footprints for water and environmental sustainability, in light of this emerging threat to the environment and society. Several remediation pathways/tools that have been explored by Canadian researchers, existing challenges and prospects are also discussed. The review concludes with preventive measures and strategies for managing the inventory of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Luis Paramo
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Gianluca Fuoco
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
29
|
Zhao M, Pan D, Zhang S. The impact of organic carbon mineralization on pollution and toxicity of toxic metal in sediments: Yellow Sea and East China Sea study. ENVIRONMENTAL RESEARCH 2024; 262:119850. [PMID: 39197487 DOI: 10.1016/j.envres.2024.119850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Organic carbon mineralization is the main driving force of metal migration and transformation in sediments, greatly influencing the distribution, pollution degree, and toxicity of toxic metals. However, relevant research on this subject is still limited. In this study, the concentration of toxic metals (Cr, Cd, Cu, Pb, Zn, Co, Fe, Mn, Ni, As) in the solid and liquid phase (porewater) of sediments were measured, toxic metal pollution degree and toxicity of the Yellow Sea (YS) and the East China Sea (ECS) were assessed. Combined with the rate of organic carbon mineralization, the impact of organic carbon mineralization was analyzed. The results showed that Ni was slightly enriched and posed a certain ecological risk, and As was moderately enriched in the studied area, Pb was at a moderate pollution level in the studied area. Zn, Co, Mn, and Fe were at a moderate pollution level in the mud area of SYS and the west coastal area of ECS. Additionally, the total organic carbon mineralization rate (TCMR) in the ECS (5.12-18.04 mmol C m-2 d-1) was slightly higher than that in the YS (3.29-14.46 mmol C m-2 d-1) during spring. Moreover, organic carbon mineralization promotes metal enrichment, and the TCMR was significantly correlated with the pollution load index. Thus, TCMR can be used as an indicator to predict the degree of metal pollution. Furthermore, organic carbon mineralization promotes the mobilization of Cu from the solid phase to the liquid phase, while facilitating the transfer of Cr, Pb, Co, Ni, and Fe from the liquid phase to the solid phase. This process increases the potential risks of Cu and reduces the toxicity of Cr, Pb, Co, Ni, and Fe. Therefore, the impact of organic carbon mineralization should be considered in future assessments and predictions of toxic metal pollution and toxicity.
Collapse
Affiliation(s)
- Miao Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang, 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang, 222005, China.
| | - Dawei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Shenghui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
30
|
Cheng W, Yin H, Dong F, Li X, Zhang D, Lu C. Analysis and probabilistic health risk assessment of vertical heavy metal pollution in the water environment of reservoir in the west coast new area of Qingdao, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125021. [PMID: 39322109 DOI: 10.1016/j.envpol.2024.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The West Coast New Area is a typical city in China where water supply is predominantly sourced from reservoirs. Heavy metal pollution in these reservoirs directly impacts the safety of drinking water and human health. Therefore, this study comprehensively evaluated the status of heavy metal pollution in the water environment and sediment of the main water supply reservoir in the study area, revealing the interaction relationship and pollution sources, as well as assessing the probabilistic health risks to human beings. The results show that there are different degrees of pollution in the main water supply reservoirs in the study area, and the pollution increases with the increase of water depth. The heavy metal pollution index was up to 2681, indicating heavily pollution. The main polluting elements were Mn and Fe, and the maximum contents were 4.11 mg L-1 and 0.68 mg L-1, respectively, which far exceeded the Class III standard limit of drinking water in China. The main source of pollution is human activities, and Mn release from sediment aggravates deep water pollution. The non-carcinogenic risk index of heavy metals in the reservoir, ranging from 4% to 14%, is higher than 1, indicating a potential non-carcinogenic threat. Furthermore, heavy metals have a much greater impact on children compared to adults, among which Mn is the main contributor to human non-carcinogenic risk, contributing more than 60%. Therefore, controlling the content of Mn and Fe can effectively reduce the heavy metal pollution of reservoir and human health risk. The research results are of great significance for the utilization of reservoir water resources and the protection of the ecological environment in the study area.
Collapse
Affiliation(s)
- Wenju Cheng
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Huiyong Yin
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Fangying Dong
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaoxuan Li
- Inslitute of Gealogy and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Danyang Zhang
- School of Geosciences & Surveying Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Chang Lu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
31
|
Kushwaha S, Raju NJ, Macklin M, Ramanathan AL. Distribution of heavy metals in the sediments of Ganga River basin: source identification and risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:517. [PMID: 39546048 DOI: 10.1007/s10653-024-02291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Sediment serves as a heavy metal store in the riverine system and provides information about the river's health. To understand the distribution of heavy metal content in the Ganga River basin (GRB), a total of 25-bed sediment and suspended particulate matter (SPM) samples were collected from 25 locations in December 2019. Bed sediment samples were analyzed for different physio-chemical parameters, along with heavy metals. Due to insufficient quantity of SPM, the samples were not analyzed for any physio-chemical parameter. The metal concentrations in bed sediments were found to be as follows: Co (6-20 mg/kg), Cr (34-108 mg/kg), Ni (6-46 mg/kg), Cu (14-210 mg/kg), and Zn (30-264 mg/kg) and in SPM, the concentrations were Co (BDL-50 mg/kg), Cr (10-168 mg/kg), Ni (BDL-88 mg/kg), Cu (26-80 mg/kg), and Zn (44-1186 mg/kg). In bed sediment, a strong correlation of 0.86 and 0.93 was found between Ni and Cr, and Cu and Zn respectively and no significant correlation exists between organic carbon and metals except Co. In SPM, a low to moderate correlation was found between all the metals except Zn. The risk indices show adverse effects at Pragayraj, Fulhar, and Banshberia. Two major clusters were formed in Hierarchal Cluster Analysis (HCA) among the sample points in SPM and bed sediment. This study concludes that the Ganga River at Prayagraj, Banshberia, and Fulhar River is predominately polluted with Cu and Zn, possibly posing an ecological risk. These results can help policymakers in implementing measures to control metal pollution in the Ganga River and its tributaries.
Collapse
Affiliation(s)
- Stuti Kushwaha
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N Janardhana Raju
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mark Macklin
- Lincoln Centre for Water and Planetary Health, University of Lincoln, Lincoln, UK
| | - A L Ramanathan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
32
|
He Y, Ou GZ, Zhang Z, Shen ZT, Wei H, Ding XH, Wang Q, Zhang KN, Chen YG, Ye WM. On-site monitoring and numerical simulation on groundwater flow and pollution plume evolution in a hexavalent-chromium contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135662. [PMID: 39216239 DOI: 10.1016/j.jhazmat.2024.135662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/10/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Accurately ascertaining spatiotemporal distribution of pollution plume is critical for evaluating the effectiveness of remediation technologies and environmental risks associated with contaminated sites. This study concentrated on a typical Cr(VI) contaminated smelter being currently remediated using pump-and-treat (PAT) technology. Long-term on-site monitoring data revealed that two highly polluted regions with Cr(VI) concentrations of 162.9 mg/L and 234.5 mg/L existed within the contaminated site, corresponding to previous chromium slag yard and sewage treatment plant, respectively. The PAT technology showed significant removal performance in these highly polluted areas (>160 mg/L) after six months of pumping, ultimately achieving complete removal of the pollutants in these high-pollution areas. Numerical simulation results showed that although the current remediation scheme significantly reduced the Cr(VI) pollution degree, it did not effectively prevent the incursion of the pollution plume into the downstream residential area after 20 years. Additionally, an improved measure involving supplementary pumping wells was proposed, and its remediation effects were quantitatively evaluated. Results indicated that the environmental pollution risk of groundwater downstream could be effectively mitigated by adding pumping wells, resulting in a reduction of the pollution area by 20 % in the case of adding an internal well and 41 % with the addition of external wells after 20 years. The findings obtained in this study will provide an important reference and theoretical guidance for the reliability analysis and design improvement of the PAT remediation project.
Collapse
Affiliation(s)
- Yong He
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Ge-Zhi Ou
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Zhao Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China.
| | - Zheng-Tao Shen
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - He Wei
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Xiang-Hong Ding
- School of Civil Engineering, Central South University, Changsha 410083, PR China
| | - Qiong Wang
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
| | - Ke-Neng Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Yong-Gui Chen
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei-Min Ye
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
33
|
Solár J, Haas M, Pánik P, Oxikbayev B, Abduakassov A. Variability of trace elements in bodies of scrapers (Ephemeroptera) and predators (Plecoptera) from mountain rivers of Dzungarian Alatau (Kazakhstan) and Western Carpathians (Slovakia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64199-64209. [PMID: 39528895 PMCID: PMC11602859 DOI: 10.1007/s11356-024-35527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Bioaccumulation of trace elements in aquatic environments can be influenced by local environmental conditions such as temperature fluctuations, pH levels, sediment composition, dissolved organic matter content, and the presence of other chemical substances. We analyzed the differences in trace elements accumulation (S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Rb, Sr, Mo, Ba, and Pb) between two trophic guilds-scrapers (Ephemeroptera) and predators (Plecoptera)-of freshwater benthic macroinvertebrates collected from mountain streams in Kazakhstan and Slovakia. Trace elements in dried insect bodies were analyzed using an X-ray spectrometer, and physicochemical parameters of stream water were investigated at each sampling site. Our results showed significant differences in Fe, Ti, and Sr levels in predators from Kazakhstan and Cu levels in predators from Slovakia. Despite some trace elements showing higher concentrations in one group over another, the overall differences between regions were more pronounced. Principal component analysis (PCA) revealed that the primary factors influencing trace elements variability were associated with environmental conditions such as temperature, oxygen levels, and total dissolved solids (TDS). PCA components indicated a higher load of trace elements in the warmer, less oxygenated streams, particularly in Kazakhstan. These findings suggest that both biotic (feeding strategies) and abiotic (geographical and environmental conditions) factors significantly influence trace elements dynamics in freshwater ecosystems.
Collapse
Affiliation(s)
- Jaroslav Solár
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, Tatranská Javorina, 059 56, Slovakia.
| | - Martina Haas
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, Tatranská Javorina, 059 56, Slovakia
| | - Patrik Pánik
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, Tatranská Javorina, 059 56, Slovakia
| | - Berikzhan Oxikbayev
- Zhetysu State University named after Ilyas Zhansugurov, Zhansugurov st. 187 A, 040009, Taldykorgan, Kazakhstan
| | - Aibek Abduakassov
- Zhetysu State University named after Ilyas Zhansugurov, Zhansugurov st. 187 A, 040009, Taldykorgan, Kazakhstan
| |
Collapse
|
34
|
Peng Z, Li J, Xiang S, Yang Y, Wang F, Yang H, Cai R, Tan W. Novel Ternary System for Electrochemiluminescence Biosensor and Application toward Pb 2+ Assay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56902-56909. [PMID: 39402926 DOI: 10.1021/acsami.4c14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This study constructed an electrochemiluminescence (ECL) biosensor for ultrasensitive detection of Pb2+ in a ternary system by employing DNAzyme. The ternary system is composed of a potassium-neutralized perylene derivative (K4PTC) as the ECL emitter, K2S2O8 as the coreactant, and neodymium metal-organic frameworks (Nd-MOFs) as the coreaction accelerators. Nd-MOFs immobilize DNAzymes and enhance the luminescence intensity of the K4PTC/K2S2O8 system. As part of this system, K4PTC enhances the ECL signal in solution and supports Pb2+ detection. The sequence of ferrocene (Fc)-linked DNA (DNA-Fc) is catalytically cleaved by DNAzymes in the presence of Pb2+. This causes the removal of DNA1-Fc from the electrode surface to recover the ECL signal. As a result, the as-prepared ECL biosensor can quantify Pb2+ with a detection limit (LOD) of 4.1 fM in the range of 1 μM to 10 fM. The ECL biosensor displays high specificity, good stability, excellent reproducibility, and desirable practicality for Pb2+ detection in tap water. Moreover, by simply changing the sequence of the DNAzyme, new biosensors can be designed for ultrasensitive detection of different heavy metal ions, offering an excellent approach for monitoring water quality safety.
Collapse
Affiliation(s)
- Ziyang Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shi Xiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Zhang F, Fu H, Zhang D, Lou H, Sun X, Sun P, Wang X, Bao M. Co-pollution risk of petroleum hydrocarbons and heavy metals in typically polluted estuarine wetlands: Insights from the Xiaoqing River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174694. [PMID: 38997022 DOI: 10.1016/j.scitotenv.2024.174694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Excessive accumulation of total petroleum hydrocarbons (TPH) and heavy metals (HMs) in sediments poses a significant threat to the estuarine ecosystem. In this study, the spatial and temporal distribution, ecological risks, sources, and their impacts on the microbial communities of TPH and nine HMs in the estuarine sediments of the Xiaoqing River were determined. Results showed that the spatial distribution of TPH and HMs were similar but opposite in temporal. Ni, Cr, Pb, and Co concentrations were similar to the reference values (RVs). However, the other five HMs (Cu, Zn, Cd, As, and Hg) and TPH concentrations were 2.00-763.44 times higher than RVs; hence, this deserves attention, particularly for Hg. Owing to the water content of the sediments, Hg was mainly concentrated on the surface during the wet season and on the bottom during the dry season. Moreover, because of weak hydrodynamics and upstream pollutant sinks, TPH-HMs in the river were higher than those in the estuary. TPH and HM concentrations were negatively correlated with microbial diversity. Structural equation modeling showed that HMs (path coefficient = -0.50, p < 0.001) had a negative direct effect on microbial community structure and a positive indirect effect on TPH. The microbial community (path coefficient = 0.31, 0.01 < p < 0.05) was significantly correlated with TPH. In summary, this study explores both the chemical analysis of pollutants and their interaction with microbial communities, providing a better understanding of the co-pollution of TPH and HMs in estuarine sediments.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center, Weifang 262700, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
36
|
Liu M, Qiao P, Shan Y, Zhang Z, Pan P, Li Y. Migration and Accumulation Simulation Prediction of PPCPs in Urban Green Space Soil Irrigated with Recycled Water: A Review. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135037. [PMID: 38941831 DOI: 10.1016/j.jhazmat.2024.135037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) in reclaimed water introduces an ongoing challenge as they infiltrate green space soils during irrigation, leading to a gradual buildup that poses considerable ecological risks. The simulation and forecasting of PPCPs accumulation in soil are pivotal for proactive ecological risk management. However, the majority of research efforts have predominantly concentrated on the vertical transport mechanisms of PPCPs in the soil, neglecting a holistic perspective that integrates both vertical and lateral transport phenomena, alongside accumulation dynamics. To address this gap, this study introduces a comprehensive conceptual model that encapsulates the dual processes of vertical and lateral transport, coupled with accumulation of PPCPs in the soil environment. Grounded in the distinctive properties of green space soils, we delve into the determinants governing the vertical and lateral migration of PPCPs. Furthermore, we consolidate existing simulation methodologies for contaminant transport, aiming to establish a comprehensive model that accurately predicts PPCPs accumulation in green space soils. This insight is critical for deducing the emission threshold of reclaimed water necessary for the protection of green space soils, informing the formulation of rational irrigation strategies, and anticipating future environmental risks. It provides a critical theoretical basis for more informed decision-making in the realm of urban water reuse and pollution control.
Collapse
Affiliation(s)
- Manfang Liu
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Pengwei Qiao
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Yue Shan
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Pan Pan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan 571101, China
| | - Yang Li
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| |
Collapse
|
37
|
Li J, Ma H, Chen X, Yu Y, Xia X, Zhao W, Li D, Zhao Q, Wei L. Integrating HYDRUS-2D and Bayesian Networks for simulating long-term sludge land application: Uncovering heavy metal mobility and pollution risk in the soil-groundwater environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134803. [PMID: 38850931 DOI: 10.1016/j.jhazmat.2024.134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The release of sludge-derived heavy metals (HMs) to soil and their subsequent migration into groundwater poses a significant challenge for safe and low-carbon sludge land application. This study developed a predictive framework to simulate 60-year sludge land application, evaluating the risk of HMs pollution in the soil-groundwater environment and assessing the influence of soil and water properties. HYDRUS-2D simulations revealed that highly mobile Cu, Ni, and Zn penetrated a 10 m soil layer over a 60-year period, contributing to groundwater pollution. In contrast, Cr was easily sequestered within the topsoil layer after 5-years continuous operation. The non-equilibrium parameter α could serve as an indicator for assessing their potential risk. Furthermore, the limited soil adsorption sites for Pb (f = 0.02772) led to short-term (1-year) groundwater pollution at a 0.5 m-depth. Bayesian Networks model outcomes indicated that humic-like organics crucially influenced HMs transformation, enhancing the desorption of Cd, Cu, Ni, Pb, and Zn, while inhibiting the desorption for Cr. Additionally, electrical conductivity promoted the release of most HMs, in contrast to the Mn mineralogy in soil. This study bridges the gap between the macro-level HMs migration trends and the micro-level adsorption-desorption characteristics, providing guidance for the safe land application of sewage sludge. ENVIRONMENTAL IMPLICATION: This study introduces a framework integrating HYDRUS-2D simulations with Bayesian Networks to assess the risks of groundwater pollution by heavy metals (HMs) over a 60-year sludge application. Sludge-derived Cu, Ni, and Zn are found to penetrate soil up to 10 m and exceed safety limits, with the non-equilibrium parameter α serving as an indicator for pollution risk. The importance of nutrients from sludge-amended soil for the transformation of HMs in the subsurface environment highlights the need for enhanced sludge management, specifically through more detailed regulation of nutrient composition. These findings contribute to developing precise strategies for the long-term sludge land application.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China; China Construction Eighth Engineering Division Corp., LTD, 200112, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE); School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Songliao Aquatic Environment (Ministry of Education), Jilin Jianzhu University, Changchun 130118, China.
| |
Collapse
|
38
|
Fatmi B, Hazzab A, Rahmani A, Ghenaim A. Examining temporal trends in heavy metal levels to analyze sediment pollution dynamics in the Saida urban watershed (N-W Algeria). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11084. [PMID: 39117585 DOI: 10.1002/wer.11084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The study focuses on current pollution in the Saïda basin, a semi-arid region in north-western Algeria. By analyzing sediments, the study provides interesting results on urban pollution and its environmental impact. The research consists of two main phases, each addressing different aspects of pollution. In the first phase, different pollution indicators are used to analyze heavy metals and organic pollutants in urban drainage sediments. The results are compared with sediment quality guidelines, regulatory thresholds, and local and international references. Most of the metallic contaminants exceed the toxicity levels established by the continental crust and sediment quality guidelines, suggesting an anthropogenic origin. In addition, contamination indices show significant accumulation. In this context, the results highlight the importance of accumulation and transport processes in urban sediments. Hydrological parameters significantly influence heavy metal distribution mechanisms. Remarkable variations between copper (Cu) and lead (Pb) suggest a combined or singular source during transport. Conversely, chromium (Cr), nickel (Ni), and iron (Fe) are mainly derived from natural lithological sources. Cadmium (Cd) is associated with anthropogenic sources related to the agricultural use of phosphate fertilizers, whereas zinc (Zn) is mainly derived from physical corrosion processes. In the second phase, a combined descriptive and multivariate statistical analysis examines the mobility and distribution of heavy metals and their relationships with organic matter (OM) over time. Pronounced temporal variations in Cd, Zn, and Cu concentrations are attributed to human activities. Strong correlations exist between OM and cobalt (Co), Cu and Pb, confirming the ability of OM to adsorb these metals under specific geochemical conditions associated with waste disposal. Conversely, Zn, Cd, Cr, and Ni show weak or negative correlations with OM, suggesting diverse sources, including potential agricultural, industrial, and natural origins. The dendrogram confirms the existence of previously identified contaminant groups, suggesting common sources and potential co-occurrence patterns. This analysis highlights the role of the drainage network as a physico-chemical reactor in the mobilization of contaminants. It underlines the importance of sediment interactions in urban pollution processes. Finally, recommendations are proposed to ensure effective pollution control and remediation. PRACTITIONER POINTS: Useful information on pollution and its environmental impact is provided by the analysis of sediments in the urban basin of Saida (NW-Algeria). The results of this study indicate high levels of heavy metals in the sediments, in excess of toxicity limits, and evidence of anthropogenic sources. Temporal variations in metal concentrations indicate the influence of human activities. The study has made it possible to identify the sources, to understand the mobility and distribution, and to control the contamination by heavy metals in the urban sediments. Drainage system serves as a pathway for dispersing contaminants.
Collapse
Affiliation(s)
- Belaid Fatmi
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
- Algerian National Organism for the Technical Control of Hydraulic Constructions (CTH), Tlemcen, Algeria
| | - Abdelkrim Hazzab
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
| | - Asmaa Rahmani
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
| | - Abdellah Ghenaim
- Laboratory of Mechanics and Environment ICUBE/INSA, National Institute of the Applied Sciences, Strasbourg, France
| |
Collapse
|
39
|
Yang Q, Lu X, Chen W, Chen Y, Gu C, Jie S, Lei P, Gan M, Yin H, Zhu J. Geochip 5.0 insights into the association between bioleaching of heavy metals from contaminated sediment and functional genes expressed in consortiums. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49575-49588. [PMID: 39080164 DOI: 10.1007/s11356-024-34506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
The heavy metal contamination in river and lake sediments endangers aquatic ecosystems. Herein, the feasibility of applying different exogenous mesophile consortiums in bioleaching multiple heavy metal-contaminated sediments from Xiangjiang River was investigated, and a comprehensive functional gene array (GeoChip 5.0) was used to analyze the functional gene expression to reveal the intrinsic association between metal solubilization efficiency and consortium structure. Among four consortiums, the Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans consortium had the highest solubilization efficiencies of Cu, Pb, Zn, and Cd after 15 days, reaching 50.33, 29.93, 47.49, and 79.65%, while Cu, Pb, and Hg had the highest solubilization efficiencies after 30 days, reaching 63.67, 45.33, and 52.07%. Geochip analysis revealed that 31,346 genes involved in different biogeochemical processes had been detected, and the systems of 15 days had lower proportions of unique genes than those of 30 days. Samples from the same stage had more genes overlapping with each other than those from different stages. Plentiful metal-resistant and organic remediation genes were also detected, which means the metal detoxification and organic pollutant degradation had happened with the bioleaching process. The Mantel test revealed that Pb, Zn, As, Cd, and Hg solubilized from sediment influenced the structure of expressed microbial functional genes during bioleaching. This work employed GeoChip to demonstrate the intrinsic association between functional gene expression of mesophile consortiums and the bioleaching efficiency of heavy metal-contaminated sediment, and it provides a good reference for future microbial consortium design and remediation of river and lake sediments.
Collapse
Affiliation(s)
- Quanliu Yang
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Xianren Lu
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Wei Chen
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Yi Chen
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Chunyao Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Shiqi Jie
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Pan Lei
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China.
| |
Collapse
|
40
|
Pontet NGM, Fernández C, Botté SE. Novel method of removing metals from estuarine water using whole microbial mats. Biometals 2024; 37:877-894. [PMID: 38270738 DOI: 10.1007/s10534-023-00578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
This study addresses the limited understanding of chromium-microbial mat interactions in estuarine tidal flats. The aims were to evaluate (1) the efficiency of the microbial consortium in Cr(III) removal from seawater; (2) the elemental and mineralogical composition of the microbial mat as a natural system in the Cr removal, (3) the effects of metal on microphytobenthos, and (4) possible interactions of Cr with other metals present in the consortium. Microbial mats were exposed to Cr(III) solutions at different concentrations (2-30 mg Cr/L). Analysis such as metal concentration, organic matter content, chlorophyll a and phaeopigment concentrations, abundance of diatoms and cyanobacteria, SEM-EDS, and XRD were performed. Most of the Cr(III) was deposited, as chromium oxide/hydroxide, on the surface of all microbial mat components. The complete microbial mat, comprising sediments, detritus, EPS, and diverse microorganism communities, exhibited a remarkable capacity to accumulate Cr(III), retaining over 87% in the solution.
Collapse
Affiliation(s)
- Natalia Gabriela Morales Pontet
- Argentine Institute of Oceanography, CONICET - National University of the South (UNS), Carrindanga 7.5 km Road, B8000FWB , Bahía Blanca, Argentina.
- Department of Biology, Biochemistry, and Pharmacy, National University of the South (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| | - Carolina Fernández
- Institute of Biochemical Research of Bahía Blanca, CONICET - National University of the South (UNS), Carrindanga 7.5 km Road, B8000FWB, Bahía Blanca, Argentina
- Center for Entrepreneurship and Sustainable Territorial Development (CEDETS), Provincial University of the Southwest (UPSO) - Commission of Scientific Research of the Province of Buenos Aires (CIC), Cali 320 city, B8003FTH, Bahía Blanca, Argentina
| | - Sandra Elizabeth Botté
- Argentine Institute of Oceanography, CONICET - National University of the South (UNS), Carrindanga 7.5 km Road, B8000FWB , Bahía Blanca, Argentina
- Department of Biology, Biochemistry, and Pharmacy, National University of the South (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina
| |
Collapse
|
41
|
Zha Y, Yang Y. Innovative graph neural network approach for predicting soil heavy metal pollution in the Pearl River Basin, China. Sci Rep 2024; 14:16505. [PMID: 39019919 PMCID: PMC11255285 DOI: 10.1038/s41598-024-67175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Predicting soil heavy metal (HM) content is crucial for monitoring soil quality and ensuring ecological health. However, existing methods often neglect the spatial dependency of data. To address this gap, our study introduces a novel graph neural network (GNN) model, Multi-Scale Attention-based Graph Neural Network for Heavy Metal Prediction (MSA-GNN-HMP). The model integrates multi-scale graph convolutional network (MS-GCN) and attention-based GNN (AGNN) to capture spatial relationships. Using surface soil samples from the Pearl River Basin, we evaluate the MSA-GNN-HMP model against four other models. The experimental results show that the MSA-GNN-HMP model has the best predictive performance for Cd and Pb, with a coefficient of determination (R2) of 0.841 for Cd and 0.886 for Pb, and the lowest mean absolute error (MAE) of 0.403 mg kg-1 for Cd and 0.670 mg kg-1 for Pb, as well as the lowest root mean square error (RMSE) of 0.563 mg kg-1for Cd and 0.898 mg kg-1 for Pb. In feature importance analysis, latitude and longitude emerged as key factors influencing the heavy metal content. The spatial distribution prediction trend of heavy metal elements by different prediction methods is basically consistent, with the high-value areas of Cd and Pb respectively distributed in the northwest and northeast of the basin center. However, the MSA-GNN-HMP model demonstrates superior detail representation in spatial prediction. MSA-GNN-HMP model has excellent spatial information representation capabilities and can more accurately predict heavy metal content and spatial distribution, providing a new theoretical basis for monitoring, assessing, and managing soil pollution.
Collapse
Affiliation(s)
- Yannan Zha
- Guangzhou Institute of Technology, Guangzhou, Computer Simulation Research and Development Center, 465 Huanshi East Road, Guangzhou, 510075, China.
| | - Yao Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, 483 Wushan St., Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, Guangzhou, 510642, China
| |
Collapse
|
42
|
Mortazavi MS, Nozar SLM, Sharifian S, Koohkan H, Khoddami S, Akbarzadeh GA. Risk assessment of heavy metals and total petroleum hydrocarbons (TPHs) in coastal sediments of commercial and industrial areas of Hormozgan province, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:236. [PMID: 38849629 DOI: 10.1007/s10653-024-01983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/04/2024] [Indexed: 06/09/2024]
Abstract
The significant increase in the pollution of heavy metals and organic pollutants, their stable nature, and their high toxicity are gradually becoming a global crisis. In a recent study, a comprehensive assessment of the spatial distribution of heavy metals and total petroleum hydrocarbons (TPHs), as well as an assessment of their ecological risks in the sediments of 32 stations located in commercial and industrial areas (Mainly focusing on petrochemical and power industries, desalination plants and transit Ports) of Hormozgan province (East and West of Jask, Bandar Abbas, Qeshm, and Bandar Lengeh) was performed during 2021-2022. The sediment samples were digested with HNO3, HCl and HF solvents. The concentration of heavy metals was determined with furnace and flame systems of atomic absorption spectrometer. The concentration of heavy metals showed significant spatial changes between stations. The ecological assessment indices between the regions indicated that the stations located in Shahid Bahonar Port, Suru Beach, and Khor gorsouzuan had a higher intensity of pollution than other places and significant risks of pollution, especially in terms of Cr and Ni. The average contamination degree (CD) (14.89), modified contamination degree (MCD) (2.48), pollution load index (PLI) (2.32), and potential ecological risk index (PERI) (100.30) showed the sediments in the area of Shahid Bahonar Port, Suru beach and Khor gorsouzuan, experience significant to high levels of pollution, especially Cr and Ni. Using contamination factor (CF) and Geoaccumulation index (Igeo), Cr was considered the most dangerous metal in the studied areas. Based on the global classification of marine sediment quality for the concentrations of TPHs, the sediments of the studied stations were classified as non-polluted to low pollution. In all regions, indices of the PELq (General toxicity) and CF (Contamination factor) were much lower than 0.1 and 1 respectively, showing the absence of adverse biological effects caused by TPHs in sediments. It is necessary to consider comprehensive and impressive strategies to control and reduce pollution of heavy metals, especially in the areas of Shahid Bahonar Port, Suru Beach, and Khor gorsouzuan, so that the sources of this pollution are required to be identified and managed.
Collapse
Affiliation(s)
- Mohammad Seddiq Mortazavi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Seyedeh Laili Mohebbi Nozar
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Sana Sharifian
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran.
| | - Hadi Koohkan
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| | - Sharareh Khoddami
- Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Gholam Ali Akbarzadeh
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
43
|
Li G, Jaisi DP, Wang M, Yan F, Zhang X, Jin Y, Zheng Z, Feng X. Zeolite facilitates sequestration of heavy metals via lagged Fe(II) oxidation during sediment aeration. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133961. [PMID: 38490148 DOI: 10.1016/j.jhazmat.2024.133961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Aeration of sediments could induce the release of endogenous heavy metals (HMs) into overlying water. In this study, experiments involving FeS oxygenation and contaminated sediment aeration were conducted to explore the sequestering role of zeolite in the released HMs during sediment aeration. The results reveal that the dynamic processes of Fe(II) oxidation play a crucial role in regulating HMs migration during both FeS oxygenation and sediment aeration in the absence of zeolite. Based on the release of HMs, Fe(II) oxidation can be delineated into two stages: stage I, where HMs (Mn2+, Zn2+, Cd2+, Ni2+, Cu2+) are released from minerals or sediments into suspension, and stage II, released HMs are partially re-sequestered back to mineral phases or sediments due to the generation of Fe-(oxyhydr) oxide. In contrast, the addition of zeolite inhibits the increase of HMs concentration in suspension during stage I. Subsequently, the redistribution of HMs between zeolite and the newly formed Fe-(oxyhydr) oxide occurs during stage II. This redistribution of HMs generates new sorption sites in zeolite, making them available for resorbing a new load of HMs. The outcomes of this study provide potential solutions for sequestering HMs during the sediment aeration.
Collapse
Affiliation(s)
- Gen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Meng Wang
- Chang Jiang Water Resources Protection Institute, Wuhan 430051, China
| | - Fengling Yan
- Chang Jiang Water Resources Protection Institute, Wuhan 430051, China
| | - Xin Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxuan Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xionghan Feng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Zhang K, Chang S, Tu X, Wang E, Yu Y, Liu J, Wang L, Fu Q. Heavy metals in centralized drinking water sources of the Yangtze River: A comprehensive study from a basin-wide perspective. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133936. [PMID: 38479139 DOI: 10.1016/j.jhazmat.2024.133936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Water quality in the Yangtze River Basin (YRB) has received considerable attention because it supplies water to 400 million people. However, the trends, sources, and risks associated with heavy metals (HMs) in water of centralized drinking water sources (CDWSs) in the YRB region are not well understood due to the lack of high-frequency, large-scale monitoring data. Moreover, research on the factors affecting the transportation of HMs in natural water are limited, all of which significantly reduce the effectiveness of CDWSs management. Therefore, this study utilized data on 11 HMs and water quality from 114 CDWSs, covering 71 prefecture-level cities (PLC) in 15 provinces (cities), to map unprecedented geospatial distribution of HMs in the YRB region and examine their concentrations in relation to water chemistry parameters. The findings revealed that the frequency of detection (FOD) of 11 HMs ranged from 28.59% (Hg) to 99.64% (Ba). The mean concentrations are ranked as follows: Ba (40.775 μg/L) > B (21.866 μg/L) > Zn (5.133 μg/L) > V (2.668 μg/L) > Cu (2.049 μg/L) > As (1.989 μg/L) > Mo (1.505 μg/L) > Ni (1.108 μg/L) > Sb (0.613 μg/L) > Pb (0.553 μg/L) > Hg (0.002 μg/L). Concentrations of Zn, As, Hg, Pb, Mo, Sb, Ni, and Ba exhibited decreasing trends from 2018 to 2022. Human activities, including industrial and agricultural production, have led to higher pollution levels in the midstream and downstream of the river than in its upstream. Additionally, the high concentrations of Ba and B are influenced by natural geological factors. Anion concentrations and nutrient levels, play a significant role in the transport of HMs in water. Probabilistic health risk assessment indicates that As, Ba, and Sb pose a potential carcinogenic risk. Additionally, non-carcinogenic risk to children under extreme conditions should also be considered.
Collapse
Affiliation(s)
- Kunfeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | - Sheng Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Enrui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanling Yu
- Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| | - Jianli Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
45
|
Zhang Z, Lou S, Liu S, Zhou X, Zhou F, Yang Z, Chen S, Zou Y, Radnaeva LD, Nikitina E, Fedorova IV. Potential risk assessment and occurrence characteristic of heavy metals based on artificial neural network model along the Yangtze River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32091-32110. [PMID: 38648002 DOI: 10.1007/s11356-024-33400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Pollution from heavy metals in estuaries poses potential risks to the aquatic environment and public health. The complexity of the estuarine water environment limits the accurate understanding of its pollution prediction. Field observations were conducted at seven sampling sites along the Yangtze River Estuary (YRE) during summer, autumn, and winter 2021 to analyze the concentrations of seven heavy metals (As, Cd, Cr, Pb, Cu, Ni, Zn) in water and surface sediments. The order of heavy metal concentrations in water samples from highest to lowest was Zn > As > Cu > Ni > Cr > Pb > Cd, while that in surface sediments samples was Zn > Cr > As > Ni > Pb > Cu > Cd. Human health risk assessment of the heavy metals in water samples indicated a chronic and carcinogenic risk associated with As. The risks of heavy metals in surface sediments were evaluated using the geo-accumulation index (Igeo) and potential ecological risk index (RI). Among the seven heavy metals, As and Cd were highly polluted, with Cd being the main contributor to potential ecological risks. Principal component analysis (PCA) was employed to identify the sources of the different heavy metals, revealing that As originated primarily from anthropogenic emissions, while Cd was primarily from atmospheric deposition. To further analyze the influence of water quality indicators on heavy metal pollution, an artificial neural network (ANN) model was utilized. A modified model was proposed, incorporating biochemical parameters to predict the level of heavy metal pollution, achieving an accuracy of 95.1%. This accuracy was 22.5% higher than that of the traditional model and particularly effective in predicting the maximum 20% of values. Results in this paper highlight the pollution of As and Cd along the YRE, and the proposed model provides valuable information for estimating heavy metal pollution in estuarine water environments, facilitating pollution prevention efforts.
Collapse
Affiliation(s)
- Zhirui Zhang
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Sha Lou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Shuguang Liu
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China
| | - Xiaosheng Zhou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Feng Zhou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Zhongyuan Yang
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Shizhe Chen
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Yuwen Zou
- Department of Hydraulic Engineering, Tongji University, Shanghai, 200092, China
| | - Larisa Dorzhievna Radnaeva
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Republic of Buryatia, Russia
| | - Elena Nikitina
- Laboratory of Chemistry of Natural Systems, Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Republic of Buryatia, Russia
| | - Irina Viktorovna Fedorova
- Institute of Earth Sciences, Saint Petersburg State University, 7-9 Universitetskaya Embankment, 199034, St Petersburg, Russia
| |
Collapse
|
46
|
Deng L, Fan Y, Liu K, Zhang Y, Qian X, Li M, Wang S, Xu X, Gao X, Li H. Exploring the primary magnetic parameters affecting chemical fractions of heavy metal(loid)s in lake sediment through an interpretable workflow. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133859. [PMID: 38402686 DOI: 10.1016/j.jhazmat.2024.133859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The magnetic properties of lake sediments account for close relationships with heavy metal(loid)s (HMs), but little is known about their relationships with chemical fractions (CFs) of HMs. Establishing an effective workflow to predict HMs risk among various machine learning (ML) methods in conjunction with magnetic measurement remains challenging. This study evaluated the simulation efficiency of nine ML methods in predicting the risk assessment code (RAC) and ratio of the secondary and primary phases (RSP) of HMs with magnetic parameters in sediment cores of a shallow lake. The sediment cores were collected and sliced, and the total amount and CFs of HMs, as well as magnetic parameters, were determined. Support vector machine (SVM) outperformed other models, as evidenced by coefficient of determination (R2) > 0.8. Interpretable machine learning (IML) methods were employed to identify key indicators of RAC and RSP among the magnetic parameters. Values of χARM, HIRM, χARM/χ, and χARM/SIRM of sediments ranging in 220-500 × 10-8 m3/kg, 30-40 × 10-5Am2/kg, 15-25, and 0.5-1, respectively, indicated the potential ecological risks of Cd, Hg, and Sb. This study offers new perspectives on the risk assessment of HMs in lake sediments by combining magnetic measurement with IML workflow.
Collapse
Affiliation(s)
- Ligang Deng
- School of Environment, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yuanhang Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingjia Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shuo Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaohan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
47
|
Luo M, Liu Q, Tao Y, Jiang X, Zang L, Yu H, Liu Y, Wang H, Niu Y, Niu Y. Aging properties and cadmium remediation mechanism of biochar in sediment from phosphorus-rich water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133062. [PMID: 38043425 DOI: 10.1016/j.jhazmat.2023.133062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Cadmium (Cd) is the main heavy metal pollutant in sediments from East China. The biochar-sediment nexus can provide carbon sequestration and pollution control. In this work, an in situ study was conducted to investigate the long-term effects and control mechanism of biochar and the effect of biochar aging on Cd stabilization in overlying water-pore water-sediment. The Cd2+ concentration in the overlying water was positively correlated with total nitrogen (0.960, P < 0.05), total organic carbon (0.983, P < 0.05), and total phosphorus (0.993, P < 0.01) in pore water. Biochar stabilized Cd2+ by increasing the pH and oxidation-reduction potential of the sediment environment and promoting the formation of Cd1.25Ca0.75(P2O7) on the biochar surface in sediment from phosphorus-rich water. These changes were closely related to the Brunauer-Emmett-Teller surface area and average pore size of the biochar. Within 60 days, the biochar in the sediment underwent aging, which was closely related to the preparation temperature of the biochar. The organic composition of biochar prepared at a low temperature (≤ 300 °C) and the surface structure of biochar prepared at a high temperature (≥ 500 °C) were altered. The biochar parameter changes were in the order of pore volume > Brunauer-Emmett-Teller surface area > pore size. Our results show that biochar modification can enhance the remediation capacity of biochar, but may be unfavorable to biochar anti-aging. This knowledge will support policymakers and researchers when exploring long-term biochar use in contamination control and strengthen future research.
Collapse
Affiliation(s)
- Mingke Luo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Qian Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanru Tao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Longfei Zang
- State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Yu
- State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yaqing Liu
- State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haonan Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Niu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yong Niu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Institute of Lake Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
48
|
Hao X, Ouyang W, Gu X, He M, Lin C. Accelerated export and transportation of heavy metals in watersheds under high geological backgrounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133514. [PMID: 38228005 DOI: 10.1016/j.jhazmat.2024.133514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
The geological background level of metals plays a major role in mineral distribution and watershed diffuse heavy metal (HM) pollution. In this study, field research and a distributed hydrological model were used to analyze the distribution, sources, and pollution risk of watershed HMs in sediments with high geological HM backgrounds. Study showed that the mineral distribution and landcover promoted the transport differences of watershed HMs from upstream to the estuary. And the main sources of Co, Ni, and V in the estuarine sediments were natural sources. Sources of Pb and Zn were dominated by anthropogenic sources, accounting for 76% and 64% of their respective totals. The overall ecological risk of anthropogenically sourced HMs was dominated by Pb (46.6%), while the contributions of Co and Ni were also relatively high, accounting for 35.70% and 33.40%. Moreover, redundancy analysis showed that HM variations in the sediments were most sensitive to soil erosion and mineralizing rock distribution. The spatial patterns of watershed HMs from natural sources were significantly influenced by P loading, precipitation, and forest distribution. This combination of experiments and model improves the understanding of watershed HM variation and provides a new perspective for formulating effective watershed HM management strategies.
Collapse
Affiliation(s)
- Xin Hao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
49
|
Gu X, Han X, Xing P, Xu D, Wan S, Wu QL, Wu F. Diffusion kinetic processes and release risks of trace metals in plateau lacustrine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133341. [PMID: 38150756 DOI: 10.1016/j.jhazmat.2023.133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The ecological risk posed by trace metals in the plateau lacustrine sediments of China has attracted worldwide attentions. A better understanding of the kinetic diffusion processes and bioavailability of these metals in plateau lakes is needed. Using the diffusive gradient in thin films (DGT) and Rhizon, concentrations of Mn, Mo, Ni, Cr, and Co in the sediments, labile fractions, and interstitial water of Lake Fuxian were comprehensively analyzed. According to the DGT-induced fluxes in sediments (DIFS) model, fully sustained and unsustained resupplies are possible ways in which metals are released from solids to the solution. Moreover, the resupply characteristics of metals varied at different depths in the sediments and at different sites in the lake. Based on the DIFS model, the effective concentrations (CE) of the trace metals were calculated and all except Cr showed good linear relationships with the DGT-labile concentrations, indicating that the CE values were valuable for predicting metal bioavailability. According to the CE values, the metal contamination released from the sediments was relatively low based on the Monte Carlo simulation. This study provides a comprehensive solution for studying the environmental behavior and potential ecological risks of toxic metals in sedimentary environment.
Collapse
Affiliation(s)
- Xiang Gu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaotong Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Di Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiqiang Wan
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
50
|
Bharat AP, Singh AK, Mahato MK. Heavy metal geochemistry and toxicity assessment of water environment from Ib valley coalfield, India: Implications to contaminant source apportionment and human health risks. CHEMOSPHERE 2024; 352:141452. [PMID: 38354867 DOI: 10.1016/j.chemosphere.2024.141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The present study aims to investigate the hydrogeochemical evolution of heavy metals and assesses impacts of mining activities on the groundwater resources and potential human health risks in the coal mining areas of Ib valley coalfield. In this perspective, a total of one hundred and two mine water and groundwater samples were collected from different locations. The water samples were analysed for some selected heavy metals i.e. Mn, Cu, Pb, Zn, Ni, Co, As, Se, Al, Sr, Ba, Cd, Cr, V and Fe using ICP-MS. In addition, pH and SO42- concentration were also measured following APHA procedure. The water pH in the Ib valley coalfields ranged from 3.26 to 8.18 for mine water and 5.23 to 8.52 for groundwater, indicating acidic to alkaline nature of water. Mn in mine water and Zn in groundwater environment were observed as the most dominant metals. The water hazard index (WHI) reflects that around 80% of mine water are non-toxic (WHI<5), 5% slightly toxic (510) and 15% extremely toxic (WHI>15). Relatively high pH and low concentration of dissolved metals and SO42- in groundwater as compared to mine water indicate lesser impact of mining activities. The calculated drinking water quality index (DWQI) suggests that Mn, Al, Ni and Fe in mine water and Mn, Fe, Ni and Pb in groundwater were the major objectionable metals which caused the water quality deterioration for drinking uses. Further, the non-carcinogenic health risk assessment for adult male, female and child populations identifies Co, Mn, Ni as the key elements making the water hazardous for human health. Comparatively higher ratio of ingestion rate and body weight in child population might be causing higher health risks in child population as compared to adult male and adult female population.
Collapse
Affiliation(s)
- Abhishek Pandey Bharat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-Central Institute of Mining and Fuel Research, Dhanbad 826001, Jharkhand, India.
| | - Abhay Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-Central Institute of Mining and Fuel Research, Dhanbad 826001, Jharkhand, India
| | - Mukesh Kumar Mahato
- Department of Environmental Studies, Lakshmibai College, University of Delhi, India
| |
Collapse
|