1
|
Zhou G, Chen G, Tang P, Li X, Ma J, Liu B. Revealing the removal behavior of five neglected microplastics in coagulation-ultrafiltration processes: Insights from experiments and predictive modeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137857. [PMID: 40068401 DOI: 10.1016/j.jhazmat.2025.137857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 05/15/2025]
Abstract
Typical water treatment processes are essential for mitigating the risk of microplastic contamination in drinking water. The integration of experiments and machine learning offers a promising avenue to elucidate microplastic removal behavior, yet relevant studies are scarce. To address this gap, this study combined experimental and artificial neural network (ANN) modeling to explore the removal behavior and mechanisms of five neglected microplastics in typical coagulation-ultrafiltration processes. Experimental results demonstrated that coagulation achieved an optimal removal rate of 37.0-56.0 % for the five microplastics, and subsequent ultrafiltration almost completely removed all residual microplastics. Five ANN models were constructed and optimized by adjusting activation functions and employing batch normalization, accurately predicting microplastic removal, with high R² values of 0.9972-0.9987. X-ray photoelectron spectroscopy elucidated the involvement of AlIV and AlVI species, hydrogen bonding, and π-π interaction in coagulation. Two-dimensional correlation spectroscopy explored the sequential formation of six chemical bonds (C-H, Al-O-Al, C-O, COO-, C=O, and -OH) and potential mechanisms. Moreover, theoretical calculations clarified the interfacial interactions between microplastics and ultrafiltration membrane, highlighting the roles of hydrophobic attraction and acid-base interaction. This study expands our understanding of microplastic removal in drinking water treatment, providing valuable mechanistic and modeling insights.
Collapse
Affiliation(s)
- Guanyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China
| | - Guijing Chen
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China; Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610065, PR China
| | - Peng Tang
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China; Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610065, PR China
| | - Xifan Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, PR China; Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Rehman A, Habumugisha T, Huang F, Zhang Z, Kiki C, Al MA, Yan C, Shaheen U, Zhang X. Impacts of polystyrene nanoplastics on zebrafish gut microbiota and mechanistic insights. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118332. [PMID: 40393324 DOI: 10.1016/j.ecoenv.2025.118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Aquatic environments are frequently contaminated with nanoplastics (NPs) ranging from 1-100 nm generated by plastic aging, but their bio-enrichment and toxicological impacts remain poorly understood. This study investigates how chronic exposure to carboxylated polystyrene nanoplastics (PNPs) alters gut microbiota composition and function in zebrafish (Danio rerio). Adult zebrafish were exposed to 50 nm PNPs at concentrations of 0.1, 1.0, and 10 mg/L for 14 and 28 days, followed by gut microbiota analysis using 16S rRNA gene sequencing. PNP exposure altered gut microbiota composition, including an increase in Proteobacteria abundance and a decrease in Firmicutes, Bacteroidetes, and the inflammation-related genus Alistipes. Beneficial probiotics such as Faecalibacterium, Streptococcus, Bifidobacterium, and Lachnospira were diminished, while pathogenic bacteria proliferated. TEM imaging revealed the internalization of PNP particles within intestinal tissues resulted in vacuolation, suggesting potential epithelial damage. Co-occurrence network patterns of gut microbiota greatly decreased during treatment with NPs. The neutral community model showed that among PNP treatments, 0.1 mg/L led to a less predictable (stochastic assembly process). PNP exposure led to increased predicted microbial functions (via PICRUSt2) related to xenobiotic metabolism, infection pathways, and lipopolysaccharide (LPS) production, while RNA transport and N-glycan biosynthesis were decreased. However, pathways related to microbial antioxidants exhibited significant variation across different PNP levels. These results provide critical insights into the toxicological impacts of chronic PNP exposure on fish gut health, highlighting the potential risks to aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Abdul Rehman
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Théogène Habumugisha
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Fuyi Huang
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Zixing Zhang
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Claude Kiki
- State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China; Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Mamun Abdullah Al
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol Sun Yat-sen University, Zhuhai 519082, China
| | - Changzhou Yan
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Uzma Shaheen
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Xian Zhang
- State Key Laboratory of Regional and Urban Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China; State Key Laboratory of Advanced Environmental Technology,Institute of Urban Environment Chinese Academy of Sciences, Xiamen 361021, P.R. China.
| |
Collapse
|
3
|
García-Rollán M, Sanz-Santos E, Belver C, Bedia J. Key adsorbents and influencing factors in the adsorption of micro- and nanoplastics: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125394. [PMID: 40262493 DOI: 10.1016/j.jenvman.2025.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
Microplastics and nanoplastics (MNPs) are emerging contaminants in drinking water sources that pose serious risks to human health and ecosystems. Several removal strategies, such as adsorption, exist but present challenges for their industrial scalability. This review provides a concise overview of MNP adsorption mechanisms and highlights the limited but critical exploration of column adsorption in the literature, emphasizing its importance for large-scale applications. Special attention is given to carbon-based materials due to their cost-effectiveness, environmental friendliness and sustainability. Other adsorbents (e.g., metal-organic frameworks, clays) are also discussed for their promising performance in realistic water matrixes. To predict and optimize the efficiency of adsorbents, leading simulation models are reviewed. Taken together, this work provides a comprehensive overview of the fundamental factors, such as adsorption mechanisms, adsorbent selection and experimental conditions, to optimize MNP adsorption. By highlighting the underexplored area of column-based processes, it provides valuable information to advance adsorption as a viable industrial-scale solution for MNP contamination.
Collapse
Affiliation(s)
- M García-Rollán
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain.
| | - E Sanz-Santos
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain
| | - C Belver
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain
| | - J Bedia
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, E-28049, Spain.
| |
Collapse
|
4
|
Liu B, Guo K, Feng Q, Yue Q, Gao Y, Gao B. Revealing the removal behavior of polystyrene nanoplastics and natural organic matter by AlTi-based coagulant from the perspective of functional groups. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137258. [PMID: 39837030 DOI: 10.1016/j.jhazmat.2025.137258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
The interactions of nanoplastics (NPs) with natural organic matter (NOM) are influenced by their surface functional groups. In this study, the effects of representative functional groups on the interactions among polystyrene nanoplastics (PS-COOH and PS-NH2), hydrophilic low molecular weight (LMW) substances (salicylic acid (SA), phthalic acid (PA), and gluconic acid (GA)), and a novel AlTi-based coagulant were investigated. We found that PS-NH2 (83.02 % - 93.38 %) was easier to remove over a wider pH range than PS-COOH (6.94 % - 91.07 %). PS-COOH and PS-NH2 were both able to interact with SA (-OH, -COO-, and benzene ring) through hydrogen bonding, π-π conjugation, and n-π electron donor-acceptor interactions. However, the binding of PS-COOH/PS-NH2 with SA has no effect on the interaction strength between SA and PATC due to the preferential occupation of the coagulant binding sites by SA. The lower SA removal in the PS-COOH@SA system was attributed to its stronger electrostatic repulsion and hydrophilicity. PATC could form carboxylate outer and C-O inner complexes with SA and carboxylate inner complexes with PA. In this study, the analysis of the interaction mechanisms among metal-based coagulants, NPs, and LMW substances lays a theoretical foundation for further research and understanding of coagulation theory.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Qiyun Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China.
| |
Collapse
|
5
|
Li X, Zeng L, Jiang H, Sui J, Shuang B, Zhu L, Tang J, Dai Y. Sorption of tetracycline antibiotics by microplastics, associated mechanisms, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178054. [PMID: 39693669 DOI: 10.1016/j.scitotenv.2024.178054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
In this study, we selected polyvinyl chloride (PVC), polyethylene (PE), and polystyrene (PS) as representative microplastics (MPs) to systematically investigate the sorption behavior of tetracycline (TC) antibiotics by MPs. Scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, and adsorption experiments were applied to assess the sorption behavior of MPs. The results demonstrated that the sorption of TC by MPs was most favorable under neutral conditions, where a modest increase in the salt ion concentration enhanced the adsorption of TC by MPs. The saturation adsorption capacities for PVC, PE, and PS for TC were determined as 121.95 μg/g, 81.301 μg/g, and 178.57 μg/g, respectively. The strength of TC sorption by MPs followed the order of: PS > PVC > PE. Analysis of the sorption behavior of TC by MPs showed that the adsorption of TC by PE was weak and it readily desorbed, and thus their interaction will not lead to excessive compound pollution. By contrast, the adsorption of TC was high by PVC and PS, and they were not readily desorbed.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Lingling Zeng
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Huating Jiang
- School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Bao Shuang
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Junqian Tang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
6
|
Huang J, Tan X, Ali I, Ok YS, Duan Z, Liang J, Zhu R. Efficient removal of nanoplastics by iron-modified biochar: Understanding the removal mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125121. [PMID: 39426478 DOI: 10.1016/j.envpol.2024.125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Tiny plastic particles, particularly nanoplastics, are becoming major threats to aquatic and biotic life owing to their unique physico-chemical characteristics. Thus, in the present work, biochar (BC) was fabricated using "Ulva prolifera green tide" as a biowaste raw material by slow pyrolysis technique to examine its potential in removing nanoplastics from the environment. The findings depicted that nanoplastics removal efficiency by BC was V-shaped with initial pH increased from 2 to 11, and the main removal mechanism changed from adsorption to heterogeneous aggregation between nanoplastics, biochar colloids, and leached substances from BC. When the solution pH crossed the pHpzc of BC (2.3), the aggregation kinetics were well-fitted by the logistic model and displayed as an S-shaped curve with a lag period. Characterization results indicated that biochar colloids were the key enabler with a critical concentration of 72.01 mg L-1 at neutral pH. Keeping in mind the removal mechanisms and contribution of biochar colloids, iron-modified biochar (Fe-BC) was produced to enhance the overall removal efficiency. The Fe-BC demonstrated a two-phase removal process of pre-adsorption and post-aggregation, successfully realized to minimize lag time and enhance aggregation performance. The theoretical removal capacity of Fe-BC against nanoplastics could reach up to 1626.3 mg g-1, which was three-fold higher than that of BC. Further, the Fe-BC was suggested to be recycled and reused at least three times by ultrasound, followed by co-pyrolysis for green and efficient degradation of nanoplastics. Overall, the findings offer a promising approach for removing and recycling nanoplastics in the environment.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Rui Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
7
|
Kong Y, Zhou Y, Zhang P, Nie Y, Ma J. Coagulation performance and mechanism of different novel covalently bonded organic silicon-aluminum/iron composite coagulant for As(V) removal from water: The role of hydrolysate species and the effect of coexisting microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135819. [PMID: 39265390 DOI: 10.1016/j.jhazmat.2024.135819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Arsenate [As(V)] pollution is a challenge for water treatment, and the effect of coexisting microplastics (MPs) on As(V) removal is still not clear. In this study, series novel covalently bonded organic silicon-aluminum/iron composite coagulants (CSA/F) with different Al/Fe molar ratios were prepared for enhancing As(V) removal. The effect mechanism of MPs (PS MPs and PS-COOH MPs) on As(V) removal by using CSAF coagulation was analyzed. CSAF and CSF showed significantly better As(V) removal performance than other coagulants under the same conditions, especially CSF, more than 90 % As(V) removal was achieved at dosage of 20 mg/L and pH of 4.0-8.0. Interestingly, the introduction of silane coupling agent and the increase of Fe content in CSA/F changed the Al/Fe species distribution. Charge neutralization dominant in As(V) removal by using CSA, whereas adsorption and net sweeping contributed to As(V) coagulation by using CSAF and CSF with higher iron proportion at neutral pH. 3 µm MPs were removed by net sweeping of amorphous Al/Fe hydroxides, while 26 µm MPs were charge-neutralized or surface adsorbed by coagulant hydrolysates. The aliphatic C-H and -COOH functional groups of MPs were the main sites of hydrogen bonding adsorption with the hydroxyl groups of coagulant hydrolysates. This study is conducive to mitigating the environmental toxicity of arsenic and provides new insights into the interaction mechanism between composite pollutants and coagulants in waters.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Yahua Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Pengjun Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China.
| |
Collapse
|
8
|
Liu B, Guo K, Yue Q, Gao Y, Gao B. Uncovering the performance and intrinsic mechanism of different hydrolyzed AlTi species in polystyrene nanoplastics coagulation. WATER RESEARCH 2024; 266:122440. [PMID: 39298895 DOI: 10.1016/j.watres.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Hydrolyzed AlTi species are essential metal-based coagulants in a coagulation process to remove nanoplastics (NPs). Understanding the molecular interactions between hydrolyzed AlTi species and NPs is key to promoting coagulation efficiency. In this study, the coagulation performance and intrinsic mechanism of different AlTi species (including monomeric AlTi and polymeric AlTi species-Al13Ti13) for NPs removal were systematically investigated. We found that the polymeric AlTi species exhibited higher turbidity removal (95.0 %) and lower residual Al content (20.67 μg/L) at a low dosage over monomeric AlTi species. Al13 and Al13Ti13 formed by in situ hydrolysis were the dominant species to destabilize and aggregate NPs at pH 6. Main coagulation mechanisms were dominated by charge neutralization, complexation between the aliphatic CH of NPs and Al/Ti-OH, and cation-π interaction between polycations and the aromatic structure of NPs. The preformed Al13Ti13 showed multiple positive charge binding sites assisting its easy adsorption on NPs by electrostatic attraction, and then formed microscale aggregates through charge neutralization or intermolecular interaction. The preformed Al13Ti13 demonstrated a high stability and coagulation performance with respect to pH changes in raw water, whereas the promotion of μ-OH bridges dissociation by OH- and the presence of electrostatic repulsion significantly decreased the NPs removal by monomeric AlTi at high pH. This study provides valuable theoretical insights into the interaction between NPs and various hydrolyzed AlTi species.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| |
Collapse
|
9
|
Hammond CB, Kareem M, Bradford SA, Che D, Sharma S, Wu L. Predicting a Wide Range of Fractal Dimensions of Salt-Induced Aggregates in Water Using a Random Forest Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23606-23615. [PMID: 39480240 DOI: 10.1021/acs.langmuir.4c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Salt-induced colloidal aggregates can significantly influence contaminant fate and transport in natural and engineered systems. These aggregates' fractal dimensions (df), ranging from 1.4 to 2.2, depend on various system variables. However, the quantitative relationship between these variables and df of aggregates has not been fully explored, especially in predicting a wide range of df. Here, we developed a random forest model capable of predicting the complete range of aggregate df using just four simple physical and chemical parameters of the aggregating system as inputs. The model accurately predicts the df of aggregates formed by colloids of different sizes, ranging from nano to micro sizes, after being trained and tested on appropriate data sets. Ionic strength (IS) has the most significant influence on the df of aggregates formed by microsized particles followed by the relative hydrodynamic radius of aggregates (Rh/Rp), particle concentration (Cp), and primary particle radius (Rp). For aggregates formed by both nano- and microsized particles, IS still has a strong influence on the df, with the significance of Rp increasing. All four inputs are negatively correlated with predicting the df of aggregates. The predictions align well with the physical interpretations.
Collapse
Affiliation(s)
- Christian B Hammond
- Department of Civil and Environmental Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Mamoon Kareem
- Department of Civil and Environmental Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Scott A Bradford
- USDA, ARS, Sustainable Agricultural Water Systems Unit, 239 Hopkins Road, Davis, California 95616, United States
| | - Daniel Che
- Department of Civil and Environmental Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Lei Wu
- Department of Civil and Environmental Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
10
|
Noornama, Abidin MNZ, Abu Bakar NK, Hashim NA. Innovative solutions for the removal of emerging microplastics from water by utilizing advanced techniques. MARINE POLLUTION BULLETIN 2024; 206:116752. [PMID: 39053257 DOI: 10.1016/j.marpolbul.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Microplastic pollution is one of the most pressing global environmental problems due to its harmful effects on living organisms and ecosystems. To address this issue, researchers have explored several techniques to successfully eliminate microplastics from water sources. Chemical coagulation, electrocoagulation, magnetic extraction, adsorption, photocatalytic degradation, and biodegradation are some of the recognized techniques used for the removal of microplastics from water. In addition, membrane-based techniques encompass processes propelled by pressure or potential, along with sophisticated membrane technologies like the dynamic membrane and the membrane bioreactor. Recently, researchers have been developing advanced membranes composed of metal-organic frameworks, MXene, zeolites, carbon nanomaterials, metals, and metal oxides to remove microplastics. This paper aims to analyze the effectiveness, advantages, and drawbacks of each method to provide insights into their application for reducing microplastic pollution.
Collapse
Affiliation(s)
- Noornama
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | | | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Elli G, Ciocca M, Shkodra B, Petrelli M, Costa Angeli MA, Altana A, Carzino R, Fragouli D, Petti L, Lugli P. Electrolyte-Gated Carbon Nanotube Field-Effect Transistor-Based Sensors for Nanoplastics Detection in Seawater: A Study of the Interaction between Nanoplastics and Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38768-38779. [PMID: 38996179 DOI: 10.1021/acsami.4c07692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Plastics accumulating in the environment are nowadays of great concern for aquatic systems and for the living organisms populating them. In this context, nanoplastics (NPs) are considered the major and most dangerous contaminants because of their small size and active surface, which allow them to interact with a variety of other molecules. Current methods used for the detection of NPs rely on bulky and expensive techniques such as spectroscopy. Here we propose, for the first time, a novel, fast, and easy-to-use sensor based on an electrolyte-gated field-effect transistor (EG-FET) with a carbon nanotube (CNT) semiconductor (EG-CNTFET) for the detection of NPs in aquatic environments, using polystyrene NPs (PS-NPs) as a model material. In particular, as a working mechanism for the EG-CNTFETs we exploited the ability of CNTs and PS to form noncovalent interactions. Indeed, in our EG-CNTFET devices, the interaction between NPs and CNTs caused a change in the electric double layers. A linear increase in the corrected on current (*ION) of the EG-CNTFETs, with a sensitivity of 9.68 μA/(1 mg/mL) and a linear range of detection from 0.025 to 0.25 mg/mL were observed. A π-π interaction was hypothesized to take place between the two materials, as indicated by an X-ray photoelectron spectroscopy analysis. Using artificial seawater as an electrolyte, to mimic a real-case scenario, a linear increase in *ION was also observed, with a sensitivity of 6.19 μA/(1 mg/mL), proving the possibility to use the developed sensor in more complex solutions, as well as in low concentrations. This study offers a starting point for future exploitation of electrochemical sensors for NP detection and identification.
Collapse
Affiliation(s)
- Giulia Elli
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Manuela Ciocca
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Bajramshahe Shkodra
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Mattia Petrelli
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Martina Aurora Costa Angeli
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Antonio Altana
- Competence Center for Mountain Innovation Ecosystems, Piazzetta Franz Innerhofer 8, 39100 Bolzano, Italy
| | - Riccardo Carzino
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luisa Petti
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Paolo Lugli
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
- Competence Center for Mountain Innovation Ecosystems, Piazzetta Franz Innerhofer 8, 39100 Bolzano, Italy
| |
Collapse
|
12
|
Chen Y, Tang H, Li H, Yin Y, Song W, Guo H, Huang T, Xing B. Molecular-level insight into the behavior of metal cations and organic matter during the aggregation of polystyrene nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134665. [PMID: 38776813 DOI: 10.1016/j.jhazmat.2024.134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
In this study, the behavior of metal cations and organic matter during polystyrene nanoplastics (PSNP) aggregation was explored combing experimental measurements and molecular dynamics simulation. The results indicated that coexisting organic matter, including organic pollutants and humic acid (HA), play a complex role in determining PSNP aggregation. The representative organic pollutant, bisphenol A, exhibited competitive behavior with HA during heteroaggregation, and the heteroaggregation between HA and PSNP was impaired by bisphenol A. The bridging effect of metal ions in aggregation is related to their interaction strength with functional groups, binding affinity with water molecules, and concentration. In particular, Mg2+ interacts more strongly with oxygen-containing functional groups on PSNP than Ca2+. However, Mg2+ is more favorable for binding with water and is therefore not as effective as Ca2+ for destabilizing PSNP. Compared with Ca2+ and Mg2+, Na+ showed a weaker association with PSNP; however, it still showed a significant effect in determining the aggregation behavior of PSNP owing to its high concentration in seawater. Overall, we provided a molecular-level understanding of PSNP aggregation and deepened our understanding of the fate of nanoplastics.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hangzhe Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenhu Song
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Liu N, Kong Y, Cao X, Yue L, Wang Z, Li X. Both nanoplastic and iron mineral types determine their heteroaggregation: Aggregation kinetics and interface process. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134192. [PMID: 38569346 DOI: 10.1016/j.jhazmat.2024.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Nanoplastics (NPs) inevitably interact with iron minerals (IMs) after being released into aquatic environments, changing their transport and fate. In this study, batch heteroaggregation kinetics of four types of NPs, i.e., polymethyl methacrylate (PMMA), polystyrene (PS-Bare), amino-polystyrene (PS-NH2), and carboxyl-polystyrene (PS-COOH), with two different IMs (hematite and magnetite) were conducted. We found that the heteroaggregation of NPs and IMs and the associated interfacial interaction mechanisms are both NPs-dependent and IMs-dependent. Specifically, the NPs had stronger heteroaggregation with hematite than magnetite; the heteroaggregation order of two IMs with NPs was PMMA > PS-NH2 > PS-Bare > PS-COOH. Moreover, hydrogen bond, complexation, hydrophobic, cation-π, and electrostatic interaction were involved in the interfacial reaction between NPs and hematite, and electrons were transferred from the NPs to the hematite, causing the reduction of Fe3+ into Fe2+. Furthermore, we first revealed that both pre-homoaggregation of NPs and IMs could affect their subsequent heteroaggregation, and the homoaggregates of IMs could be interrupted by PMMA or PS-COOH NPs introduction. Therefore, the emerging NPs pollution is likely to generate an ecological effect in terms of elemental cycles such as iron cycle. This work provides new insights into assessing the environmental transfer and ecological effects of NPs in aquatic environments.
Collapse
Affiliation(s)
- Ning Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Yu Kong
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Mao Y, Hu Z, Li H, Zheng H, Yang S, Yu W, Tang B, Yang H, He R, Guo W, Ye K, Yang A, Zhang S. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123863. [PMID: 38565391 DOI: 10.1016/j.envpol.2024.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) are emerging contaminants that are widely detected in drinking water and pose a potential risk to humans. Therefore, the MP removal from drinking water is a critical challenge. Recent studies have shown that MPs can be removed by coagulation. However, the coagulation removal of MPs from drinking water remains inadequately understood. Herein, the efficiency, mechanisms, and influencing factors of coagulation for removing MPs from drinking water are critically reviewed. First, the efficiency of MP removal by coagulation in drinking water treatment plants (DWTPs) and laboratories was comprehensively summarized, which indicated that coagulation plays an important role in MP removal from drinking water. The difference in removal effectiveness between the DWTPs and laboratory was mainly due to variations in treatment conditions and limitations of the detection techniques. Several dominant coagulation mechanisms for removing MPs and their research methods are thoroughly discussed. Charge neutralization is more relevant for small-sized MPs, whereas large-sized MPs are more dependent on adsorption bridging and sweeping. Furthermore, the factors influencing the efficiency of MP removal were jointly analyzed using meta-analysis and a random forest model. The meta-analysis was used to quantify the individual effects of each factor on coagulation removal efficiency by performing subgroup analysis. The random forest model quantified the relative importance of the influencing factors on removal efficiency, the results of which were ordered as follows: MPs shape > Coagulant type > Coagulant dosage > MPs concentration > MPs size > MPs type > pH. Finally, knowledge gaps and potential future directions are proposed. This review assists in the understanding of the coagulation removal of MPs, and provides novel insight into the challenges posed by MPs in drinking water.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China; Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zuoyuan Hu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Bingran Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hao Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Wenshu Guo
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Aoguang Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shixin Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
15
|
Raj S, Mahanty B, Hait S. Coagulative removal of polystyrene microplastics from aqueous matrices using FeCl 3-chitosan system: Experimental and artificial neural network modeling. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133818. [PMID: 38377913 DOI: 10.1016/j.jhazmat.2024.133818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
Effluent from sewage treatment plants (STPs) is a significant source of microplastics (MPs) re-entry into the environment. Coagulation-flocculation-sedimentation (CFS) process as an initial tertiary treatment step requires investigation for coagulative MPs removal from secondary-treated sewage effluents. In this study, experiments were conducted on synthetic water containing 25 mg/L polystyrene (PS) MPs using varying dosages of FeCl3 (1-10 mg/L) and chitosan (0.25-9 mg/L) to assess the effect of process parameters, such as pH (4-8), stirring speed (0-200 rpm), and settling time (10-40 min). Results revealed that ∼89.3% and 21.4% of PS removal were achieved by FeCl3 and chitosan, respectively. Further, their combination resulted in a maximum of 99.8% removal at favorable conditions: FeCl3: 2 mg/L, chitosan: 7 mg/L, pH: 6.3, stirring speed: 100 rpm, and settling time: 30 min, with a statistically significant (p < 0.05) effect. Artificial neural network (ANN) validated the experimental results with RMSE = 1.0643 and R2 = 0.9997. Charge neutralization, confirmed by zeta potential, and adsorption, ascertained by field-emission scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR), were primary mechanisms for efficient PS removal. For practical considerations, the application of the FeCl3-chitosan system on the effluents from moving bed biofilm reactor (MBBR) and sequencing batch reactor (SBR)-based STPs, spiked with PS microbeads, showed > 98% removal at favorable conditions.
Collapse
Affiliation(s)
- Shubham Raj
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Byomkesh Mahanty
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India.
| |
Collapse
|
16
|
Shao Y, Liu B, Guo K, Gao Y, Yue Q, Gao B. Coagulation performance and mechanism of different hydrolyzed aluminum species for the removal of composite pollutants of polyethylene and humic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133076. [PMID: 38029592 DOI: 10.1016/j.jhazmat.2023.133076] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Microplastics (MPs) and natural organic matter (NOM) composite pollutants have become emerging contaminants with potential threats. Coagulation has been widely used to remove MPs and NOM, but the underlying mechanisms for the removal of MPs-NOM composite pollutants by hydrolyzed Al species remain unclear. Therefore, the coagulation performance and mechanism of AlCl3, polyaluminum chloride with basicity of 2.2 (PAC22), and PAC25 in treating polyethylene (PE), humic acid (HA), and PE-HA composite systems were systematically investigated. The results showed that in the single PE system, PAC25 with hexagonal clusters achieved the maximum removal (68.09 %) (pH: 5, dosage: 0.5 mM) since adsorption bridging and sweeping effect were the main mechanisms for PE removal. The adsorption of HA on the PE surface enhanced its hydrophilicity and electrostatic repulsion, resulting in decreased PE removal. In the AlCl3-PE-HA system, the oligomeric Al first interacted with the -COOH and C-OH of HA through complexation, followed by the meso- and polymers of Al interacted with PE by electrostatic adsorption. The pre-formed medium polymeric Al species (Alb) and colloidal or solid Al species (Alc) in PAC22 and PAC25 formed complexes with the -OH and -COOH groups of HA, respectively, and then removed PE by adsorption bridging and sweeping effect.
Collapse
Affiliation(s)
- Yanlei Shao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China.
| |
Collapse
|
17
|
Liu B, Guo K, Yue Q, Gao Y, Gao B. New insights into the fate and interaction mechanisms of hydrolyzed aluminum-titanium species in the removal of aged polystyrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133010. [PMID: 37984144 DOI: 10.1016/j.jhazmat.2023.133010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Polyaluminum-titanium chloride composite coagulant (PATC) has been demonstrated to be a promising coagulant in microplastics (MPs) treatment. However, the interaction process between the dominant species of PATC and MPs remains unclear, which will hinder our understanding of the coagulation mechanisms. Here, the species transformation of PATC during its interaction with aged polystyrene powder (APSp) was studied. The results showed that the rise of O-containing functional groups in APSp increased the possibility of forming C-O-M coordination bonds and hydrogen bonds between APSp and PATC, which improved the removal of PSp. Furthermore, Al13(OH)53Ti13O17(H2O)204+ (Al13Ti13) was considered to be the most effective species of PATC. At pH 4, electrostatic attraction brought Al13Ti13 approached APSp first, followed by hydrogen bonding and complexation occurred, respectively. However, the Al13Ti13-APSp complexes were easily converted to monomers and dimers during coagulation, which influenced the coagulation efficiency. With the increase of pH, OH- in the solution would further polymerize the depolymerized Al2Ti into oligomers and mesomers. Under weakly acid conditions, the diversity of PATC hydrolysates and the increase in APSp binding sites correspondingly led to the maximum APSp removal of 75%. When the pH further increased to 10, PATC interacted with APSp mainly by hydrogen bonding and sweeping effect.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| |
Collapse
|
18
|
Liu Y, Han J, Wang Y, Li A, Zhao J, Su Y, Shen L, Xing B. Suspected sources of microplastics and nanoplastics: Contamination from experimental reagents and solvents. WATER RESEARCH 2024; 249:120925. [PMID: 38039819 DOI: 10.1016/j.watres.2023.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
There is an increasing concern about the potential effects of microplastics (MPs) and nanoplastics on human health and other organisms. For the separation and detection of MPs, there are various approaches, and the distinct procedures led to different results. However, the presence of MPs in the reagents was not addressed, which could cause false and/or inaccurate results during MPs detection. In this study, the chemical reagents commonly used for the separation and detection of MPs were selected to ascertain whether these reagents introduce MPs. It was shown that a large number of MPs were detected in the reagent and solvent samples. The largest number of MPs (>1 μm) was detected in the KOH reagent, with the abundance of 3070 items/g. The order of MPs abundance in the selected reagents was: KOH > NaCl > CaCl2 > SDS > NaI > H2O2. The types of MPs were the same as the body and stopper of the reagent packaging bottles. MPs size detected in reagent bottles was primarily smaller than 10 μm. The abundance of MPs in the reagents were independent of their purity, however, there was a certain difference in MPs abundance in reagents from different manufacturers. Furthermore, the presence of nanoplastics (< 1 μm) was verified in the reagents through Py-GCMS, with the abundance (39.47-43.01 mg/kg) higher than that of MPs. The obtained results in this study raised specific requirements and cautions for MPs and nanoplastics related research in terms of quality control. Also, this work can facilitate a more accurate assessment of MPs concentrations in the environment.
Collapse
Affiliation(s)
- Yingnan Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Aoze Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Yu Su
- School of Energy and Environment, Southeast University, Nanjing 210023, China
| | - Lezu Shen
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
19
|
Djajadi DT, Müller S, Fiutowski J, Rubahn HG, Thygesen LG, Posth NR. Interaction of chitosan with nanoplastic in water: The effect of environmental conditions, particle properties, and potential for in situ remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167918. [PMID: 37863240 DOI: 10.1016/j.scitotenv.2023.167918] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Micro- and nanoplastic (MNP) pollution in aquatic ecosystems requires investigation on its source, transport, and extent to assess and mitigate its risks. Chitosan is a potential biomolecule for water treatment, but its interaction with MNP is undefined. In this work, chitosan-nanoplastic interaction was explored in the laboratory under environmentally relevant conditions using polystyrene (PS) nanoplastic (NP) as model particle to identify conditions at which PS-chitosan interaction resulted in aggregation. Aggregation limits NP transport and allows separation of NP for targeted remediation. The effect of environmental conditions (pH, salinity, dissolved organic matter (DOM) content), chitosan particle size and NP surface modification on chitosan-NP interaction was studied at various chitosan doses. PS aggregated at chitosan doses as low as 0.2 % w/w, while higher doses of chitosan resulted in re-stabilization of NP in solution, restoring the particle size to its initial value. Increasing pH, DOM, or carboxyl modification of the NP surface also improved NP stability in solution. Increased salinity of the solution caused aggregation of unmodified PS independent of chitosan, but carboxyl-modified PS remained stable and aggregated at the same chitosan doses across all salinity levels. Chitosan with low molecular weight promoted PS aggregation at lower doses. Notably, zeta potential (ZP) alone did not indicate chitosan-induced PS aggregation, which occurred independently of changes in ZP. DLVO calculations based on ZP, however, still indicated attractive interaction due to charge differences, albeit with less contrast at high pH, salinity, and DOM content. Additional insights gained in the work recommend caution when using spectrophotometric methods to assess NP removal. Overall, this study demonstrates that chitosan impacts NP transport and holds potential for water remediation of NP.
Collapse
Affiliation(s)
- Demi T Djajadi
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958 Frederiksberg C, Denmark.
| | - Sascha Müller
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| | - Jacek Fiutowski
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, DK-6400 Sønderborg, Denmark
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, DK-6400 Sønderborg, Denmark
| | - Lisbeth G Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| | - Nicole R Posth
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
20
|
Shawal NBM, Razali NA, Hairom NHH, Yatim NII, Rasit N, Harun MHC, Kasan N, Hamzah S. Parametric study of coagulant recovery from water treatment sludge towards water circular economy. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:3142-3150. [PMID: 38154800 PMCID: wst_2023_398 DOI: 10.2166/wst.2023.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
This study aims to recover the used coagulants from two water treatment plants via acidification technique. The water treatment sludge (WTS) was acidified with sulfuric acid (H2SO-4) at variable normalities (0.5, 1, 1.5, 2.0 and 2.5 N). The surface morphology and functionalities of both recovered coagulants were analysed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The performance of recovered coagulants was tested for turbidity removal in surface water treatment at different coagulant dosages and pH. It was found that the optimum normality of H2SO4 for recovered alum was 1.5 N, where 66% turbidity removal was recorded. The recovered PAC treated with 1.0 N H2SO4 indicated high turbidity removal percentage, which was 50.5%. The turbidity removal increased with increasing coagulant dosage. More than 80% turbidity removal was achieved with 40 mg/L dosage of recovered alum and recovered PAC. Maximum removal (85%) was observed with 50 mg/L dosage of recovered alum. For commercial coagulant, the turbidity removal was higher, with a difference of up to 6% in favor of recovered alum. The potential reuse of coagulants can be explored in order to reduce the operating costs and promotes the reduction of WTS disposal.
Collapse
Affiliation(s)
- N B M Shawal
- Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia E-mail:
| | - N A Razali
- Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Sustainable Energy and Environmental Technology Special Interest Group, Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - N H H Hairom
- Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Hab Pendidikan Tinggi Pagoh, Km 1, Jalan Panchor, Johor, Muar 84600, Malaysia
| | - Norhafiza Ilyana I Yatim
- Higher Education Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Terengganu, Terengganu, Malaysia
| | - N Rasit
- Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Sustainable Energy and Environmental Technology Special Interest Group, Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - M H C Harun
- Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Sustainable Energy and Environmental Technology Special Interest Group, Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - N Kasan
- Higher Education Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Terengganu, Terengganu, Malaysia
| | - Sofiah Hamzah
- Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; Sustainable Energy and Environmental Technology Special Interest Group, Faculty of Ocean Engineering, Technology, and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| |
Collapse
|
21
|
Girish N, Parashar N, Hait S. Coagulative removal of microplastics from aqueous matrices: Recent progresses and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165723. [PMID: 37482362 DOI: 10.1016/j.scitotenv.2023.165723] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Coagulation-flocculation-sedimentation (CFS) system has been identified as one of the favored treatment technique in water/wastewater treatment systems and hence, it is crucial to comprehend the efficacy of different coagulants used in removing microplastics (MPs) from aqueous matrices. Henceforth, this study critically reviews the recent progress and efficacy of different coagulants used to date for MPs removal. This includes laboratory and field-scale studies on inorganic and organic coagulants, as well as laboratory-scale studies on natural coagulants. Inorganic and organic coagulants have varying MPs removal efficiencies such as: Fe/Al-salts (30 %-95 %), alum (99 %), and poly aluminum chloride (13 %-97 %), magnesium hydroxide (84 %), polyamine (99 %), organosilanes (>95 %), and polyacrylamide (85 %-98 %). Moreover, studies have highlighted the use of natural coagulants, such as chitosan, protein amyloid fibrils, and starch has shown promising results in MPs removal with sevral advantages over traditional coagulants. These natural coagulants have demonstrated high MPs removal efficiencies with chitosan-tannic acid (95 %), protein amyloid fibrils (98 %), and starch (>90 %). Moreover, the MPs removal efficiencies of natural coagulants are compared and their predominant removal mechanisms are determined. Plant-based natural coagulants can potentially remove MPs through mechanisms such as polymer bridging and charge neutralization. Further, a systematic analysis on the effect of operational parameters highlights that the pH affects particle surface charge and coagulation efficiency, while mixing speed affects particle aggregation and sedimentation. Also, the optimal mixing speed for effective MPs removal depends on coagulant type and concentration, water composition, and MPs characteristics. Moreover, this work highlights the advantages and limitations of using different coagulants for MPs removal and discusses the challenges and future prospects in scaling up these laboratory studies for real-time applications.
Collapse
Affiliation(s)
- Nandika Girish
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Neha Parashar
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India.
| |
Collapse
|
22
|
Liu Z, Bacha AUR, Yang L. Control strategies for microplastic pollution in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122323. [PMID: 37544400 DOI: 10.1016/j.envpol.2023.122323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Groundwater is the primary source of water that occurs below the earth's surface. However, the advancement in technology and the increasing population, which lead to the discharge of contaminants such as microplastics (MPs), have an adverse impact on the quality of groundwater. MPs are ubiquitous pollutants that are widely found throughout the world. The maximum abundance of MPs is 4 items/L and 15.2 items/L in groundwater at the specific location of China and USA. Various factors can affect the migration of MPs from soil to groundwater. The occurrence of MPs in water causes serious health issues. Therefore, taking appropriate strategies to control MP contamination in groundwater is urgent and important. This review summarizes the current literature on the migration process of MPs from soil to groundwater along with possible methods for the remediation of MP-polluted groundwater. The main objective of the review is to summarize the technical parameters, process, mechanism, and characteristics of various remediation methods and to analyze strategies for controlling MP pollution in groundwater, providing a reference for future research. Possible control strategies for MP pollution in groundwater include two aspects: i) prevention of MPs from entering groundwater; ii) remediation of polluted groundwater with MPs (ectopic remediation and in-situ remediation). Formulating legislative measures, strengthening public awareness and producing more environment-friendly alternatives can be helpful to reduce the production of MPs from the source. Manage plastic waste reasonably is also a good strategy and the most important part of the management is recycling. The shortcomings of the current study and the direction of future research are also highlighted in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China.
| | - Aziz-Ur-Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
23
|
Ali I, Tan X, Xie Y, Peng C, Li J, Naz I, Duan Z, Wan P, Huang J, Liang J, Rui Z, Ruan Y. Recent innovations in microplastics and nanoplastics removal by coagulation technique: Implementations, knowledge gaps and prospects. WATER RESEARCH 2023; 245:120617. [PMID: 37738942 DOI: 10.1016/j.watres.2023.120617] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Recently, microplastics (MPs) and nanoplastics (NPs) contamination is a worldwide problem owing to the immense usage of plastic commodities. Thus, the environmental risks by MPs and NPs demand the application of innovative, efficient, and sustainable technologies to control the pollution of plastic particles. Regarding this, numerous technologies, including adsorption, coagulation, filtration, bioremediation, chemical precipitation, and photocatalysis, have been engaged to eradicate MPs and NPs from contaminated waters. However, the coagulation technique is getting much attention owing to its simplicity, higher removal performance, low carbon footprint, and low operational and maintenance cost. Therefore, this paper has been designed to critically summarize the recent innovations on the application of coagulation process to eradicate MPs and NPs from both synthetic and real sewage. More importantly, the effect of pertinent factors, including characteristics of coagulants, MPs/NPs, and environmental medium on the elimination performances and mechanisms of MPs/NPs have been critically investigated. Further, the potential of coagulation technology in eliminating MPs and NPs from real sewage has been critically elucidated for the first time, for better execution of this technique at commercial levels. Finally, this critical review also presents current research gaps and future outlooks for the improvement of coagulation process for eradicating MPs and NPs from water and real sewage. Overall, the current review will offer valuable knowledge to scientists in selecting a suitable technique for controlling plastic pollution.
Collapse
Affiliation(s)
- Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China.
| | - Yue Xie
- Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; School of Environment and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen 518001, China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhu Rui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
24
|
Liu B, Gao Y, Yue Q, Guo K, Gao B. Microcosmic mechanism analysis of the combined pollution of aged polystyrene with humic acid and its efficient removal by a composite coagulant. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132272. [PMID: 37573824 DOI: 10.1016/j.jhazmat.2023.132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The composite pollutants formed by aged polystyrene (APS) and natural organic matter are complex and harmful, which lead to the deterioration of water quality. In this work, the interaction mechanism between humic acid (HA) and APS was discussed by investigating the changes in their functional groups. Besides, a novel polyaluminum-titanium chloride composite coagulant (PATC) was prepared, and its binding behaviors with HA@APS under different pH conditions were analyzed from a microscopic perspective. It was found that at pH 4, π-π conjugation was the dominant interaction between HA and APS. And the main removal mechanism of HA@APS by PATC was surface complexation. With the increase of pH, π-π conjugation, n-π electron donor-acceptor interaction (EDA), and hydrogen bonding gradually dominated the interaction between APS and HA. At pH 7, PATC hydrolyzed to form various polynuclear Al-Ti species, which could meet the demand for different binding sites of HA@APS. Under alkaline conditions, HB and n-π EDA in HA@APS were weakened, while π-π conjugation held a dominant position again. At this time, the main coagulation mechanism of PATC changed from charge neutralization to sweeping action, accompanied by hydrogen bonding. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have attracted the public's attention due to their potential toxicity to humans. The combined pollution of aged microplastics and humic acid (HA) will bring great harm to aquatic environment. The development of novel composite coagulants is hopeful to efficiently remove MPs and their combined pollutants. Elucidating the interactions between HA and aged MPs is helpful to understand the transformation and fate of MPs in actual environments, and to reveal the removal mechanism of composite pollutants by coagulation. The findings presented here will provide theoretical guidance for addressing the challenges of coagulation technology in treating new pollutants in practice.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| |
Collapse
|
25
|
Wang J, Zhang X, Li X, Wang Z. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132269. [PMID: 37607458 DOI: 10.1016/j.jhazmat.2023.132269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Micro/nanoplastics (MPs/NPs) pollution may adversely impact agricultural ecosystems, threatening the sustainability and security of agricultural production. This drives an urgent need to comprehensively understand the environmental behavior and effects of MPs/NPs in soil and atmosphere in agricultural regions, and to seek relevant pollution prevention strategies. The rhizosphere and phyllosphere are the interfaces where crops are exposed to MPs/NPs. The environmental behavior of MPs/NPs in soil and atmosphere, especially in the rhizosphere and phyllosphere, determines their plant accessibility, bioavailability and ecotoxicity. This article comprehensively reviews the transformation and migration of MPs/NPs in soil, transportation and deposition in the atmosphere, environmental behavior and effects in the rhizosphere and phyllosphere, and plant uptake and transportation pathways. The article also summarizes the key factors controlling MPs/NPs environmental processes, including their properties, biotic and abiotic factors. Based on the sources, environmental processes and intake risks of MPs/NPs in agroecosystems, the article offers several feasible pollution prevention and risk management options. Finally, the review highlights the need for further research on MPs/NPs in agro-systems, including developing quantitative detection methods, exploring transformation and migration patterns in-situ soil, monitoring long-term field experiments, and establishing pollution prevention and control systems. This review can assist in improving our understanding of the biogeochemistry behavior of MPs/NPs in the soil-plant-atmosphere system and provide a roadmap for future research.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
26
|
Jung Y, Yoon SJ, Byun J, Jung KW, Choi JW. Visible-light-induced self-propelled nanobots against nanoplastics. WATER RESEARCH 2023; 244:120543. [PMID: 37659178 DOI: 10.1016/j.watres.2023.120543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The accumulation of plastic debris in aquatic organisms has raised serious concerns about the potential health implications of their incorporation into the food chain. However, conventional water remediation techniques are incapable of effectively removing nanoplastics (NPs) smaller than 200 nm, which can have harmful effect on animal and human health. Herein, we demonstrate the "on-the-fly" capture of NPs through their enlargement (approximately 4,100 times) using self-propelled nanobots composed of a metal-organic framework. Under visible-light irradiation, the iron hexacyanoferrate (FeHCF) nanobot exhibits fuel-free motion by electrostatically adsorbing NPs. This strategy can contribute to reducing plastic pollution in the environment, which is a significant environmental challenge. Light-induced intervalence charge transfer in the FeHCF nanobot lattice induces bipolarity on the nanobot surface, leading to the binding of negatively charged NPs. The local electron density in the lattice then triggers self-propulsion, thereby inducing agglomeration of FeHCF@NP complexes to stabilize their metastable state. The FeHCF nanobot exhibits a maximum removal capacity of 3,060 mg∙g-1 and rate constant of 0.69 min-1, which are higher than those recorded for materials reported in the literature.
Collapse
Affiliation(s)
- Youngkyun Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Su-Jin Yoon
- Center for Sustainable Environmental Research, KIST, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jeehye Byun
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
27
|
Liu B, Gao Y, Yue Q, Guo K, Gao B. The suitability and mechanism of polyaluminum-titanium chloride composite coagulant (PATC) for polystyrene microplastic removal: Structural characterization and theoretical calculation. WATER RESEARCH 2023; 232:119690. [PMID: 36758354 DOI: 10.1016/j.watres.2023.119690] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) particles bring potential threats to the aqueous environment, and the coexistence of natural organic matter (NOM) enhances their toxicity. Coagulation is an efficient method for particle removal and exploring the binding sites and modes of the coagulant hydrolysates with MPs in the presence of NOM is essential to understand the coagulation mechanism. In this study, a novel polymerized polyaluminum-titanium chloride composite coagulant (PATC) was prepared and used to remove polystyrene (PS). It was found that PATC could compress or even destroy the surface layer of the negatively charged PS. In comparison to PAC and PTC, PATC was more efficient in decreasing the energy barrier of the PS particles and increasing their aggregation rate over a wider pH range. The results of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) calculation revealed that the interaction between the hydrolysates of PATC and PS was mainly polar interaction (VAB), such as hydrogen bonding. The peak intensity and peak shift in Fourier-transformed infrared (FTIR) and X-ray photoelectron spectra (XPS) were analyzed to further explore the interaction between the hydrolysates of PATC and PS. It was found that hydrogen bonding existed between the -OH group of PATC and the aliphatic C-H and C=O groups of PS. And the main interaction between HA and PS was the π-π* conjugation and hydrogen bonding between the -COOH, -OH, and C=O groups of HA and the C=O and aliphatic C-H groups of PS. Therefore, in the HA@PS system, the active sites of HA (e.g. -COOH and -OH) and PS (e.g., C=O and aliphatic C-H) binding with the coagulants were occupied, which accordingly led to the dramatic decline in the removal efficiency of both HA and PS. In actual lake water treatment, although the removal efficiency of PS was significantly poor, PATC performed better for PS removal than PAC and PTC. Besides, the effluent pH was maintained at 6.81±0.08, which met the requirements of the subsequent water treatment process. This study provides systematic knowledge for understanding the interaction between PS, NOM, and coagulant hydrolysates, and further confirms the application potential of PATC for MPs removal.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, China.
| |
Collapse
|
28
|
Tian C, Akhtar I, Wang Q, Li Z, Shi B, Feng C, Wang D. Effects of electrostatic neutralization of Keggin Fe 13 on the removal of micro and nano plastic. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130175. [PMID: 36279649 DOI: 10.1016/j.jhazmat.2022.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The successful preparation and identification of Keggin-structure Fe13 clusters in recent years further enriched the potential application scenarios of ferric coagulants. Comparing the coagulation efficiencies and mechanisms of Fe13 in the removal of nano/microplastics with conventional polymeric Al13 and monomeric Al/Fe, this work aimed to elucidate the coagulation behaviour of Fe13 compared with the traditional mono ferric coagulant, which has the coagulation applied bottleneck of quick and violet hydrolysis. The results showed that Fe13 has a similar electrostatic neutralization potential to Al13, which could keep a positively charged species, especially in acid conditions. The Fe13 species has a selective removal potential toward the microplastics with a polar functional group like ester. Moreover, Fe13 could hydrolyze to form active sol-gel hydroxides in neutral and alkalinity conditions, which is like the behaviour of traditional monomeric Fe coagulants but seldom restabilization. The electrostatic neutralization of Fe13 could enhance the removal of nano plastic from - 25-75% compared with monomeric Fe at pH 4. The higher floc density as a monomeric Fe coagulant and better electrostatic neutralization potential of Keggin Fe13 posed a good prospect for Fe13 to replace the monomeric Fe coagulants in conventional coagulation.
Collapse
Affiliation(s)
- Chenhao Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Islam Akhtar
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhenling Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Dongsheng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
29
|
Shi Y, Du J, Zhao T, Feng B, Bian H, Shan S, Meng J, Christie P, Wong MH, Zhang J. Removal of nanoplastics from aqueous solution by aggregation using reusable magnetic biochar modified with cetyltrimethylammonium bromide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120897. [PMID: 36539007 DOI: 10.1016/j.envpol.2022.120897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) pollution has become an emerging threat to the aquatic environment and its organisms. The removal of NPs from contaminated water is a global challenge. In this study, an efficient and reusable composite was prepared from cetyltrimethylammonium bromide (CTAB) modified magnetic biochar. The performances of CTAB modified magnetic biochar (CMB) to remove polystyrene (PS) and carboxylate-modified polystyrene (CPS) nanoparticles from water were systematically evaluated. The results showed that the PS and CPS removal performance of magnetic biochar was improved by CTAB modification. These increases were assigned to the increase in the surface hydrophobicity of CMB. Due to the strong electrostatic repulsion between the nanoparticles, PS and CPS maintained high stability in alkaline conditions, resulting in a significant decrease in removal efficiency. The removal efficiency was decreased to 67.4% for PS and to 40.7% for CPS at pH 11. The inhibition effects of NaCl on the PS and CPS removal efficiencies were decreased gradually with the increase of NaCl concentration. Among the anions studied, H2PO4- had the biggest impact on the removal performance of CMB. Besides, CMB could be used to remove PS and CPS in real surface water, and the removal efficiencies of PS and CPS were 95.3% and 97.8%, respectively. Particularly, the removal efficiencies of PS and CPS were 90.2% for PS and 94.8% for CPS when CMB was recycled five times. According to the characterization results of XRD, TGA, SEM, FTIR and XPS, PS and CPS nanoparticles were removed by CMB from water mainly through aggregation instead of adsorption. The efficient removal of PS and CPS by CMB via aggregation process offers new insight into the removal of NPs from aquatic environment.
Collapse
Affiliation(s)
- Yun Shi
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jiada Du
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tingman Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Bo Feng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Haohao Bian
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Meng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Peter Christie
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China.
| |
Collapse
|
30
|
Tang W, Li H, Fei L, Wei B, Zhou T, Zhang H. The removal of microplastics from water by coagulation: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158224. [PMID: 36007643 DOI: 10.1016/j.scitotenv.2022.158224] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/31/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Drinking water treatment plants (DWTPs) and wastewater treatment plants (WWTPs) are the first and last hurdles for the prevention of microplastics (MPs) pollution, respectively. With coagulation as one of the most critical technologies for the removal of MPs in water treatment plants, there is an urgent need to gain an in-depth understanding of the mechanisms and influencing factors of MPs removal during coagulation. In this paper, the research progress of adopting coagulation in MPs removal in recent years is reviewed, the removal effect of coagulation in water treatment plants are compared, and the role of three coagulation mechanisms, i.e., charge neutralization, adsorption bridging, and sweep flocculation in MPs removal process are identified. The effect of coagulant performance, MPs characteristics, operation conditions and other parameters on the removal of MPs are systematically analyzed. It is found that the combined coagulation techniques have better removal efficiency, can better decrease MP pollution and meet strict discharge standards. Moreover, flaws in the application of coagulation technology are pointed out, and strategies to deal with them are also proposed. Hopefully, this review can not only contribute to a better understanding of the mechanism of MPs removal by coagulation technology, but also serve as a useful guide for future research on MPs removal.
Collapse
Affiliation(s)
- Wenhao Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hua Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lianyue Fei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bigui Wei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
31
|
Schmidtmann J, Elagami H, Gilfedder BS, Fleckenstein JH, Papastavrou G, Mansfeld U, Peiffer S. Heteroaggregation of PS microplastic with ferrihydrite leads to rapid removal of microplastic particles from the water column. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1782-1789. [PMID: 36001017 DOI: 10.1039/d2em00207h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) particles are ubiquitous in aquatic environments. Therefore, understanding the processes that affect their removal from the water column, such as sedimentation, is critical for evaluating the risk they pose to aquatic ecosystems. We performed sedimentation experiments in which polystyrene (PS) and PS + ferrihydrite, a short-range ordered ferric (oxy)hydroxide, were analyzed in settling columns after 1 day and 1 week of settling time. The presence of ferrihydrite increased sedimentation rates of PS at all pH values studied (pH 3-11). At pH 6 we found that almost all PS particles were removed from the water column after only one day of exposure time. SEM/EDS imaging confirmed heteroaggregation between the PS particles and ferrihydrite. Zeta potential measurements indicated that at acidic pH values the negatively charged PS surface was coated with positively charged ferrihydrite particles leading to charge reversal. Our results demonstrate for the first time that ferric (oxy)hydroxides drive heteroaggregation and subsequent removal of MP from the water column, especially at typical pH values found in natural lake environments. Given their abundance in aquatic systems ferric (oxy)hydroxides need to be regarded as key scavengers of MP.
Collapse
Affiliation(s)
| | - Hassan Elagami
- Department of Hydrology, University of Bayreuth, Germany.
- Limnological Research Station, University of Bayreuth, Germany
| | - Bejamin S Gilfedder
- Department of Hydrology, University of Bayreuth, Germany.
- Limnological Research Station, University of Bayreuth, Germany
| | - Jan H Fleckenstein
- Department of Hydrogeology, Helmholtz-Centre for Environmental Research - UFZ, Germany
- Hydrologic Modelling Unit, University of Bayreuth, Bayreuth, Germany
| | | | - Ulrich Mansfeld
- Bavarian Polymer Institute (BPI), Keylab Electron and Optical Microscopy, University of Bayreuth, Germany
| | - Stefan Peiffer
- Department of Hydrology, University of Bayreuth, Germany.
| |
Collapse
|
32
|
Zhu S, Mo Y, Luo W, Xiao Z, Jin C, Qiu R. Aqueous aggregation and deposition kinetics of fresh and carboxyl-modified nanoplastics in the presence of divalent heavy metals. WATER RESEARCH 2022; 222:118877. [PMID: 35872518 DOI: 10.1016/j.watres.2022.118877] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The presence of heavy metals alters the colloidal stability and deposition of nanoplastics (NPs) in urban waters. Such processes are important to assess the mobility and fate of NPs and their associated heavy metals. Up to date, few studies have reported the impact of heavy metals on the colloidal behaviors of NPs and the involved mechanisms. In the study, time-resolved dynamic light scattering (DLS) and quartz crystal microbalance with dissipation (QCM-D) methods were used to assess the aggregation and deposition kinetics of polystyrene nanospheres with divalent heavy metals. For comparison, carboxyl-modified polystyrene nanospheres were used. Results reveal that heavy metals destabilized NPs more significantly than calcium ions. Spectroscopy and transmission electron microscopy analysis propose that heavy metals destabilized NPs via inner-sphere coordination with carboxyl groups and cation-π interactions, further leading to the formation of different dimensional aggregates. QCM-D results suggest that the deposition rate, irreversibility, and film compactness of NPs on silica surfaces first increased but further decreased as heavy metal concentration increased. Such deposition behaviors depended on the bridging effects between NPs and silica and aggregation-induced diffusion limitation. In that case, the destabilization and retention ability of heavy metals for NPs were related to their electronegativity and hydration shell thickness. In urban waters, the presence of natural organic matter (NOM) decreased the destabilization and retention ability of heavy metals, whereas heavy metals with environmentally relevant concentrations still enhanced the aggregation and deposition of NPs compared with other environmental cations. This study highlights the impact of heavy metal property on the colloidal behaviors of NPs, thus deepening our understanding of the mobility and fate of NPs associated with heavy metals in urban waters.
Collapse
Affiliation(s)
- Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yijun Mo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wendan Luo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zihan Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
33
|
Wu X, Zhao X, Chen R, Liu P, Liang W, Wang J, Teng M, Wang X, Gao S. Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. WATER RESEARCH 2022; 221:118825. [PMID: 35949074 DOI: 10.1016/j.watres.2022.118825] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
According to extensive in situ investigations, the microplastics (MPs) determined in current wastewater treatment plants (WWTPs) are mostly aged, with roughened surfaces and varied types of oxygen-containing functional groups (i.e., carbonyl and hydroxyl). However, the formation mechanism of aged MPs in WWTPs is still unclear. This paper systematically reviewed MP fragmentation and generation mechanisms in WWTPs at different treatment stages. The results highlight that MPs are prone to undergo physical abrasion, biofouling, and chemical oxidation-associated weathering in WWTPs at different treatment stages and can be further decomposed into smaller secondary MPs, including in nanoplastics (less than 1000 nm or 100 nm in size), suggesting that WWTPs can act as a formation source for MPs in aquatic environments. Sand associated mechanical crashes in the primary stage, microbes in active sewage sludge-related biodegradation in the secondary stage, and oxidant-relevant chemical oxidation processes (light photons, Cl2, and O3) in the tertiary stage are the dominant causes of MP formation in WWTPs. For MP formation mechanisms in WWTPs, external environmental forces (shear and stress forces, UV radiation, and biodegradation) can first induce plastic chain scission, destroy the plastic molecular arrangement, and create abundant pores and cracks on the MP surface. Then, the physicochemical properties (modulus of elasticity, tensile strength and elongation at break) of MPs shift consequently and finally breakdown into smaller secondary MPs or nanoscale plastics. Overall, this review provides new insights to better understand the formation mechanism, occurrence, fate, and adverse effects of aged microplastics/nanoplastics in current WWTPs.
Collapse
Affiliation(s)
- Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
34
|
Liu B, Gao Y, Pan J, Feng Q, Yue Q, Guo K, Gao B. Coagulation behavior of polyaluminum-titanium chloride composite coagulant with humic acid: A mechanism analysis. WATER RESEARCH 2022; 220:118633. [PMID: 35613484 DOI: 10.1016/j.watres.2022.118633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The hydrolysate species of metal-based coagulants and the binding sites of humic acid (HA) are highly dependent on the pH conditions. Exploring the binding sites and modes between coagulant hydrolysates and HA molecules is critical to understanding the coagulation mechanism. In this paper, the binding behavior between HA molecules and the hydrolysates of a polyaluminum-titanium chloride composite coagulant (PATC) was investigated under different pH conditions by semi-quantitative FTIR and XPS. It was found that oligomeric and mesopolymeric hydrolysates were the dominant species under acid conditions, which could complex with the hydroxyl and carboxyl groups of HA by forming COAl/Ti coordinate bonds. However, large amounts of H+ could compete with Al3+ and weaken the removal efficiency of HA. With the increase of pH, the hydrolysis process of the PATC and the deprotonation of HA were simultaneously underway. Under weakly acid conditions, the complexation of the aluminum hydrolysates with carboxyl groups was improved due to the gradually diminishing competition of H+ and the enhanced charge neutralization of the further polymerized hydrolysates. Consequently, the maximum UV254 removal by adding PATC was observed at pH 6. Under alkaline conditions, the sweeping effect of amorphous hydroxide dominated the HA removals, which was accompanied by the surface complexation of Al/Ti nuclear with carboxyl groups as well as the hydrogen bonds between hydroxyl and hydroxide. This study provides a new clue for the interaction mechanisms between the hydrolysates of composite coagulants and the dominant functional groups of HA at various pH conditions.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Jingwen Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Qiyun Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| |
Collapse
|
35
|
Dong S, Zhou M, Su X, Xia J, Wang L, Wu H, Suakollie EB, Wang D. Transport and retention patterns of fragmental microplastics in saturated and unsaturated porous media: A real-time pore-scale visualization. WATER RESEARCH 2022; 214:118195. [PMID: 35193078 DOI: 10.1016/j.watres.2022.118195] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The environmental behaviors of microplastics (MPs) have garnered ever-increasing attention globally. To overcome the limitations of commonly used "black box", a real-time pore-scale visualization system including microscope, charge coupled device (CCD) microscope camera, and flow cell (connected with pump and sample collector) was used to unravel the transport and retention mechanisms of fragmental microplastics (FMPs) in saturated and unsaturated porous media. The breakthrough curves (BTCs) of effluent concentrations from the flow cells were used to quantitatively analyze FMPs transport. The videos gathered from different transport scenarios indicated that FMPs can move along with the bulk flow in porous media, but also move around the sand surfaces via sliding, rolling, and saltating patterns. The FMPs were retained in porous media mainly via deposition and straining in saturated porous media. Interestingly, little FMPs were captured by the air-water interface in unsaturated conditions. The mobility of FMPs varied with environmental factors, which became lower at higher solution ionic strength (IS), smaller grain size, and lower water content in porous media. Flow rate barely affected the transport of FMPs under 0.1 mM IS with the mass recovery rate ranging between 65.8 and 67.5%, but significantly enhanced FMPs mobility under 10 mM IS through reducing the moving rate. The IS and grain size showed a more significant effect on the transport of FMPs in unsaturated porous media. Our findings, for the first time, visually deciphered the transport and retention patterns of MPs with fragmental shapes on pore-scale, expanding our current knowledge of the fate and transport of more realistic MPs in the environment.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Mengzhu Zhou
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaoting Su
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jihong Xia
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Lei Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Huiyi Wu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Emmanuel B Suakollie
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
36
|
Ramirez Arenas L, Ramseier Gentile S, Zimmermann S, Stoll S. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152623. [PMID: 34963580 DOI: 10.1016/j.scitotenv.2021.152623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 05/21/2023]
Abstract
Occurrence of microplastics and nanoplastics in aquatic systems, as well as in water compartments used to produce drinking water have become a major concern due to their impact on the environment and public health. Nanoplastics in particular, in regard to their fate and removal efficiency in drinking water treatment plants (DWTP), which ensure water quality and supply drinking water for human consumption have been, by far, rarely investigated. This study investigates the removal efficiency of polystyrene (PS) nanoplastics in a conventional water treatment plant providing drinking water for 500'000 consumers. For that purpose, a pilot-scale DWTP, located within the main treatment plant station, reproducing at a reduced scale the different processes and conditions of the main treatment plant is used. The results show that filtration process through sand and granular activated carbon (GAC) filters in the absence of coagulation achieves an overall nanoplastic removal of 88.1%. The removal efficiency of filtration processes is mainly attributed to physical retention and adsorption mechanisms. On the other hand, it is found that coagulation process greatly improves the removal efficiency of nanoplastics with a global removal efficiency equal to 99.4%. The effective removal efficiency of sand filtration increases considerably from 54.3% to 99.2% in the presence of coagulant, indicating that most of PS nanoplastics are removed during sand filtration process. The higher removal efficiency with the addition of coagulant is related to nanoplastics surface charge reduction and aggregation thus significantly increasing their retention in the filter media.
Collapse
Affiliation(s)
- Lina Ramirez Arenas
- Group of Environmental Physical Chemistry, Department F.-A. Forel for environmental and aquatic sciences, University of Geneva, Uni Carl Vogt, 66, boulevard Carl-Vogt, CH-1211 Geneva 4, Switzerland.
| | | | - Stéphane Zimmermann
- SIG, Industrial Boards of Geneva, Ch. du Château-Bloch, Le Lignon, 1211 Genève 2, Switzerland
| | - Serge Stoll
- Group of Environmental Physical Chemistry, Department F.-A. Forel for environmental and aquatic sciences, University of Geneva, Uni Carl Vogt, 66, boulevard Carl-Vogt, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|