1
|
Macêdo WV, Madsen JS, Schacksen P, Sandeep R, Nielsen JL, Biller P, Vergeynst L. Aerobic biological treatment of hydrothermal liquefaction process water of sewage sludge: Nitrification inhibition and removal of hazardous pollutants. WATER RESEARCH 2025; 277:123351. [PMID: 39999601 DOI: 10.1016/j.watres.2025.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Integrating hydrothermal liquefaction (HTL) in wastewater treatment is promising for converting sewage sludge into biofuels and fertilizers. However, challenges arise due to the ecotoxicity and nitrification-inhibiting properties of HTL process water. This study investigated the activated sludge treatment of HTL process water in continuous lab-scale reactors, focusing on the adaptive capacity of microbial communities and degradation of HTL-derived pollutants. Continuous activated sludge reactors were operated with process water up to expected levels of 145 mgCOD⋅L-1. Results showed that prolonged exposure did not adversely affect the removal of organic matter, organic nitrogen and ammonium nitrogen. Activated sludge treatment with a hydraulic retention time of 15 h was able to reduce the nitrification inhibition potential in the effluent by 63-69 % compared to the influent. Furthermore, nitrification inhibition assays showed a 2.6 times reduced sensitivity in adapted versus non-adapted biomass. The nitrifying community composition was unaltered after several months of exposure, suggesting that heterotrophic degradation of inhibitory compounds protected the nitrifying community from the cytotoxic effects. Chemical analysis identified 40 pollutants in the process water, of which activated sludge effectively degraded amines, linear and cyclic amides, cyclic ketones, and hydroxy aromatics with removal efficiencies above 90 %. However, nitrogen-containing heterocyclic compounds, particularly alkylated pyrazines and methylquinoline, were more recalcitrant to treatment, with removal rates ranging from 10 to 80 %. Effluent concentrations for some of these compounds, ranging from 1 to 50 µg⋅L-1, were close to or surpassed the predicted no-effect concentrations, raising concerns about potential environmental impacts of integrating hydrothermal liquefaction into conventional wastewater treatment plants.
Collapse
Affiliation(s)
| | - Jakob Schelde Madsen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
| | - Patrick Schacksen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark
| | - Rellegadla Sandeep
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark
| | - Patrick Biller
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Aarhus C, Denmark
| | - Leendert Vergeynst
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
2
|
Wu J, Julian-Kwong C, Kassem N, Vanek FM, Goldfarb JL, Richardson RE. Spatially informed multi-objective decision-making tool for retrofitting municipal wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125563. [PMID: 40319694 DOI: 10.1016/j.jenvman.2025.125563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/15/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The resources embedded in wastewater effluents and residual biosolids have motivated the conversion of traditional energy-intensive wastewater treatment plants (WWTPs) into net energy-positive water resource recovery facilities. Recent food waste regulations, including the New York State (NYS) Food Donation and Food Scraps Recycling Law, created new opportunities to integrate food waste (FW) co-digestion with innovative waste energy and resource recovery technologies at WWTPs. This study develops a spatially informed decision-making tool to facilitate the selection of retrofit design for WWTPs, using NYS as an example. Retrofit configurations for each WWTP was optimized based on both economic and environmental objectives. FW co-digestion is consistently included in the optimal strategy when considering both economic and environmental objectives. For Effluent Thermal Energy Recovery (ETER), local heating/cooling yields a higher net present value (NPV) than biosolid drying but is only cost-effective for WWTPs with a flow above 2.2 MGD. For biosolids upcycling, hydrothermal liquefaction (HTL) generates a higher NPV than hydrothermal carbonization (HTC) but is only cost-effective for WWTPs with a flow above 60 MGD. Co-digestion, ETER for heating/cooling, and Power-to-Gas (P2G) are the most effective strategies for greenhouse gas reduction. If the allocated FW has a high undigested solids content, adding HTC to the process can further reduce GHG emissions. When considering life-cycle environmental impact, co-digestion, ETER for heating/cooling, and hydrothermal processes are the most effective options. HTL can produce greater overall environmental benefits than HTC due to its lower non-GHG-related impact. Finally, four WWTPs were identified as high-priority candidates for retrofitting based on favorable economic and environmental performance, and environmental justice considerations. To our knowledge, this is the first spatially informed decision-making model for WWTP retrofitting that not only recommends optimal strategies for energy and resource recovery at individual WWTPs, but also identifies statewide priority for retrofitting based on economic, environmental, and social considerations. This study demonstrates a holistic approach to support decision-making processes at WWTPs, and offers potential applicability to any municipality exploring food waste management and other resource recovery opportunities.
Collapse
Affiliation(s)
- Jingyi Wu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Caleb Julian-Kwong
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Nazih Kassem
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, United States; Cornell Energy Systems Institute, Cornell University, Ithaca, NY, 14853, United States
| | - Francis M Vanek
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Jillian L Goldfarb
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
3
|
Pennoyer EH, Fillman T, Heiger-Bernays W, Attfield KR, Baek HG, Gao S, Smith S, Park JS, Wu N, Webster TF. Exposure to Legacy Per- and Polyfluoroalkyl Substances from Diet and Drinking Water in California Adults, 2018-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40365998 DOI: 10.1021/acs.est.4c11872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
People are exposed to per- and polyfluoroalkyl substances (PFAS) through multiple sources, with diet historically considered a major source in general populations. This study characterized legacy PFAS in serum from 700 California adults and examined contributions from diet and drinking water. We applied robust regression to estimate associations between nontransformed serum PFAS concentrations, self-reported food consumption, and drinking water PFAS concentrations measured under the USEPA's third Unregulated Contaminant Monitoring Rule (2013-2015). Detectable drinking water concentrations were associated with increased serum perfluorooctanoic acid (PFOA) (0.26 ng/mL; 95% CI: 0.077, 0.43), perfluorohexanesulfonic acid (PFHxS) (0.64 ng/mL; 95% CI: 0.058, 1.23), and perfluorooctanesulfonic acid (PFOS) (0.39 ng/mL; 95% CI: -0.76, 0.86). Seafood consumption was associated with increased perfluorononanoic acid (PFNA) (0.013 ng/mL; 95% CI: 0.0058, 0.021), perfluorodecanoic acid (PFDeA) (0.0059 ng/mL; 95% CI: 0.0026, 0.0092), and perfluoroundecanoic acid (PFUnDA) (0.010 ng/mL; 95% CI: 0.0054, 0.015), while eggs were associated with increased PFDeA (0.0035 ng/mL; 95% CI: 0.00010, 0.0069) and PFNA (0.0073 ng/mL; 95% CI: 0.00017, 0.014). Findings could indicate that dietary contributions may be less than those in earlier studies conducted in other populations, possibly due to shifts in PFAS production over the past 20 years, and that drinking water remains an important source of exposure to PFOA and PFHxS in this population.
Collapse
Affiliation(s)
- Emily H Pennoyer
- Boston University School of Public Health, 715 Albany St., Boston, Massachusetts 02118, United States
| | - Toki Fillman
- California Department of Public Health, 850 Marina Bay Pkwy., Richmond, California 94804, United States
| | - Wendy Heiger-Bernays
- Boston University School of Public Health, 715 Albany St., Boston, Massachusetts 02118, United States
| | - Kathleen R Attfield
- California Department of Public Health, 850 Marina Bay Pkwy., Richmond, California 94804, United States
| | - Hyoung-Gee Baek
- California Department of Toxic Substances Control, 700 Heinz Ave., Berkeley, California 94710, United States
| | - Songmei Gao
- California Department of Toxic Substances Control, 700 Heinz Ave., Berkeley, California 94710, United States
| | - Sabrina Smith
- California Department of Toxic Substances Control, 700 Heinz Ave., Berkeley, California 94710, United States
| | - June-Soo Park
- California Department of Toxic Substances Control, 700 Heinz Ave., Berkeley, California 94710, United States
- University of California San Francisco, 490 Illinois Street, #103Q, San Francisco, California 94158, United States
| | - Nerissa Wu
- California Department of Public Health, 850 Marina Bay Pkwy., Richmond, California 94804, United States
| | - Thomas F Webster
- Boston University School of Public Health, 715 Albany St., Boston, Massachusetts 02118, United States
| |
Collapse
|
4
|
Evich MG, Ferreira J, Adeyemi O, Schroeder PA, Williams JC, Acrey B, Burdette D, Grieve M, Neill MP, Simmons K, Striggow BC, Cohen SB, Cyterski M, Glinski DA, Henderson WM, Kim DY, Washington JW. Mineralogical controls on PFAS and anthropogenic anions in subsurface soils and aquifers. Nat Commun 2025; 16:3118. [PMID: 40169557 PMCID: PMC11962083 DOI: 10.1038/s41467-025-58040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) migrate into the environment through various means, e.g., soil-amendment impurities and ambient atmospheric deposition, potentially resulting in vegetative uptake and migration to groundwater. Existing approaches for modeling sorption of PFAS commonly treat soil as an undifferentiated homogeneous medium, with distribution constants (e.g., Kd, Koc) generated empirically using surface soils. Considering the limited mineral variety expected in weathered geologic media, PFAS mobility can be better understood by accounting for predictable mineral assemblages that are ubiquitously distributed in US soils. Here we explore the role of minerals and electrostatic sorption in controlling PFAS mobility in subsurface settings at contaminated agricultural sites by measuring geochemical parameters and PFAS, and calculating pH-dependent mineral surface charges through full soil and aquifer columns. These data suggest subsurface mobility of short-chain PFAS largely is controlled by aluminum-oxide mineral(oid) electrostatic sorption, whereas long-chain PFAS mobility is controlled by organic matter and air-water interfacial area.
Collapse
Affiliation(s)
- Marina G Evich
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA.
| | | | | | | | - Jason C Williams
- South Carolina Department of Health and Environmental Control, Bureau of Land and Waste Management, Columbia, SC, USA
| | - Brad Acrey
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Diana Burdette
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Malcolm Grieve
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Michael P Neill
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Kevin Simmons
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Brian C Striggow
- USEPA, Region 4, Laboratory Services and Applied Sciences Division, Athens, GA, USA
| | - Samuel B Cohen
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - Mike Cyterski
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - Donna A Glinski
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - W Matthew Henderson
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - Du Yung Kim
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA
| | - John W Washington
- USEPA, Office of Research and Development, Center for Environmental Measurement and Modeling, Athens, GA, USA.
- Department of Geology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Biswas B, Joseph A, Parveen N, Ranjan VP, Goel S, Mandal J, Srivastava P. Contamination of per- and poly-fluoroalkyl substances in agricultural soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124993. [PMID: 40120441 DOI: 10.1016/j.jenvman.2025.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Numerous reviews have focused on the chemistry, fate and transport, and remediation of per- and poly-fluoroalkyl substances (PFAS) across various environmental media. However, there remains a significant gap in the literature regarding a comprehensive review specifically addressing PFAS contamination within agricultural soils. Recognizing the threat PFAS pose to ecosystems and human health, this review critically examines the sources of PFAS in agricultural environments, their uptake and translocation within plant systems, and recent advancements in soil remediation techniques. PFAS ingress into agricultural soils primarily occurs through the application of biowastes, wastewater, and pesticides, necessitating a thorough examination of their pathways and impacts. Factors such as carbon chain length, salinity, temperature, and pH levels affect PFAS uptake and distribution within plants, ultimately influencing their transfer through the food web. Moreover, this review explores a range of physical, chemical, and biological strategies currently employed for the remediation of PFAS-contaminated agricultural soils.
Collapse
Affiliation(s)
- Bishwatma Biswas
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India; Civil Engineering Department, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India.
| | - Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Sudha Goel
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721 302, India.
| | - Jajati Mandal
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom; Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Industry Environments Program, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Prashant Srivastava
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Industry Environments Program, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
6
|
Stults JF, Schaefer CE, MacBeth T, Fang Y, Devon J, Real I, Liu F, Kosson D, Guelfo JL. Laboratory validation of a simplified model for estimating equilibrium PFAS mass leaching from unsaturated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179036. [PMID: 40043657 DOI: 10.1016/j.scitotenv.2025.179036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Modelling per- and polyfluoroalkyl substance (PFAS) fate and transport in the vadose zone is inherently more complex than in the saturated zone due to the highly transient nature and the wetting phase saturation dependent hydraulic flux associated with the vadose zone. The chemical complexity of PFAS impart multiple partitioning processes which complicate the evaluation of PFAS transport in the vadose zone. To date, simplified screening models describing PFAS leaching have been developed to determine PFAS soil cleanup criteria in the vadose zone. Recent work has presented evidence that while PFAS transport in the vadose zone is governed by several non-equilibrium mechanisms, it is possible to predict PFAS mass flux using equilibrium modelling over month to year timescales. We hypothesized that by quantifying important equilibrium partitioning and hydraulic processes, we could simplify vadose zone leaching models for assessing mass flux from the vadose zone to the underlying groundwater. A mass flux, cell-based model which accounts for important partitioning processes (solid and air-water interfacial partitioning) and transience in hydraulic processes (water flux and water content) was developed and validated herein. Column studies were conducted under simulated rainfall conditions to provide transient hydraulic and PFAS leaching data. A HYDRUS 1-D with PFAS module model was calibrated to the hydraulic conditions of the simulated rainfall columns. Forward simulations were carried out using HYDRUS and the mass balance approximation models. The HYDRUS and mass balance approximations performed nearly identically for all PFAS, and both models predicted PFAS mass leaching within a half order of magnitude of most measured data. These results suggest that readily applicable empirical models and simplified numerical models can reasonably estimate month to year scale mass flux from the vadose zone for sites without major heterogeneity or transport non-ideality considerations.
Collapse
Affiliation(s)
- John F Stults
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA.
| | | | | | - Yida Fang
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA; Haley and Aldrich Inc., 3131 Elliott Ave #600, Seattle, WA 98121, USA
| | - Julie Devon
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA
| | - Isreq Real
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Fangfei Liu
- Department of Civil and Enivronmental Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - David Kosson
- Department of Civil and Enivronmental Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Jennifer L Guelfo
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
7
|
Chambial P, Thakur N, Kushawaha J, Kumar R. Per- and polyfluoroalkyl substances in environment and potential health impacts: Sources, remediation treatment and management, policy guidelines, destructive technologies, and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178803. [PMID: 40020591 DOI: 10.1016/j.scitotenv.2025.178803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl Substances (PFAS), also known as forever chemicals and ubiquitous persistence, pose significant public health challenges due to their potential toxicity, particularly in drinking water and soil contamination. However, PFAS occurrence and their concentrations in different environmental matrices vary globally, but factors influencing trends, transport, fate, toxicity, and interactions with co-contaminants remain largely unexplored. Therefore, this review critically examines the state-of-the-art worldwide PFAS sources, distribution, and pathways, and evaluates how PFASs are processed in wastewater treatment, generally, which causes severe problems with the quality and safety of drinking water. Importantly, the review also underscores health issues due to PFAS consumption and recent research trends on developing effective treatment strategies to manage PFAS contamination. Potential effects of PFAS were linked to urban land use and the proportion of wastewater effluent in streamflow. Besides, major emphasis was provided on challenges for conventional treatment, destructive technologies, environmental accumulation, precursor transformation, and cost-investment related to PFAS removal technologies. To combat PFAS contamination, this review proposes a framework that promotes the comprehensive identification of prevalent compounds, with a focus on their eradication through knowledge-based and targeted analysis. Additionally, it explores the ongoing debate surrounding PFAS laws and legal frameworks, offering ideas for enhancing contamination management. Lastly, this review provides a strategic plan for improving response and preparedness, serving as a foundation for addressing future environmental challenges and informing health risk assessments.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Mandi, Himachal Pradesh 175001, India.
| | - Jyoti Kushawaha
- Department of Environmental Studies, Ramanujan College, University of Delhi, New Delhi 110019, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
8
|
Zhang H, Xu H, Qin B, Fu Y, Yao Y, Zhao Y, Qin C. Review on the sources, distribution and treatment of per- and polyfluoroalkyl substances in global groundwater. ENVIRONMENTAL RESEARCH 2025; 275:121387. [PMID: 40086577 DOI: 10.1016/j.envres.2025.121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have garnered increasing global attention due to their widespread occurrence in groundwater and the potential health risks to humans. This review aimed to clarify the occurrence and treatment of PFAS in groundwater by summarizing literature published in the Web of Science Core Collection from January 2000 to April 2024. Information on 461 reported PFAS-contaminated groundwater sites was compiled, revealing key characteristics of pollution sources and concentrations. The data indicated that firefighting training activities were a major source of PFAS groundwater contamination, accounting for 41 % of cases, followed by other fluorinated industrial activities, landfill leachate, and wastewater leakage. Non-point sources, such as atmospheric deposition, contributed to a lesser extent. The concentrations distribution of 25 PFAS showed a chain-length dependency, with short-chain PFAS generally exhibiting higher concentrations than long-chain PFAS. Additionally, the review systematically examined the application of separation methods and destructive methods at both laboratory and pilot/field-scales for PFAS-contaminated groundwater. Resins were favored for ex-situ treatment, whereas colloidal activated carbon (CAC) was more commonly used for in-situ treatment. In-situ direct injection of CAC was considered a highly promising approach for remediating PFAS source zones and plumes, offering advantages such as minimal surface disruption, high adsorption capacity and long-term effectiveness. Finally, the research focus and development trends in categories and treatment methods for PFAS in groundwater were noted. Overall, this review identified research gaps in the occurrence and treatment of PFAS in groundwater, and suggested further optimization of CAC-based methods to address the challenges of PFAS-contaminated groundwater.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Huichao Xu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Bing Qin
- Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing, 100083, China
| | - Yufeng Fu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yu Yao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Pichler V, Martinho RP, Temming L, Segers T, Wurm FR, Koshkina O. The Environmental Impact of Medical Imaging Agents and the Roadmap to Sustainable Medical Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404411. [PMID: 39905748 PMCID: PMC11884531 DOI: 10.1002/advs.202404411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/22/2024] [Indexed: 02/06/2025]
Abstract
Medical imaging agents, i.e., contrast agents for magnetic resonance imaging (MRI) and radiopharmaceuticals, play a vital role in the diagnosis of diseases. Yet, they mostly contain harmful and non-biodegradable substances, such as per- and polyfluoroalkyl substances (PFAS), heavy metals or radionuclides. As a result of their increasing clinical use, these agents are entering various water bodies and soil, posing risks to environment and human health. Here, the environmental effects of the application of imaging agents are outlined for the major imaging modalities, and the respective chemistry of the contrast agents with environmental implications is linked. Recommendations are introduced for the design and application of contrast agents: the 3Cs of imaging agents: control, change, and combine; and recent approaches for more sustainable imaging strategies are highlighted. This combination of measures should engage an open discussion, inspire solutions to reduce pollution by imaging agents, and increase awareness for the impact of toxic waste related to imaging agents.
Collapse
Affiliation(s)
- Verena Pichler
- Department of Pharmaceutical SciencesDivision of Pharmaceutical ChemistryUniversity of ViennaVienna1090Austria
| | - Ricardo P. Martinho
- Biomolecular Nanotechnology GroupDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Lisanne Temming
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Tim Segers
- BIOS / Lab on a Chip GroupMax Planck Center Twente for Complex Fluid DynamicsMESA+ Institute for NanotechnologyUniversity of TwenteEnschede7514DMThe Netherlands
| | - Frederik R. Wurm
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Olga Koshkina
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
- Phos4nova B.V.EnschedeThe Netherlands
| |
Collapse
|
10
|
Liang Y, Yang L, Tang C, Yang Y, Liang S, Wang A, Xu J, Huang Q, Lin H. Broad-spectrum capture of hundreds of per- and polyfluoroalkyl substances from fluorochemical wastewater. Nat Commun 2025; 16:1972. [PMID: 40000635 PMCID: PMC11861909 DOI: 10.1038/s41467-025-57272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Hundreds of per- and polyfluoroalkyl substances (PFAS) are present in fluorochemical production effluents, and existing adsorption devices are inadequate to address this PFAS challenge given their extreme structural diversity. Here, we achieve the broad-spectrum capture of 107 PFAS from fluorochemical effluents using a treatment-train strategy that combines Zn-based electrocoagulation (EC) with anion-exchange resin (AER) beds. The "zero-carbon" adsorbent, zinc hydroxide flocs generated insitu by Zn-based EC, bulk removes PFAS with log Kow > 4 through a semi-micellar adsorption mechanism similar to mineral flotation and achieves adsorption capacities at the optimal level of all reported adsorbents. Technical-economic analysis and life-cycle environmental impact show that coupling Zn-based EC reduces the cost by an order-of-magnitude and the carbon-footprint by 70% compared to AER beds alone. It is also observed that iodinated PFAS, with some fluorine atoms are replaced by iodine atoms, exhibit significantly improved adsorption selectivity, which may shed light on designing environmentally-friendly fluorochemicals.
Collapse
Affiliation(s)
- Yiyang Liang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan, PR China
| | - Lihui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan, PR China
| | - Caiming Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan, PR China
| | - Ying Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan, PR China
| | - Shangtao Liang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, US
| | - Anqi Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, PR China
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan, PR China
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota, US
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, US
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, PR China.
- College of Eco-Environment and Architectural Engineering, Dongguan University of Technology, Dongguan, PR China.
| |
Collapse
|
11
|
Oviedo-Vargas D, Anton J, Coleman-Kammula S, Qin X. Quantification of PFAS in soils treated with biosolids in ten northeastern US farms. Sci Rep 2025; 15:5582. [PMID: 39955341 PMCID: PMC11829944 DOI: 10.1038/s41598-025-90184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
This study, one of the few conducted to date on working farms in the US, examined per- and polyfluoroalkyl substances (PFAS) contamination in 10 farms treated with biosolids using a paired control-treatment approach. Biosolids are nutrient-rich and inexpensive soil amendments, however, if the biosolids contain PFAS which are known to be toxic, mobile and to bioaccumulate, they can leave lasting negative impacts on farming soil and water. Our study showed significantly higher concentrations of PFAS in biosolids-treated (treatment) soils compared to (untreated) controls. Soil depth, soil physicochemical properties (e.g., organic matter and pH), and biosolids sources affected concentrations and types of PFAS in treated soils. While PFAS precursors were present in biosolids, they were absent in treated soils, likely due to biotransformation to terminal perfluoroalkyl products. The detection of shorter-chain PFAS in surface water highlights their greater mobility, raising concerns beyond the boundaries of the biosolids-treated farms.
Collapse
Affiliation(s)
| | - Jessica Anton
- Center for PFAS Solutions, 272 Quigley Blvd, New Castle, DE, USA
| | | | - Xiaohuan Qin
- Center for PFAS Solutions, 272 Quigley Blvd, New Castle, DE, USA
| |
Collapse
|
12
|
Sun J, Liu Y, Yao L, Guo Y, Ma C, Xiang T, Cheng Z, Deng Y, Xie X, Qu G, Shi J, Jiang G, Wang Y. Suspect and Nontarget Analysis of Per- and Polyfluoroalkyl Substances in Groundwater Underlying Different Land-Use Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2722-2731. [PMID: 39882996 DOI: 10.1021/acs.est.4c09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Groundwater can be contaminated by PFAS emissions, yet research on the presence and associated risks of PFAS in groundwater underlying different land-use areas remains limited. Herein, high-resolution mass spectrometry-based suspect and nontarget analyses were performed to determine PFAS occurrence in groundwater samples obtained from a rural area, a planting region, and the vicinities of a pharmaceutical park, an airport, and an industrial park in Datong City, China. A total of 31 PFAS (16 emerging and 15 legacy PFAS) were identified, and the ΣPFAS concentrations ranged from 0.775 (rural area) to 80.7 ng/L (pharmaceutical park). In terms of the average concentration of ΣPFAS, legacy PFAS were predominant in rural groundwater, whereas emerging PFAS were predominant in the other four land-use areas. PFOA, PFDA, PFUnDA, and 6:2 FTS were detected in all groundwater samples. To further prioritize the risk of identified PFAS in groundwater, the detection frequency; concentration; and persistence, bioaccumulation, and toxicity attributes were adopted, which showed that high-risk compounds varied across different land-use areas. Our results further reveal the ubiquitous contamination of PFAS in groundwater environments, even in areas with limited human activity, and highlight the necessity of suspect and nontarget analysis for assessing PFAS exposure through groundwater.
Collapse
Affiliation(s)
- Jiazheng Sun
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenxi Ma
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zheyu Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yamin Deng
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xianjun Xie
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
13
|
Hyks J, Šyc M, Korotenko E, Cajthaml T, Semerád J, Hjelmar O. Leaching of per- and polyfluoroalkyl substances (PFAS) from municipal solid waste incineration bottom ash intended for utilization as secondary aggregates in road subbase. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136635. [PMID: 39603120 DOI: 10.1016/j.jhazmat.2024.136635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Ten samples of mineral fraction derived from waste incineration bottom ash (MIBA) from Denmark (N = 7), Sweden (N = 1), and the Czech Republic (N = 2) underwent targeted analysis of 59 per- and polyfluoroalkyl substances (PFAS) in the solid phase and eluates from a batch leaching test at a liquid-to-solid ratio of 2 L/kg. The solid content, expressed as Σ59PFAS(S), ranged from 0.21 ± 0.03 µg/kg DM to 21.6 ± 1.47 µg/kg DM. The leached amounts, expressed as Σ59PFAS(L), ranged from 204 ± 63 ng/kg DM to 3250 ± 77 ng/kg DM. The results of the leaching tests were normalized to "PFOA-equivalents" (PFOA-eq) and used to estimate the bulk leaching emissions from the utilization of MIBA in typical road construction scenario. The calculated bulk leaching emissions associated with the utilization of 100 thousand tons of MIBA in road subbase were 6-30 g PFOA-eq per 10-21 years (Danish MIBA), 30 g PFOA-eq per 10-22 years (Swedish MIBA), and 271 g PFOA-eq per 14-30 years (Czech MIBA) depending on the effective infiltration and annual precipitation rates. This first approximation of the source term provides invaluable information for assessment of the environmental impact of MIBA utilization beyond landfill applications, pending further validation by subsequent research.
Collapse
Affiliation(s)
- Jiri Hyks
- Danish Waste Solutions ApS, Agern Allé 3, DK-2970 Hørsholm, Denmark.
| | - Michal Šyc
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, CZ-165 02, Prague, Czech Republic
| | - Ekaterina Korotenko
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, CZ-165 02, Prague, Czech Republic
| | - Tomas Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic
| | - Ole Hjelmar
- Danish Waste Solutions ApS, Agern Allé 3, DK-2970 Hørsholm, Denmark
| |
Collapse
|
14
|
Peter L, Modiri‐Gharehveran M, Alvarez‐Campos O, Evanylo GK, Lee LS. PFAS fate using lysimeters during degraded soil reclamation using biosolids. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:41-53. [PMID: 38816342 PMCID: PMC11718147 DOI: 10.1002/jeq2.20576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Carbon- and nutrient-rich biosolids are used in agriculture and land reclamation. However, per- and polyfluoroalkyl substances (PFAS) typically present in biosolids raise concerns of PFAS leaching to groundwater and plant uptake. Here, we investigated PFAS persistence and leaching from biosolids applied to a site constructed artificially to mimic degraded soils. Treatments included biosolids and biosolids blended with mulch applied at different rates to attain either one and five times the agronomic N rate for vegetable crops and a control treatment with synthetic urea and triple superphosphate fertilizer. Leachates were collected for a 2-year period from 15-cm depth zero-tension drainage lysimeters. Soils were analyzed post biosolids application. PFAS were quantified using isotope-dilution, solid-phase extraction and liquid chromatography tandem mass spectrometry. Leachate profiles exemplified an initial high total PFAS concentration, followed by a sharp decline and subsequent small fluctuations attributed to pre-existing soil conditions and rainfall patterns. Quantifiable PFAS in leachate were proportional to biosolids application rates. Short-chain perfluoroalkyl acids (CF2 < 6) were dominant in leachate, while the percentage of longer chains homologues was higher in soils. A 43% biosolids blend with mulch resulted in 21% lower PFAS leachate concentrations even with the blend application rate being 1.5 times higher than biosolids due to the blend's lower N-content. The blending effect was more pronounced for long-chain perfluoroalkyl sulfonic acids that have a greater retention by soils and the air-water interface. Biosolids blending as a pragmatic strategy for reducing PFAS leachate concentrations may aid in the sustainable beneficial reuse of biosolids.
Collapse
Affiliation(s)
- Lynda Peter
- Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
| | - Mahsa Modiri‐Gharehveran
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
- EA Engineering, Science, and Technology, Inc., PBCHunt ValleyMarylandUSA
| | - Odiney Alvarez‐Campos
- USAIDWashingtonDistrict of ColumbiaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | - Gregory K. Evanylo
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | - Linda S. Lee
- Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
15
|
Bøllingtoft A, Bjerg PL, Rønde V, Tuxen N, Nowak W, Troldborg M. Quantification of contaminant mass discharge and uncertainties: Method and challenges in application at contaminated sites. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104453. [PMID: 39541662 DOI: 10.1016/j.jconhyd.2024.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Contaminant mass discharge (CMD) estimation involves combining multilevel concentration and flow measurements to quantify the contaminant mass passing through a control plane downgradient of a point source. However, geological heterogeneities and limited data introduce uncertainties that complicate CMD estimation and risk assessment. Although CMD is increasingly used in groundwater management, methods for quantifying and handling these uncertainties are still needed. This study develops and tests a CMD estimation method based on Bayesian geostatistics to quantify CMD uncertainties using data from a control plane perpendicular to the contaminant plume. By combining geostatistical conditional simulations of the spatial concentration distribution with the flow, an ensemble of CMD realizations is generated, from which a cumulative distribution function is derived. A key element of this approach is the use of a macrodispersive transport model to simulate the spatial concentration trend. This ensures that the estimated concentration reflects the expected physical behavior of the contaminant plume while also allowing the integration of site-specific conceptual information. The method is applicable to plumes with dissolved contaminants, such as chlorinated solvents, petroleum hydrocarbons, Per- and polyfluoroalkyl substances (PFAS) and pesticides. Site-specific conceptual understanding is used to inform the prior probability density functions of the structural model parameters and to define acceptable simulated concentration limits. We applied the method at three sites contaminated with chlorinated ethenes, demonstrating its robustness across varying information levels and data availability. Our results shows that strong site-specific conceptual knowledge and high sampling density constrain the CMD uncertainty (CV = 21 %) and results in estimated model parameters and a spatial concentration distribution that agrees well with the conceptual model. For a site with less data and limited conceptual knowledge, CMD and concentration distribution estimates are still feasible, though with higher uncertainty (CV = 41 %). Extending the method to account for multiple source zones and complex plume migration improved parameter identification and reduced the 95 % CMD confidence interval by 11 % ([4950-8750] to [5090-8480] g yr-1), while also providing a spatial concentration distribution in better agreement with the plume conceptualization. This study highlights the importance of integrating site-specific conceptual knowledge in CMD estimation, particularly for less-sampled sites. The method can furthermore assist in identifying remediation targets, evaluating remedial effectiveness, and optimizing sampling strategies.
Collapse
Affiliation(s)
- A Bøllingtoft
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - P L Bjerg
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - V Rønde
- NIRAS, Sortemosevej 19, 3450 Allerød, Denmark
| | - N Tuxen
- The Capital Region of Denmark, Denmark
| | - W Nowak
- Institute for Modelling Hydraulic and Environmental Systems (IWS), Universität Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
16
|
Verley JC, McLennon E, Rein KS, Dikgang J, Kankarla V. Current trends and patterns of PFAS in agroecosystems and environment: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:80-107. [PMID: 39256956 DOI: 10.1002/jeq2.20607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/13/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are one of the more well-known highly persistent organic pollutants with potential risks to agroecological systems. These compounds are of global concern due to their persistence and mobility, and they often lead to serious impacts on environmental, agricultural, and human health. In the past 20 years, the number of science publications on PFAS has risen; despite this, certain fundamental questions about PFAS occurrence, sources, mechanism of transport, and impacts on agroecosystems and the societies dependent on them are still open and evolving. There is a lack of systematic and comprehensive analysis of these concerns in agroecosystems. Therefore, we reviewed the current literature on PFAS with a focus on agroecosystems; our review suggests that PFASs are nearly ubiquitous in agricultural systems. We found the current research has limitations in analyzing PFAS in complex matrices because of their small size, distribution, and persistence within various environmental systems. There is consistency in the properties and composition of PFAS in and around agroecosystems, suggesting evidence of shared sources and similar components within different tropic levels. The introduction of new and varied sources of PFAS appear to be growing, adding to their residual accumulation in environmental matrices and leading to possible new types of chemical compounds that are difficult to assess accurately. This review determines existing research trends, understands mechanisms and incidence of PFAS within agroecosystems and their impact on human health, and thereby recommends further studies to remedy research gaps.
Collapse
Affiliation(s)
- Jackson C Verley
- Department of Marine and Earth Science, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Everald McLennon
- Crop and Soil Science Department, Klamath Basin Research and Extension Center, Oregon State University, Klamath Falls, Oregon, USA
| | - Kathleen S Rein
- Department of Marine and Earth Science, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Johane Dikgang
- Department of Economics and Finance, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Vanaja Kankarla
- Department of Marine and Earth Science, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
17
|
Hua Y, Chen S, Tong T, Li X, Ji R, Xu Q, Zhang Y, Dai X. Elucidating the Molecular Mechanisms and Comprehensive Effects of Sludge-Derived Plant Biostimulants on Crop Growth: Insights from Metabolomic Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404210. [PMID: 39540297 PMCID: PMC11727372 DOI: 10.1002/advs.202404210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The utilization of urban waste for land management plays a crucial role in reshaping material flows between human activities and the environment. Sewage sludge alkaline thermal hydrolysis (ATH) produces sludge-derived plant biostimulants (SPB), which have garnered attention due to the presence of indole-3-acetic acid. However, there remains a gap in understanding SPB's molecular-level effects and its comprehensive impact on crops throughout their growth cycle. In this study, non-targeted and targeted metabolomic approaches are employed to analyze 51 plant hormones and 1,177 metabolites, revealing novel insights. The findings demonstrate that low concentrations of SPB exerted multiple beneficial effects on rice roots, leaves, and the root-soil system, facilitating rapid cell division and enhancing antioxidant defense mechanisms. These results provide a vital foundation for understanding ATH metabolic pathways and advocating for widespread SPB application, offering significant implications for sustainable land management.
Collapse
Affiliation(s)
- Yu Hua
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Shuxian Chen
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Tong Tong
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijing100012China
| | - Xiaoou Li
- Nantong Yuezichun Biological Agriculture Technology Co., LtdNantong226000China
| | - Rongting Ji
- Nanjing Institute of Environmental ScienceMinistry of Ecology and Environment of the People's Republic of ChinaNanjing210042China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijing100012China
| | - Yue Zhang
- China Civil Engineering Society Water Industry AssociationBeijing100082China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| |
Collapse
|
18
|
Openiyi EO, Lee LS, Alukkal CR. Evaluating sorbents for reducing per- and polyfluoroalkyl substance mobility in biosolids-amended soil columns. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:118-131. [PMID: 39648643 PMCID: PMC11718134 DOI: 10.1002/jeq2.20658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
Sustainable reuse of biosolids as fertilizers is being threatened by the presence of per- and polyfluoroalkyl substances (PFAS) in our waste stream warranting research on strategies that will minimize PFAS mobility from land-applied biosolids. Here, we evaluated the ability of waste-derived sorbents aluminum chlorohydrate water treatment residuals (ACH-WTRs, 1 wt%) and biosolids-based biochar (1.5 wt%) to reduce mobility of PFAS in columns with 3 wt% biosolids-amended soils with and without sorbent layered on top of soil only and operated under transient unsaturated conditions. Cycles of simulated rain events of approximately three pore volumes distributed over a 4-day period followed by 3 days of drying were imposed for 6 months. Total PFAS concentrations in collected leachates were lower in the sorbent-treated columns compared to the control columns. Biochar outperformed the ACH-WTR with 41% versus 32% lower total PFAS in leachate, respectively, compared to the control. The most significant mitigation effect was observed with PFOS (perfluorooctane sulfonate) with 68% and 62% less PFOS in the leachates from the columns treated with ACH-WTR or biochar compared to the control, respectively. These results provide a first-of-its-kind assessment of the potential benefit of co-applying WTRs or biochar with biosolids to reduce PFAS mobility in biosolids-amended soils.
Collapse
Affiliation(s)
- Elijah O. Openiyi
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
- Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
| | - Linda S. Lee
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
- Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Caroline R. Alukkal
- Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
19
|
van den Broek S, Nybom I, Hartmann M, Doetterl S, Garland G. Opportunities and challenges of using human excreta-derived fertilizers in agriculture: A review of suitability, environmental impact and societal acceptance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177306. [PMID: 39515389 DOI: 10.1016/j.scitotenv.2024.177306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Human excreta-derived fertilizers (HEDFs) are organic fertilizers made from human excreta sources such as urine and feces. HEDFs can contribute to a sustainable and circular agriculture by reuse of valuable nutrients that would otherwise be discarded. However, HEDFs may contain contaminants such as pharmaceuticals, persistent organic compounds, heavy metals and pathogens which can negatively affect plant, water and soil quality. Moreover, consumer prejudice, farmer hesitance and strict regulations can discourage utilization of HEDFs. Here, we conducted a thorough review of published literature to explore the opportunities and challenges of using HEDFs in agricultural systems by evaluating the suitability of human excreta as a nutrient source, their typical contaminant composition, how they affect the quality of crops, soils and water and their societal impact and acceptance. We found that HEDFs are suitable nutrient-rich fertilizers, but may contain contaminants. Processing treatments increase the fertilizer quality by reducing these contaminants, but they do not remove all contaminants completely. Regarding the environmental impacts of these fertilizers, we found overall positive effects on crop yield, soil nutrients, plant-soil-microbe interactions and plant pathogen suppression. The use of HEDFs reduces water contamination from sewage waste dumping, but nutrient leaching dependent on soil type may still affect water quality. We found no increased risks with human pathogens compared to inorganic fertilizers but identified processing treatment as well as crop and soil type significantly affect these risks. Lastly, we found that public acceptance is possible with clear regulations and outreach to inform consumers and farmers of their multi-faceted benefits and safe usage after processing treatments. In summary, this review emphasizes the great potential of HEDFs and its positive impacts on society, especially in regions where conventional fertilizers are scarce, while also stressing the need for adaptation to specific soils and crops.
Collapse
Affiliation(s)
- Sarah van den Broek
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland.
| | - Inna Nybom
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Environmental Analytics, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Sebastian Doetterl
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Gina Garland
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Soil Quality and Soil Use, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| |
Collapse
|
20
|
Estoppey N, Knight ER, Allan IJ, Ndungu K, Slinde GA, Rundberget JT, Ylivainio K, Hernandez-Mora A, Sørmo E, Arp HPH, Cornelissen G. PFAS, PCBs, PCDD/Fs, PAHs and extractable organic fluorine in bio-based fertilizers, amended soils and plants: Exposure assessment and temporal trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177347. [PMID: 39505025 DOI: 10.1016/j.scitotenv.2024.177347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste contribute to closed-loop nutrient cycles and circular agriculture. However, persistent organic contaminants, such as per- and poly-fluoroalkyl substances (PFAS), polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), as well as polyaromatic hydrocarbons (PAHs) can be present in organic waste or be formed during valorization processes. Consequently, these hazardous substances may be introduced into agricultural soils and the food chain via BBFs. This study assessed the exposure of 84 target substances and extractable organic fluorine (EOF) in 19 BBFs produced from different types of waste, including agricultural and food industrial waste, sewage sludge, and biowaste, and through various types of valorization methods, including hygienization at low temperatures (<150 °C) as well as pyrolysis and incineration at elevated temperatures (150-900 °C). The concentrations in BBFs (ΣPFOS & PFOA: <30 μg kg-1, Σ6PCBs: <15 μg kg-1, Σ11PAHs: <3 mg kg-1, Σ17PCDD/Fs: <4 ng TEQ kg-1) were found to be below the strictest thresholds used in individual EU countries, with only one exception (pyrolyzed sewage sludge, Σ11PAHs: 5.9 mg kg-1). Five BBFs produced from sewage sludge or chicken manure contained high concentrations of EOF (>140 μg kg-1), so monitoring of more PFAS is recommended. The calculated expected concentrations in soils after one BBF application (e.g. PFOS: <0.05 μg kg-1) fell below background contamination levels (PFOS: 2.7 μg kg-1) elsewhere in the literature. This was confirmed by the analysis of BBF-amended soils from field experiments (Finland and Austria). Studies on target legacy contaminants in sewage sludge were reviewed, indicating a general decreasing trend in concentration with an apparent half-life ranging from 4 (PFOS) to 9 (PCDD/Fs) years. Modelled cumulative concentrations of the target contaminants in agricultural soils indicated low long-term risks. Concentrations estimated and analyzed in cereal grains were low, indicating that exposure by cereal consumption is well below tolerable daily intakes.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Emma R Knight
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia
| | - Ian J Allan
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Kuria Ndungu
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Kari Ylivainio
- Natural Resources Institute Finland (LUKE), Tietotie 4, 31600 Jokioinen, Finland
| | - Alicia Hernandez-Mora
- University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria; AGRANA Research & Innovation Center (ARIC), Reitherstrasse 21-23, 3430 Tulln an der Donau, Austria
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
21
|
Vahedian F, Silva JAK, Šimůnek J, McCray JE. Influence of kinetic air-water interfacial partitioning on unsaturated transport of PFAS in sandy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177420. [PMID: 39532180 DOI: 10.1016/j.scitotenv.2024.177420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study investigates the impact of kinetic air-water partitioning on the transport of perfluoroalkyl substances (PFAS) within homogeneous and heterogeneous sandy vadose zones under transient unsaturated flow conditions. These experimental conditions are realistic for field behavior, where transient flow foments the continual growth and collapse of air-water interfaces (AWIs), and where layered heterogenous conditions enhance the perturbations of AWIs. Short-chain PFAS behave like conservative tracers with negligible air-water interface partitioning, whereas longer-chain PFAS demonstrate non-equilibrium retention behavior, especially in heterogeneous media. AWI partitioning kinetics were found to be important in controlling PFAS transport and mass flux, particularly during PFAS sorption to the air-water interface, which results because of the different nature and more rapid changes in AWI during drainage, wherein PFAS are moving toward the interface to achieve equilibrium, than during imbibition, where PFAS are leaving the interface to achieve equilibrium. Neglecting these kinetic AWI sorption processes can result in an underestimate of the PFAS transport velocities and mass flux reaching the water table. The presence of trapped air may also inhibit PFAS partitioning in a similar manner by causing longer diffusion paths from bulk water to a portion of the AWIs. The modified HYDRUS effectively captured the transport processes and provided an excellent match to the measured breakthrough curves. To assess relevance using realistic transient infiltration rates, simulations were conducted using precipitation data from an actual site. The results showed that accounting for kinetic AWI partitioning increases the cumulative PFOS mass flux to groundwater by a factor of 2.3 compared to equilibrium conditions, significantly impacting PFAS porewater concentrations. This difference was threefold under experimental conditions, suggesting that the importance of kinetic effects may vary significantly over the long term and under different climatic conditions or soil types, due to their strong dependence on water flux.
Collapse
Affiliation(s)
- Faran Vahedian
- Civil & Environmental Engineering Department, Colorado School of Mines, Golden, CO 80401, USA.
| | - Jeff A K Silva
- Civil & Environmental Engineering Department, Colorado School of Mines, Golden, CO 80401, USA; Arclight Research & Consulting, LLC, Golden, CO 80401, USA.
| | - Jiří Šimůnek
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - John E McCray
- Civil & Environmental Engineering Department, Hydrologic Science and Engineering Program, Hydrologic Science & Engineering Program, ReNuWit-The Urban Water Engineering Research Center, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
22
|
Breitmeyer SE, Williams AM, Conlon MD, Wertz TA, Heflin BC, Shull DR, Duris JW. Predicted Potential for Aquatic Exposure Effects of Per- and Polyfluorinated Alkyl Substances (PFAS) in Pennsylvania's Statewide Network of Streams. TOXICS 2024; 12:921. [PMID: 39771136 PMCID: PMC11728657 DOI: 10.3390/toxics12120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included both measured and predicted estimates. The potential combined exposure effects of 14 individual PFAS to aquatic biota were estimated using the sum of exposure-activity ratios (ΣEARs) in 280 streams. Additionally, machine learning techniques were utilized to predict potential PFAS exposure effects in unmonitored stream reaches, considering factors such as land use, climate, and geology. Leveraging a tailored convolutional neural network (CNN), a validation accuracy of 78% was achieved, directly outperforming traditional methods that were also used, such as logistic regression and gradient boosting (accuracies of ~65%). Feature importance analysis highlighted key variables that contributed to the CNN's predictive power. The most influential features highlighted the complex interplay of anthropogenic and environmental factors contributing to PFAS contamination in surface waters. Industrial and urban land cover, rainfall intensity, underlying geology, agricultural factors, and their interactions emerged as key determinants. These findings may help to inform biotic sampling strategies, water quality monitoring efforts, and policy decisions aimed to mitigate the ecological impacts of PFAS in surface waters.
Collapse
Affiliation(s)
- Sara E. Breitmeyer
- Pennsylvania Water Science Center, U.S. Geological Survey, New Cumberland, PA 17070, USA; (M.D.C.); (J.W.D.)
| | - Amy M. Williams
- Bureau of Clean Water, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17101, USA; (A.M.W.); (T.A.W.); (D.R.S.)
| | - Matthew D. Conlon
- Pennsylvania Water Science Center, U.S. Geological Survey, New Cumberland, PA 17070, USA; (M.D.C.); (J.W.D.)
| | - Timothy A. Wertz
- Bureau of Clean Water, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17101, USA; (A.M.W.); (T.A.W.); (D.R.S.)
| | | | - Dustin R. Shull
- Bureau of Clean Water, Pennsylvania Department of Environmental Protection, Harrisburg, PA 17101, USA; (A.M.W.); (T.A.W.); (D.R.S.)
| | - Joseph W. Duris
- Pennsylvania Water Science Center, U.S. Geological Survey, New Cumberland, PA 17070, USA; (M.D.C.); (J.W.D.)
| |
Collapse
|
23
|
Cui Z, Yuan X, Wang Y, Liu Z, Fei X, Chen K, Shen HM, Wu Y, Xia D. Environmentally relevant level of PFDA exacerbates intestinal inflammation by activating the cGAS/STING/NF-κB signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176786. [PMID: 39383958 DOI: 10.1016/j.scitotenv.2024.176786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
As a constituent of the Per- and Polyfluoroalkyl Substances (PFAS) family, perfluorodecanoic acid (PFDA) is ubiquitous in the environment and enters the human body through environmental exposure, the food chain, and other pathways, resulting in various toxic effects. Previous population-based studies have suggested a correlation between PFDA exposure and inflammation. However, the evidence is still limited, and the potential mechanisms underlying this correlation remain to be further elucidated. In our study, we observed that exposure to internal doses of PFDA significantly promoted macrophage inflammation through in vitro assays. Utilizing RNA-seq screening and molecular experiments, we identified that environmentally relevant concentration of PFDA promote inflammation mainly by activating non-canonical cGAS/STING/NF-κB pathways in vitro. Finally, we confirmed in the typical mouse inflammatory bowel disease (IBD) model that PFDA could exacerbate intestinal inflammation in a cGAS dependent manner. In conclusion, our research firstly demonstrated that even at environmentally relevant concentrations, PFDA could promote the progression of intestinal inflammation primarily through the cGAS/STING/NF-κB pathway, revealing the potential risk associated with PFDA exposure and providing theoretical evidence for its management.
Collapse
Affiliation(s)
- Zhenyan Cui
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zekun Liu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohong Fei
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Yihua Wu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Alvarez-Ruiz R, Lee LS, Choi Y. Fate of per- and polyfluoroalkyl substances at a 40-year dedicated municipal biosolids land disposal site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176540. [PMID: 39332729 DOI: 10.1016/j.scitotenv.2024.176540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The fate of per- and polyfluoroalkyl substances (PFAS) was evaluated at a site where municipal biosolids have been applied annually for 38 years as a waste management strategy. Soil cores (1.8 m in 30-cm sections), groundwater from four wells, and biosolids applied in 2022 were analyzed for PFAS (54 targeted, 17 semi-quantified) using liquid chromatography high resolution mass spectrometry including suspect screening. Total PFAS concentrations decreased with soil depth from 1700 ng/g to 2.06 ng/g. PFAS distribution in 2022 biosolids were 60 mol% perfluoroalkyl acid (PFAA) precursors and intermediates. The surface soil was dominated by long-chain PFAAs (67-76 mol%) reflecting precursor degradation after biosolids application. Presence of semi-quantified intermediates further reflects precursor degradation in surface soil. Long-chain PFAAs diminished with depth while short-chain PFAAs increased with up to 98 and 96 mol% short-chain PFAAs in the bottom depth and groundwater, respectively. PFAS distribution with depth is consistent with chain-length dependent sorption-impacted transport and the high organic carbon content of the surface soil (15.2 % OC) which subsequently decreased with depth (~2-3 % OC at >60 cm). High organic carbon content in the upper horizon is likely from decades of high biosolids application rates, which contributed to minimizing leaching of long-chain PFAS. While the well within the dedicated land disposal is not drinking water, for comparison only, PFAS concentrations in this well only marginally exceeded the EU drinking water directive for total PFAS and a few individual short-chain PFAS, but did exceed tenfold, the USEPA drinking water standard for PFOA.
Collapse
Affiliation(s)
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA; Ecological Sciences & Engineering Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN 47907, USA.
| | - YounJeong Choi
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Trobisch KM, Reeves DM, Cassidy DP. Environmental fate and transport of PFAS in wastewater treatment plant effluent discharged to rapid infiltration basins. WATER RESEARCH 2024; 266:122422. [PMID: 39276479 DOI: 10.1016/j.watres.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Fate and transport of per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plant (WWTP) effluent discharged to rapid infiltration basins (RIBs) is investigated using data from 26 WWTPs in Michigan, USA. PFAS were found to accumulate in groundwater downgradient from RIBs with median groundwater-effluent enrichment factors for ten commonly detected, terminal-form perfluoroalkyl acids (PFAAs) ranging from 1.3 to 5.2. Maximum contaminant levels for drinking water were exceeded in groundwater at all WWTPs with available PFAS data. Numerical models of unsaturated fluid flow and PFAS transport honoring RIB site properties, such as median vertical separation distance to the water table and a realistic range of area-normalized effluent fluxes, show long-chain PFAS undergo significant delays from air-water interface (AWI) adsorption, requiring up to 15 times longer to reach maximum mass flux to the saturated zone under low-flux conditions, where AWI area is 2.5 times greater. Short-chain PFAS commonly detected in effluent are only minimally affected by AWI adsorption and show little to no attenuation under high-flux conditions. The nonlinear inverse relationship between water content and AWI area highlights the important role of AWI adsorption in modulating unsaturated transport of long-chain PFAS to underlying groundwater due to the broad range of flux rates applied to RIB systems.
Collapse
Affiliation(s)
- Kai M Trobisch
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| | - Donald M Reeves
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA.
| | - Daniel P Cassidy
- Department of Geological and Environmental Sciences, Western Michigan University, 1903W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| |
Collapse
|
26
|
Saha B, Ateia M, Tolaymat T, Fernando S, Varghese JR, Golui D, Bezbaruah AN, Xu J, Aich N, Briest J, Iskander SM. The unique distribution pattern of PFAS in landfill organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135678. [PMID: 39217946 PMCID: PMC11483333 DOI: 10.1016/j.jhazmat.2024.135678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Mohamed Ateia
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Thabet Tolaymat
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Juby R Varghese
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - John Briest
- Weaver Consultants Group, Centennial, CO 80111, United States
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
27
|
Modiri M, Sasi PC, Thompson KA, Lee LS, Marjanovic K, Hystad G, Khan K, Norton J. State of the science and regulatory acceptability for PFAS residual management options: PFAS disposal or destruction options. CHEMOSPHERE 2024; 368:143726. [PMID: 39532253 DOI: 10.1016/j.chemosphere.2024.143726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This systematic review covers the urgent challenges posed by per- and polyfluoroalkyl substances (PFAS) in managing residuals from municipal, industrial, and waste treatment sources. It covers regulatory considerations, treatment technologies, residual management strategies, and critical conclusions and recommendations. A rigorous methodology was employed, utilizing scientific search engines and a wide array of peer-reviewed journal articles, technical reports, and regulatory guidance, to ensure the inclusion of the most relevant and up-to-date information on PFAS management of impacted residuals. The increasing public and regulatory focus underscores the persistence and environmental impact of PFAS. Emerging technologies for removing and sequestrating PFAS from environmental media are evaluated, and innovative destruction methods for addressing the residual media and the concentrated waste streams generated from such treatment processes are reviewed. Additionally, the evolving regulatory landscape in the United States is summarized and insights into the complexities of PFAS in residual management are discussed. Overall, this systematic review serves as a vital resource to inform stakeholders, guide research, and facilitate responsible PFAS management, emphasizing the pressing need for effective residual management solutions amidst evolving regulations and persistent environmental threats.
Collapse
Affiliation(s)
- Mahsa Modiri
- EA Engineering, Science, and Technology, Inc., PBC, 225 Schilling Circle, Suit #400, Hunt Valley, MD, 21031, United States.
| | - Pavankumar Challa Sasi
- EA Engineering, Science, and Technology, Inc., PBC, 225 Schilling Circle, Suit #400, Hunt Valley, MD, 21031, United States
| | - Kyle A Thompson
- Carollo Engineers, Quarry Oaks II, Stonelake Blvd Bldg. 2, Ste. 126, Austin, TX, 78759, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, United States
| | - Katie Marjanovic
- Los Angeles County Sanitation Districts, 1955 Workman Mill Rd, Whittier, CA, 90601, United States
| | - Graeme Hystad
- Metro Vancouver, Vancouver, British Columbia, Canada
| | - Kamruzzaman Khan
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, United States
| | - John Norton
- Great Lakes Water Authority, Water Board Building, 735 Randolph Street, Detroit, MI, 48226, United States
| |
Collapse
|
28
|
Tansel B, Katsenovich Y, Quinete NS, Ocheje J, Nasir Z, Manzano MM. PFAS in biosolids: Accumulation characteristics and fate profiles after land application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122395. [PMID: 39243652 DOI: 10.1016/j.jenvman.2024.122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The land application of biosolids as a management practice is considered a beneficial use for improving crop yield and reducing the need for other fertilizers. PFAS enter wastewater treatment plants through collection networks, including industrial discharges, the use of PFAS-containing products, and runoff. Therefore, PFAS may be present in biosolids derived from sewage sludge. The objectives of this study were to evaluate PFAS levels in biosolids samples collected at two wastewater treatment plants operated by the Miami Dade Water and Sewer Department (MDWASD): (1) the South District Wastewater Treatment Plant (SDWWTP) which received landfill leachate and (2) the Central District Wastewater Treatment Plant (CDWWTP). Sludge samples were collected after thickening, anaerobic digestion, and dewatering processes. The samples were subjected to batch leaching tests for 30 days. After the leaching tests, the PFAS levels in the liquid and solid fractions were analyzed for 40 PFAS. The findings show that during the aeration process (i.e., activated sludge process), PFAS are removed from the wastewater and accumulate on the solids. When the thickened sludge is digested, some PFAS are released to the liquid phase as the volatile solids decompose. During the dewatering process by centrifugation, PFAS that are partitioned to the liquid phase are removed, reducing PFAS content in the dewatered biosolids. Of the 40 PFAS analyzed, 24 were detected in leachate or solid residue samples. Samples from the SDWWTP had higher levels of PFAS due to the contribution from landfill leachate discharged to this facility. The partitioning of PFAS between the liquid phase and solid residue after 30 days of mixing indicates that the majority of PFAS in the biosolids are highly soluble and have a high tendency to be mobilized (by runoff, irrigation, precipitation) after land application. The fate profiles of PFAS biosolids were evaluated in terms of their solubility and retardation characteristics.
Collapse
Affiliation(s)
- Berrin Tansel
- Florida International University, Civil and Environmental Engineering Department, USA.
| | | | - Natalia Soares Quinete
- Florida International University, Environmental and Bioanalytical Chemistry Department, USA
| | - Joshua Ocheje
- Florida International University, Environmental and Bioanalytical Chemistry Department, USA
| | - Zariah Nasir
- Florida International University, Applied Research Center, USA
| | - Maria Mendoza Manzano
- Florida International University, Environmental and Bioanalytical Chemistry Department, USA
| |
Collapse
|
29
|
Winchell LJ, Cullen J, Ross JJ, Seidel A, Romero ML, Kakar F, Bronstad E, Wells MJM, Klinghoffer NB, Berruti F, Miot A, Bell KY. Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11149. [PMID: 39533490 PMCID: PMC11578938 DOI: 10.1002/wer.11149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Pyrolysis has been identified as a possible thermal treatment process for reducing perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater solids, though off-gas from the pyrolysis unit can still be a source of PFAS emissions. In this work, the fate of PFAS through a laboratory-scale pyrolysis unit coupled with a thermal oxidizer for treatment of off-gasses is documented. Between 91.5% and >99.9% reduction was observed through the entire system for specific compounds based on targeted analyses. Overall, the pyrolysis and thermal oxidizer system removed 99.4% of the PFAS moles introduced. Furthermore, shorter chain variants comprised the majority of reportable PFAS in the thermal oxidizer flue gas, indicating the longer chain compounds present in the dried biosolids fed to pyrolyzer decompose through the system. PRACTITIONER POINTS: Thermal oxidation is a promising treatment technology for exhaust systems associated with thermal biosolids treatments. Thermal oxidation demonstrated significant degradation capabilities, with gas phase emissions comprising only 0.200% of initial PFAS concentrations to the system. Short-chain PFAS made up a higher percent of thermal oxidizer emissions, ranging between 54.4% and 79.5% of PFAS in the exhaust on a molar basis. The possibility of recombinant PFAS formation and partial thermal decomposition of PFAS in thermal oxidation is a needed area of research.
Collapse
Affiliation(s)
| | - Joshua Cullen
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | | | | | | | | | | | | | - Naomi B. Klinghoffer
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | - Franco Berruti
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | | | | |
Collapse
|
30
|
Zhao M, Yao Y, Dong X, Fang B, Wang Z, Chen H, Sun H. Identification of emerging PFAS in industrial sludge from North China: Release risk assessment by the TOP assay. WATER RESEARCH 2024; 268:122667. [PMID: 39509771 DOI: 10.1016/j.watres.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used across various industries, leading to their prevalent occurrence in sludges generated by wastewater treatment plants (WWTPs). Consequently, industrial sludges serve as typical reservoirs for PFAS. This study examined 46 target PFAS in sludge samples intended for brick production from nine WWTPs in North China, identifying emerging PFAS and categorizing their behaviors through high-resolution mass spectrometry (HRMS) screening and total oxidizable precursor (TOP) assay. Forty-one PFAS were detected, with trifluoroacetic acid (TFA), perfluorooctane sulfonic acid, and hexafluoropropylene oxide dimer acid being the most prevalent. Twenty-nine emerging PFAS were identified, and their behaviors were categorized using TOP assay. Notably, four CF3-containing PFAS were identified, all confirmed as precursors of TFA, with a molar yield of 16.4 %-25.6 % in Milli-Q water during TOP assay validation. These findings indicate that the transformation of these precursors during sludge recycling may substantially contribute to TFA release, underscoring potential risks associated with secondary PFAS release during sludge resource utilization.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Kebede MM, Terry LG, Clement TP, Mekonnen MM. Mapping Per- and Polyfluoroalkyl Substance Footprint from Cosmetics and Carpets across the Continental United States. ACS ES&T WATER 2024; 4:3882-3892. [PMID: 39296622 PMCID: PMC11407301 DOI: 10.1021/acsestwater.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) released from common consumer products, such as cosmetics and carpets, are nonpoint sources of environmental contamination. However, detailed information on PFAS mass and emission rates from these products is limited. Here, we propose a methodology to develop PFAS footprint from the manufacturing and supply chain data of cosmetics and carpets. Our analysis combines geospatial and statistical assessments to understand how the production and consumption of these products contribute to existing PFAS contamination hotspots in the Continental United States (CONUS). Statewide mass estimations revealed that North Carolina and New York contribute to the major PFAS mass released from cosmetics, while Georgia and California contribute to the major PFAS mass released from carpets. The average per capita PFAS footprint from carpets and cosmetics is about 103 mg/year. Upon disposal, over 60% of the mass eventually ends up in landfills. The accumulation of PFAS stocks in landfills, primarily from carpets and to some extent from cosmetics, highlights the critical need to cease the production and use of PFAS in consumer products. Coastal counties are particularly vulnerable due to higher population and therefore higher consumption of these PFAS-tainted consumer products. Additionally, counties with densely populated areas and with preexisting contamination sources would face increased vulnerability to PFAS contamination released from various consumer products.
Collapse
Affiliation(s)
- Mahlet M Kebede
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Leigh G Terry
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - T Prabhakar Clement
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mesfin M Mekonnen
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
32
|
Ríos-Bonilla K, Aga DS, Lee J, König M, Qin W, Cristobal JR, Atilla-Gokcumen GE, Escher BI. Neurotoxic Effects of Mixtures of Perfluoroalkyl Substances (PFAS) at Environmental and Human Blood Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39259824 PMCID: PMC11428134 DOI: 10.1021/acs.est.4c06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may cause various deleterious health effects. Epidemiological studies have demonstrated associations between PFAS exposure and adverse neurodevelopmental outcomes. The cytotoxicity, neurotoxicity, and mitochondrial toxicity of up to 12 PFAS including perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and hexafluoropropylene oxide-dimer acid (HPFO-DA) were tested at concentrations typically observed in the environment (e.g., wastewater, biosolids) and in human blood using high-throughput in vitro assays. The cytotoxicity of all individual PFAS was classified as baseline toxicity, for which prediction models based on partition constants of PFAS between biomembrane lipids and water exist. No inhibition of the mitochondrial membrane potential and activation of oxidative stress response were observed below the cytotoxic concentrations of any PFAS tested. All mixture components and the designed mixtures inhibited the neurite outgrowth in differentiated neuronal cells derived from the SH-SY5Y cell line at concentrations around or below cytotoxicity. All designed mixtures acted according to concentration addition at low effect and concentration levels for cytotoxicity and neurotoxicity. The mixture effects were predictable from the experimental single compounds' concentration-response curves. These findings have important implications for the mixture risk assessment of PFAS.
Collapse
Affiliation(s)
- Karla
M. Ríos-Bonilla
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Diana S. Aga
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Jungeun Lee
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Weiping Qin
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Judith R. Cristobal
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Gunes Ekin Atilla-Gokcumen
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| |
Collapse
|
33
|
Van Thang V, Tran Duy Nguyen N, Nadagouda MN, Aminabhavi TM, Vasseghian Y, Joo SW. Effective removal of perfluorooctanoic acid from water using PVA@UiO-66-NH 2/GO composite materials via adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122248. [PMID: 39180825 DOI: 10.1016/j.jenvman.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
This study introduces an innovative approach using highly efficient nanocomposite materials to effectively remove PFAS from water, demonstrating remarkable adsorption capabilities. The nanocomposite was synthesized by integrating a zirconium-based metal-organic framework (MOF) called UiO-66 with graphene oxide (GO) within a polyvinyl alcohol (PVA) matrix. The resulting PVA@UiO-66/GO material features flower-like UiO-66 MOF crystals embedded in the PVA and GO matrix. Various kinetic models were applied to determine the rate constants and adsorption capacities, with the Langmuir isotherm indicating an adsorption capacity of 9.904 mg/g. Thermodynamic analysis confirmed the process's spontaneity and exothermic nature. The UiO-66-NH2/GO/PVA composite also demonstrated high reusability, maintaining substantial PFOA removal efficiency across multiple cycles, with optimal reduction occurring at approximately pH 5. Overall, the PVA@UiO-66/GO composites offer an effective, sustainable, and environmentally friendly solution for PFAS removal in water purification.
Collapse
Affiliation(s)
- Vu Van Thang
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | | | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, United States
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
34
|
Soltanian M, Gitipour S, Baghdadi M, Rtimi S. PFOA-contaminated soil remediation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49985-50011. [PMID: 39088169 DOI: 10.1007/s11356-024-34516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.
Collapse
Affiliation(s)
- Mehdi Soltanian
- School of Civil and Environmental Engineering, Faculty of engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Saeid Gitipour
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
35
|
Cui Z, Liu Z, Yuan X, Lu K, Li M, Xu S, Chen K, Zheng F, Li Y, Héroux P, Wu Y, Xia D. PFDA promotes cancer metastasis through macrophage M2 polarization mediated by Wnt/β-catenin signaling. CHEMOSPHERE 2024; 362:142758. [PMID: 38969224 DOI: 10.1016/j.chemosphere.2024.142758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Perfluoroundecanoic acid (PFDA) is extensively utilized in the textile and food processing industries and may have a tumor-promoting effect by modulating the tumor microenvironment. Macrophages play crucial roles in tumor microenvironment as key regulators of tumor immunity. However, further investigation is needed to elucidate how PFDA interacts with macrophages and contributes to tumor progression. In this study, we treated the macrophage cell line RAW264.7 with various concentrations of PFDA and found that RAW264.7 transitioned into an M2 tumor-promoting phenotype. Through bioinformatic analysis and subsequent verification of molecular assays, we uncovered that PFDA could activate β-catenin and enhance its nuclear translocation. Additionally, it was also observed that inhibiting β-catenin nuclear translocation partly attenuated RAW264.7 M2 polarization induced by PFDA. The conditioned medium derived from PFDA-pretreated RAW264.7 cells significantly promoted the migration and invasion abilities of human ovarian cancer cells. Furthermore, in vivo studies corroborated that PFDA-pretreated RAW264.7 could promote tumor metastasis, which could be mitigated by pretreatment with the β-catenin inhibitor ICG001. In conclusion, our study demonstrated that PFDA could promote cancer metastasis through regulating macrophage M2 polarization in a Wnt/β-catenin-dependent manner.
Collapse
Affiliation(s)
- Zhenyan Cui
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zekun Liu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kean Lu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyao Li
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sinan Xu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Li
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Yihua Wu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
36
|
Rasmusson K, Fagerlund F. Per- and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resources - A comprehensive review of subsurface transport processes. CHEMOSPHERE 2024; 362:142663. [PMID: 38908440 DOI: 10.1016/j.chemosphere.2024.142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are persistent contaminants in the environment. An increased awareness of adverse health effects related to PFAS has further led to stricter regulations for several of these substances in e.g. drinking water in many countries. Groundwater constitutes an important source of raw water for drinking water production. A thorough understanding of PFAS subsurface fate and transport mechanisms leading to contamination of groundwater resources is therefore essential for management of raw water resources. A review of scientific literature on the subject of processes affecting subsurface PFAS fate and transport was carried out. This article compiles the current knowledge of such processes, mainly focusing on perfluoroalkyl acids (PFAA), in soil- and groundwater systems. Further, a compilation of data on transport parameters such as solubility and distribution coefficients, as well as, insight gained and conclusions drawn from the reviewed material are presented. As the use of certain fire-fighting foams has been identified as the major source of groundwater contamination in many countries, research related to this type of pollution source has been given extra focus. Uptake of PFAS in biota is outside the scope of this review. The review showed a large spread in the magnitude of distribution coefficients and solubility for individual PFAS. Also, it is clear that the influence of multiple factors makes site-specific evaluation of distribution coefficients valuable. This article aims at giving the reader a comprehensive overview of the subject, and providing a base for further work.
Collapse
Affiliation(s)
- Kristina Rasmusson
- Uppsala Water and Waste AB, Virdings allé 32B, SE-75450, Uppsala, Sweden.
| | - Fritjof Fagerlund
- Uppsala University, Department of Earth Sciences, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
37
|
Biesek BJ, Szymkiewicz A, Šimůnek J, Gumuła-Kawęcka A, Jaworska-Szulc B. Numerical modeling of PFAS movement through the vadose zone: Influence of plant water uptake and soil organic carbon distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173252. [PMID: 38768720 DOI: 10.1016/j.scitotenv.2024.173252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
In this study, we investigated the effects of soil organic carbon (SOC) distribution and water uptake by plant roots on PFAS movement in the vadose zone with a deep groundwater table under temperate, humid climate conditions. Two series of numerical simulations were performed with the HYDRUS computer code, representing the leaching of historical PFOS contamination and the infiltration of water contaminated with PFOA, respectively. We considered soil profiles with three distributions of SOC (no SOC, realistic SOC distribution decreasing with depth, and uniform SOC equal to the content measured in topsoil), three root distributions (bare soil, grassland, and forest), and three soil textures (sand, sandy loam, and loam). The SOC distribution had a profound impact on the velocity of PFOS movement. The apparent retardation factor for realistic SOC distribution was twice as large as for the scenario with no SOC and more than three times smaller than for the scenario with uniformly high SOC content. We also showed that the root distribution in soil profoundly impacts the simulations of PFAS migration through soil. Including the root zone significantly slows down the movement of PFAS, primarily due to increased evapotranspiration and reduced downward water flux. Another effect of water uptake by plant roots is an increase of PFAS concentrations in soil water (evapo-concentration). The evapo-concentration and the slowdown of PFAS movement due to root water uptake are more significant in fine-textured soils than in sand.
Collapse
Affiliation(s)
- Barbara Jennifer Biesek
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Adam Szymkiewicz
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jirka Šimůnek
- Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA
| | - Anna Gumuła-Kawęcka
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Beata Jaworska-Szulc
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
38
|
Savvidou P, Dotro G, Campo P, Coulon F, Lyu T. Constructed wetlands as nature-based solutions in managing per-and poly-fluoroalkyl substances (PFAS): Evidence, mechanisms, and modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173237. [PMID: 38761940 DOI: 10.1016/j.scitotenv.2024.173237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) have emerged as newly regulated micropollutants, characterised by extreme recalcitrance and environmental toxicity. Constructed wetlands (CWs), as a nature-based solution, have gained widespread application in sustainable water and wastewater treatment and offer multiple environmental and societal benefits. Despite CWs potential, knowledge gaps persist in their PFAS removal capacities, associated mechanisms, and modelling of PFAS fate. This study carried out a systematic literature review, supplemented by unpublished experimental data, demonstrating the promise of CWs for PFAS removal from the influents of varying sources and characteristics. Median removal performances of 64, 46, and 0 % were observed in five free water surface (FWS), four horizontal subsurface flow (HF), and 18 vertical flow (VF) wetlands, respectively. PFAS adsorption by the substrate or plant root/rhizosphere was deemed as a key removal mechanism. Nevertheless, the available dataset resulted unsuitable for a quantitative analysis. Data-driven models, including multiple regression models and machine learning-based Artificial Neural Networks (ANN), were employed to predict PFAS removal. These models showed better predictive performance compared to various mechanistic models, which include two adsorption isotherms. The results affirmed that artificial intelligence is an efficient tool for modelling the removal of emerging contaminants with limited knowledge of chemical properties. In summary, this study consolidated evidence supporting the use of CWs for mitigating new legacy PFAS contaminants. Further research, especially long-term monitoring of full-scale CWs treating real wastewater, is crucial to obtain additional data for model development and validation.
Collapse
Affiliation(s)
- Pinelopi Savvidou
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Gabriela Dotro
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, United Kingdom.
| |
Collapse
|
39
|
Keller AA, Li W, Floyd Y, Bae J, Clemens KM, Thomas E, Han Z, Adeleye AS. Elimination of microplastics, PFAS, and PPCPs from biosolids via pyrolysis to produce biochar: Feasibility and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174773. [PMID: 39013495 DOI: 10.1016/j.scitotenv.2024.174773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Biosolids from municipal wastewater treatment contain many contaminants of emerging concern, including microplastics (MPs), per- and polyfluoroalkyl substances (PFAS), pharmaceuticals and chemicals from personal care products (PPCPs). Many of these contaminants have very slow biotic or abiotic degradation rates and have been shown to have human and ecological health impacts. Application of biosolids to agriculture, a common disposal method, can result in extended environmental contamination. An approach for eliminating the contaminants is pyrolysis, which can also generate biochar, enhancing carbon sequestration as a side-benefit. We pyrolyzed biosolid samples from an operating facility at various temperatures from 400 to 700 °C with a 2-hour residence time. We then evaluated contaminant removal, which in many cases was 100 %, with only a few residuals. No trace of PFAS was detectable even at 400 °C. Overall mass removal of PPCPs, including PFAS, was over 99.9 %. MP removal via pyrolysis ranged from 91 to 97 %. The biochar contains significant amounts of Fe and P, which make it a useful fertilizer amendment. The techno-economic analysis indicates that pyrolysis may generate significant cost savings, and revenue from the sale of biochar, sufficient to more than cover the investment and operating costs of the dryer and pyrolysis unit.
Collapse
Affiliation(s)
- Arturo A Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States.
| | - Weiwei Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - Yuki Floyd
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - James Bae
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - Kayla Marie Clemens
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - Eleanor Thomas
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, United States
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, United States; Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027-6623, United States
| |
Collapse
|
40
|
Qian X, Huang J, Cao C, Yao J, Wu Y, Wang L, Wang X. Modified basalt fiber filled in constructed wetland-microbial fuel cell: Comparison of performance and microbial impacts under PFASs exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135179. [PMID: 39003811 DOI: 10.1016/j.jhazmat.2024.135179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Basalt fiber (BF) with modification of iron (Fe-MBF) and calcium (Ca-MBF) were filled into constructed wetland-microbial fuel cell (CW-MFC) for innovative comparison of improved performance under perfluorooctanoic acid (PFOA) exposure. More enhancement on nitrogen and phosphorus removal was observed by Fe-MBF than Ca-MBF, with significant increase of ammonium (NH4+-N) removal by 3.36-5.66 % (p < 0.05) compared to control, even under PFOA stress. Markedly higher removal efficiency of PFOA by 4.76-8.75 % (p < 0.05) resulted from Fe-MBF, compared to Ca-MBF and control BF groups. Besides, superior electrochemical performance was found in Fe-MBF group, with maximum power density 28.65 % higher than control. Fe-MBF caused higher abundance of dominant microbes on electrodes ranged from phylum to family. Meanwhile, ammonia oxidizing bacteria like Nitrosomonas was more abundant in Fe-MBF group, which was positively correlated to NH4+-N and total nitrogen removal. Some other functional genera involved in denitrification and phosphorus-accumulation were enriched by Fe-MBF on electrodes and MBF carrier, including Dechloromonas, Candidatus_Competibacter, and Pseudomonas. Additionally, there were more biomarkers in Fe-MBF group, like Pseudarcobacter and Acidovorax, conducive to nitrogen and iron cycling. Most functional genes of nitrogen, carbon, and sulfur metabolisms were up-regulated with Fe-MBF filling, causing improvement on nitrogen removal.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiawei Yao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xinyue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
41
|
Liu Y, Lin A, Thompson J, Bowden JA, Townsend TG. Per- and polyfluoroalkyl substances (PFAS) in construction and demolition debris (CDD): discerning sources and fate during waste management. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134567. [PMID: 38735190 DOI: 10.1016/j.jhazmat.2024.134567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
As regulatory frameworks for per- and polyfluoroalkyl substances (PFAS) evolve, the solid waste community seeks to manage PFAS risks effectively. Despite extensive research on PFAS in municipal solid waste (MSW) and wastewater sludge, there is limited information on a major global waste stream which seldom gleans regulatory oversight - construction and demolition debris (CDD). This study sampled a CDD processing facility to provide material-specific information on the PFAS profile within CDD. The bulk CDD accepted by this facility was separated into major categories, representatively sampled, then characterized for total available PFAS (∑92PFAS). As reprocessed CDD is ultimately recycled or landfilled, often unencapsulated or in unlined landfills, the PFAS leaching potential was also examined using two leaching procedures. Among the categories assessed for total PFAS, carpeting, carpet padding, and gypsum drywall showed elevated concentrations compared to other components, with most of the PFAS mass contributed by precursor species. However, materials with the highest total PFAS, such as carpeting, did not necessarily exhibit the highest leaching, and leachate was predominantly composed of terminal species rather than precursors. Extrapolating these findings with national CDD generation and management data inventories suggests that despite MSW having higher total available PFAS concentrations, the leachability of PFAS from landfilled CDD is comparable, raising legitimate concerns with CDD disposal practices, particularly in unlined CDD landfills.
Collapse
Affiliation(s)
- Yalan Liu
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA
| | - Ashley Lin
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA
| | - Jake Thompson
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA
| | - John A Bowden
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA; Department of Department of Physiological Sciences, University of Florida, 1333 Center Drive, Basic Science Building, Room 324, Gainesville, FL 32610, USA
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA.
| |
Collapse
|
42
|
van Leeuwen SPJ, Verschoor AM, van der Fels-Klerx HJ, van de Schans MGM, Berendsen BJA. A novel approach to identify critical knowledge gaps for food safety in circular food systems. NPJ Sci Food 2024; 8:34. [PMID: 38898053 PMCID: PMC11187133 DOI: 10.1038/s41538-024-00265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
The transition from linear production towards a circular agro-food system is an important step towards increasing Europe's sustainability. This requires re-designing the food production systems, which inevitably comes with challenges as regards controlling the safety of our food, animals and the ecosystem. Where in current food production systems many food safety hazards are understood and well-managed, it is anticipated that with the transition towards circular food production systems, known hazards may re-emerge and new hazards will appear or accumulate, leading to new -and less understood- food safety risks. In this perspective paper, we present a simple, yet effective approach, to identify knowledge gaps with regard to food safety in the transition to a circular food system. An approach with five questions is proposed, derived from current food safety management approaches like HACCP. Applying this to two cases shows that risk assessment and management should emphasize more on the exposure to unexpected (with regards to its nature and its origin) hazards, as hazards might circulate and accumulate in the food production system. Five knowledge gaps became apparent: there's a need for (1) risk assessment and management to focus more on unknown hazards and mixtures of hazards, (2) more data on the occurrence of hazards in by-products, (3) better understanding the fate of hazards in the circular food production system, (4) the development of models to adequately perform risk assessments for a broad range of hazards and (5) new ways of valorization of co-products in which a safe-by-design approach should be adopted.
Collapse
Affiliation(s)
- Stefan P J van Leeuwen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - A M Verschoor
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - M G M van de Schans
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - B J A Berendsen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| |
Collapse
|
43
|
Bigler MC, Brusseau ML, Guo B, Jones SL, Pritchard JC, Higgins CP, Hatton J. High-Resolution Depth-Discrete Analysis of PFAS Distribution and Leaching for a Vadose-Zone Source at an AFFF-Impacted Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9863-9874. [PMID: 38780413 DOI: 10.1021/acs.est.4c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The long-term leaching of polyfluoroalkyl substances (PFAS) within the vadose zone of an AFFF application site for which the depth to groundwater is approximately 100 m was investigated by characterizing the vertical distribution of PFAS in a high spatial resolution. The great majority (99%) of PFAS mass resides in the upper 3 m of the vadose zone. The depths to which each PFAS migrated, quantified by moment analysis, is an inverse function of molar volume, demonstrating chromatographic separation. The PFAS were operationally categorized into three chain-length groups based on the three general patterns of retention observed. The longest-chain (>∼335 cm3/mol molar volume) PFAS remained within the uppermost section of the core, exhibiting minimal leaching. Conversely, the shortest-chain (<∼220 cm3/mol) PFAS accumulated at the bottom of the interval, which coincides with the onset of a calcic horizon. PFAS with intermediate-chain lengths were distributed along the length of the core, exhibiting differential magnitudes of leaching. The minimal or differential leaching observed for the longest- and intermediate-chain-length PFAS, respectively, demonstrates that retention processes significantly impacted migration. The accumulation of shorter-chain PFAS at the bottom of the core is hypothesized to result from limited deep infiltration and potential-enhanced retention associated with the calcic horizon.
Collapse
Affiliation(s)
- Matthew C Bigler
- Department of Environmental Science, The University of Arizona Tucson, Arizona 85721, United States
| | - Mark L Brusseau
- Department of Environmental Science, The University of Arizona Tucson, Arizona 85721, United States
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, Arizona 85721, United States
| | - Bo Guo
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, Arizona 85721, United States
| | - Sara L Jones
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - J Conrad Pritchard
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - James Hatton
- Jacobs Engineering Group, Greenwood Village, Colorado 80111, United States
| |
Collapse
|
44
|
Eze CG, Okeke ES, Nwankwo CE, Nyaruaba R, Anand U, Okoro OJ, Bontempi E. Emerging contaminants in food matrices: An overview of the occurrence, pathways, impacts and detection techniques of per- and polyfluoroalkyl substances. Toxicol Rep 2024; 12:436-447. [PMID: 38645434 PMCID: PMC11033125 DOI: 10.1016/j.toxrep.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in industrial and consumer applications for ages. The pervasive and persistent nature of PFAS in the environment is a universal concern due to public health risks. Experts acknowledge that exposure to high levels of certain PFAS have consequences, including reduced vaccine efficacy, elevated cholesterol, and increased risk of high blood pressure. While considerable research has been conducted to investigate the presence of PFAS in the environment, the pathways for human exposure through food and food packaging/contact materials (FCM) remain unclear. In this review, we present an exhaustive overview of dietary exposure pathways to PFAS. Also, the mechanism of PFAS migration from FCMs into food and the occurrence of PFAS in certain foods were considered. Further, we present the analytical techniques for PFAS in food and food matrices as well as exposure pathways and human health impacts. Further, recent regulatory actions working to set standards and guidelines for PFAS in food packaging materials were highlighted. Alternative materials being developed and evaluated for their safety and efficacy in food contact applications, offering promising alternatives to PFAS were also considered. Finally, we reported on general considerations and perspectives presently considered.
Collapse
Affiliation(s)
- Chukwuebuka Gabriel Eze
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Biological Environmental and Rural Science Aberystwyth University, Wales, United Kingdom
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Chidiebele Emmanuel Nwankwo
- Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Uttpal Anand
- CytoGene Research & Development LLP, K-51, UPSIDA Industrial Area, Kursi Road (Lucknow), Dist.– Barabanki, 225001, Uttar Pradesh, India
| | - Onyekwere Joseph Okoro
- Department of Zoology and Environment Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Elza Bontempi
- INSTM and INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, Brescia 25123, Italy
| |
Collapse
|
45
|
Sands M, Zhang X, Jensen T, La Frano M, Lin M, Irudayaraj J. PFAS assessment in fish - Samples from Illinois waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172357. [PMID: 38614344 DOI: 10.1016/j.scitotenv.2024.172357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) have been widely used in various industries, including pesticide production, electroplating, packaging, paper making, and the manufacturing of water-resistant clothes. This study investigates the levels of PFAS in fish tissues collected from four target waterways (15 sampling points) in the northwestern part of Illinois during 2021-2022. To assess accumulation, concentrations of 17 PFAS compounds were evaluated in nine fish species to potentially inform on exposure risks to local sport fishing population via fish consumption. At least four PFAS (PFHxA, PFHxS, PFOS, and PFBS) were detected at each sampling site. The highest concentrations of PFAS were consistently found in samples from the Rock River, particularly in areas near urban and industrial activities. PFHxA emerged as the most accumulated PFAS in the year 2022, while PFBS and PFOS dominated in 2021. Channel Catfish exhibited the highest PFAS content across different fish species, indicating its bioaccumulation potential across the food chain. Elevated levels of PFOS were observed in nearly all fish, indicating the need for careful consideration of fish consumption. Additional bioaccumulation data in the future years is needed to shed light on the sources and PFAS accumulation potential in aquatic wildlife in relation to exposures for potential health risk assessment.
Collapse
Affiliation(s)
- Mia Sands
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Xing Zhang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Tor Jensen
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Michael La Frano
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mindy Lin
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States.
| |
Collapse
|
46
|
Behnami A, Zoroufchi Benis K, Pourakbar M, Yeganeh M, Esrafili A, Gholami M. Biosolids, an important route for transporting poly- and perfluoroalkyl substances from wastewater treatment plants into the environment: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171559. [PMID: 38458438 DOI: 10.1016/j.scitotenv.2024.171559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Wang W, Fan Q, Gong T, Zhang M, Li C, Zhang Y, Li H. Superb green cycling strategies for microbe-Fe 0 neural network-type interaction: Harnessing eight key genes encoding enzymes and mineral transformations to efficiently treat PFOA. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134143. [PMID: 38554507 DOI: 10.1016/j.jhazmat.2024.134143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
To address time-consuming and efficiency-limited challenges in conventional zero-valent iron (ZVI, Fe0) reduction or biotransformation for perfluorooctanoic acid (PFOA) treatment, two calcium alginate-embedded amendments (biochar-immobilized PFOA-degrading bacteria (CB) and ZVI (CZ)) were developed to construct microbe-Fe0 high-rate interaction systems. Interaction mechanisms and key metabolic pathways were systematically explored using metagenomics and a multi-process coupling model for PFOA under microbe-Fe0 interaction. Compared to Fe0 (0.0076 day-1) or microbe (0.0172 day-1) systems, the PFOA removal rate (0.0426 day-1) increased by 1.5 to 4.6 folds in the batch microbe-Fe0 interaction system. Moreover, Pseudomonas accelerated the transformation of Fe0 into Fe3+, which profoundly impacted PFOA transport and fate. Model results demonstrated microbe-Fe0 interaction improved retardation effect for PFOA in columns, with decreased dispersivity a (0.48 to 0.20 cm), increased reaction rate λ (0.15 to 0.22 h-1), distribution coefficient Kd (0.22 to 0.46 cm3∙g-1), and fraction f´(52 % to 60 %) of first-order kinetic sorption of PFOA in microbe-Fe0 interaction column system. Moreover, intermediates analysis showed that microbe-Fe0 interaction diversified PFOA reaction pathways. Three key metabolic pathways (ko00362, ko00626, ko00361), eight functional genes, and corresponding enzymes for PFOA degradation were identified. These findings provide insights into microbe-Fe0 "neural network-type" interaction by unveiling biotransformation and mineral transformation mechanisms for efficient PFOA treatment.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Qifeng Fan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
48
|
Cordner A, Brown P, Cousins IT, Scheringer M, Martinon L, Dagorn G, Aubert R, Hosea L, Salvidge R, Felke C, Tausche N, Drepper D, Liva G, Tudela A, Delgado A, Salvatore D, Pilz S, Horel S. PFAS Contamination in Europe: Generating Knowledge and Mapping Known and Likely Contamination with "Expert-Reviewed" Journalism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6616-6627. [PMID: 38569050 DOI: 10.1021/acs.est.3c09746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
While the extent of environmental contamination by per- and polyfluoroalkyl substances (PFAS) has mobilized considerable efforts around the globe in recent years, publicly available data on PFAS in Europe were very limited. In an unprecedented experiment of "expert-reviewed journalism" involving 29 journalists and seven scientific advisers, a cross-border collaborative project, the "Forever Pollution Project" (FPP), drew on both scientific methods and investigative journalism techniques such as open-source intelligence (OSINT) and freedom of information (FOI) requests to map contamination across Europe, making public data that previously had existed as "unseen science". The FPP identified 22,934 known contamination sites, including 20 PFAS manufacturing facilities, and 21,426 "presumptive contamination sites", including 13,745 sites presumably contaminated with fluorinated aqueous film-forming foam (AFFF) discharge, 2911 industrial facilities, and 4752 sites related to PFAS-containing waste. Additionally, the FPP identified 231 "known PFAS users", a new category for sites with an intermediate level of evidence of PFAS use and considered likely to be contamination sources. However, the true extent of contamination in Europe remains significantly underestimated due to a lack of comprehensive geolocation, sampling, and publicly available data. This model of knowledge production and dissemination offers lessons for researchers, policymakers, and journalists about cross-field collaborations and data transparency.
Collapse
Affiliation(s)
- Alissa Cordner
- Department of Sociology, Whitman College, Walla Walla, Washington 99362, United States
| | - Phil Brown
- Department of Sociology and Anthropology and Department of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ian T Cousins
- Department of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | - Martin Scheringer
- Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland
| | | | | | | | | | | | - Catharina Felke
- Norddeutscher Rundfunk, Ressort Investigation, Berlin 10117, Germany
| | | | | | | | | | | | - Derrick Salvatore
- Massachusetts Department of Environmental Protection, Woburn, Massachusetts 01801, United States
| | - Sarah Pilz
- Freelance Journalist, Weißenfelder Straße 7, Parsdorf, Munich 85599, Germany
| | | |
Collapse
|
49
|
Ding D, Chen Y, Li X, Chen Q, Kong L, Ying R, Wang L, Wei J, Jiang D, Deng S. Can we redevelop ammonia nitrogen contaminated sites without remediation? The key role of subsurface pH in human health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133630. [PMID: 38330643 DOI: 10.1016/j.jhazmat.2024.133630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Nitrogen fertilizer supports global food production, but its manufacturing results in substantial ammonia nitrogen (AN) contaminated sites which remain largely unexplored. In this study, ten representative AN contaminated sites were investigated, covering a wide range of subsurface pH, temperature, and AN concentration. A total of 7232 soil samples and 392 groundwater samples were collected to determine the concentration levels, migration patterns, and accurate health risks of AN. The results indicated that AN concentrations in soil and groundwater reached 12700 mg/kg and 12600 mg/L, respectively. AN concentrations were higher in production areas than in non-production areas, and tended to migrate downward from surface to deeper soil. Conventional risk assessment based on AN concentration identified seven out of the ten sites presenting unacceptable risks, with remediation costs and CO2 emissions amounting to $1.67 million and 17553.7 tons, respectively. A novel risk assessment model was developed, which calculated risks based on multiplying AN concentration by a coefficient fNH3 (the ratio of NH3 to AN concentration). The mean fNH3 values, primarily affected by subsurface pH, varied between 0.02 and 0.25 across the ten sites. This new model suggested all investigated sites posed acceptable health risks related to AN exposure, leading to their redevelopment without AN-specific remediation. This research offers a thorough insight into AN contaminated site, holds great realistic significance in alleviating global economic and climate pressures, and highlights the need for future research on refined health risk assessments for more contaminants.
Collapse
Affiliation(s)
- Da Ding
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Xuwei Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Qiang Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Lingya Kong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Rongrong Ying
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Lei Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China
| | - Dengdeng Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210046, China.
| |
Collapse
|
50
|
Phelps D, Parkinson LV, Boucher JM, Muncke J, Geueke B. Per- and Polyfluoroalkyl Substances in Food Packaging: Migration, Toxicity, and Management Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5670-5684. [PMID: 38501683 PMCID: PMC10993423 DOI: 10.1021/acs.est.3c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
PFASs are linked to serious health and environmental concerns. Among their widespread applications, PFASs are known to be used in food packaging and directly contribute to human exposure. However, information about PFASs in food packaging is scattered. Therefore, we systematically map the evidence on PFASs detected in migrates and extracts of food contact materials and provide an overview of available hazard and biomonitoring data. Based on the FCCmigex database, 68 PFASs have been identified in various food contact materials, including paper, plastic, and coated metal, by targeted and untargeted analyses. 87% of these PFASs belong to the perfluorocarboxylic acids and fluorotelomer-based compounds. Trends in chain length demonstrate that long-chain perfluoroalkyl acids continue to be found, despite years of global efforts to reduce the use of these substances. We utilized ToxPi to illustrate that hazard data are available for only 57% of the PFASs that have been detected in food packaging. For those PFASs for which toxicity testing has been performed, many adverse outcomes have been reported. The data and knowledge gaps presented here support international proposals to restrict PFASs as a group, including their use in food contact materials, to protect human and environmental health.
Collapse
Affiliation(s)
- Drake
W. Phelps
- Independent
Consultant, Raleigh, North Carolina 27617, United States
| | | | | | - Jane Muncke
- Food
Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - Birgit Geueke
- Food
Packaging Forum Foundation, 8045 Zürich, Switzerland
| |
Collapse
|