1
|
Zhang X, Liang H, Zeng M, Li S, Liu Y, Sun Q, Lu J, Ma J. Unraveling the roles of algal extracellular and intracellular organic matters in photosensitized degradation of tetracycline: Insights from triplet excited algal organic matters. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137908. [PMID: 40086247 DOI: 10.1016/j.jhazmat.2025.137908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
The rapid growth of algae has significantly increased algae-derived organic matter (AOM) in surface water, and AOM has been shown to play an important role in the photosensitized degradation of emerging contaminants under natural sunlight. This study investigated the photosensitized degradation of tetracycline (TC) by different AOM, i.e. extracellular organic matter (EOM) and intracellular organic matter (IOM) obtained from Anabaena sp. and Scenedesmus quadricauda, with the focus on the role of the triplet excited states of AOM (3AOM*). Results showed that EOM achieved superior photosensitized degradation of TC (up to 73.2 %), which was 1.24-1.44 times higher than that by IOM (up to 57.4 %), mainly due to the higher content of photosensitive groups and cream-like substances in EOM, and the lower content of protein-like substances. It was further revealed that the 3AOM* contributed to 61.76 %-65.59 % of the photosensitized degradation of TC by enhancing demethylation, deamination, and ring-opening reactions, facilitating further conversion of TC to low-molecular-weight compounds while reducing toxic intermediates. This study unravels the essential role of algal EOM- and IOM-derived 3AOM* in photosensitized degradation of TC, offering new perspectives on antibiotic degradation in high-algal water environments.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Huiqi Liang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Minxiang Zeng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Shanshan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Yu Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China
| | - Qiyuan Sun
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jinfeng Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300050, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300050, China; Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin 300050, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Ge L, Hou Z, Niu J, Wang S, Zhang P, Zhu Y. New insights into the environmental photochemistry of hydroxynaphthalene congeners in water and in ice: A distinct comparative study. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138310. [PMID: 40267707 DOI: 10.1016/j.jhazmat.2025.138310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Hydroxynaphthalene congeners (OH-Naps) are newly recognized contaminants, urging new insights into their photodegradation in water and in ice. In the study, the important differences between the aqueous and ice photochemistry of four OH-Naps were found. Under simulated sunlight irradiation (λ > 290 nm), they photolyzed faster in ice than in equivalent water in most cases, indicating that their photodegradation was related to whether they resided in water or ice. Meanwhile, the photolytic kinetics were influenced greatly by the substituent groups (-OH, -Cl, and -NO2) and positions, resulting in the fastest photolysis of 2-hydroxynaphthalene (2-OHN) or 4-chloro-1-hydroxynaphthalene (4-Cl-1-OHN), and the slowest photodegradation of 4-nitro-1-hydroxynaphthalene (4-NO2-1-OHN) in the two phases. Furthermore, their apparent photolysis was found to be faster at alkaline pH, attributing to the stronger photo-absorption, electron density and higher reactivities of the anionic forms. The •OH photooxidation kinetics also depended on the specific OH-Nap and the matrix type. Through the key photoproduct identification, the phototransformation of 4-Cl-1-OHN and 4-NO2-1-OHN involved different pathways in the two phases. Only in ice, the two OH-Naps underwent multi-hydroxylation, and 4-NO2-1-OHN suffered from photoisomerization as well. The bioassay to Vibrio fischeri indicated the higher photo-modified toxicity of most OH-Naps in ice than in water, attributing to the generation of more toxic multiple-hydroxyl adducts in ice. Based on extrapolating the lab-derived data to the real environment, the photochemical fate of OH-Naps highly depended on latitudes and solar intensities. These results are significant for evaluating the environmental persistence, fate and risk of the newly recognized contaminants.
Collapse
Affiliation(s)
- Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Zhimin Hou
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Siyuan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
3
|
Ponhong K, Nilnit T, Lee CY, Kusakunniran W, Saetear P, Supharoek SA. A facile smartphone-based digital image colorimetric sensor for the determination of tetracyclines in water using natural phenolic compounds induced to grow gold nanoparticles. RSC Adv 2025; 15:8411-8419. [PMID: 40103979 PMCID: PMC11917209 DOI: 10.1039/d5ra00091b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
A cost-effective smartphone-based digital image colorimetric sensor was developed to determine tetracyclines by inducing in situ growth of gold nanoparticles using naturally occurring phenolic compounds derived from para rubber tree bark waste. The green intensity of the purple-red product was measured using smartphone-based digital image analysis. Under optimal conditions, the calibration graph exhibited linearity within the range 0.05 to 0.50 μg mL-1, with a coefficient of determination (R 2) of 0.9940. The limits of detection (LOD) and limits of quantitation (LOQ) were 15 and 50 ng mL-1, respectively, with levels of precision for intraday and interday less than 3.91% and 4.59%, respectively. The proposed method was effectively validated to determine the spiked tetracycline antibiotics in water samples, achieving a high relative recovery rate ranging from 86.4% to 114.4%. Our method is facile, convenient, dependable, and verifiable as an alternate procedure for measuring tetracycline levels in water.
Collapse
Affiliation(s)
- Kraingkrai Ponhong
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand
| | - Tammanoon Nilnit
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Worapan Kusakunniran
- Faculty of Information and Communication Technology, Mahidol University 999 Phuttamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Phoonthawee Saetear
- Department of Chemistry, Faculty of Science, Mahidol University 272 Rama VI Road, Ratchathewi Bangkok 10400 Thailand
- Flow-Innovation Research for Science and Technology Laboratories (FIRST Labs), Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University 272 Rama VI Road, Ratchatawi Bangkok 10400 Thailand
| | - Sam-Ang Supharoek
- Department of Medical Science, Mahidol University, Amnatcharoen Campus Amnat Charoen 37000 Thailand
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
4
|
Huang W, Wang A, Wang W, Lin L, Rong J, Tian J, Zhang W. A Bacteria-Targeting Supramolecular Nanophotosensitizer for Combating Multidrug Resistant Bacteria. ACS Biomater Sci Eng 2025; 11:1741-1750. [PMID: 39961745 DOI: 10.1021/acsbiomaterials.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The increasing prevalence of multidrug-resistant bacteria is a significant global health threat. In contrast to conventional antibiotic treatments, photodynamic therapy (PDT) offers a promising alternative by reducing the bacterial adaptability to antibiotics and bactericides. However, traditional photosensitizers encounter poor antimicrobial efficacy due to poor hydrophilicity of photosensitizers, short lifespan, narrow diffusion radius of reactive oxygen species (ROS), and the risk of exacerbating inflammation. In this study, we report a bacterial-targeting supramolecular nanophotosensitizer for combating multidrug resistant bacteria. The nanophotosensitizer, formed through host-guest interactions and self-assembly of tetra-cyclodextrin-modified silver porphyrin (AgTPP-CD4), adamantyl-modified phenylboronic acid (Ad-PBA), and curcumin (Cur), can effectively target and kill methicillin-resistant Staphylococcus aureus (MRSA). Moreover, it reduces inflammation and promotes wound healing in MRSA-infected wounds without inducing drug resistance. The combination of supramolecular chemistry and targeted PDT offers a promising strategy for combating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Wenlong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Anan Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wenchen Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lihong Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jianyu Rong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
5
|
Liu Q, Wang Z, Chang T, Wang T, Wang Y, Zhao Z, Li M, Liu J. Insight into enhanced tetracycline photodegradation by hematite/biochar composites: Roles of charge transfer, biochar-derived dissolved organic matter and persistent free radicals. BIORESOURCE TECHNOLOGY 2025; 420:132118. [PMID: 39870140 DOI: 10.1016/j.biortech.2025.132118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The kinit of TC removal with Hem/BC-5 reached 0.103 min-1, 3.8 and 6.1 times faster than those with hematite and biochar, attributed to boosting free radicals. The enhanced light absorption and charge transfer helped generate more H2O2 and •OH through 2e- oxygen reduction and direct valence band (VB) oxidation. Persistent free radicals (PFRs) on biochar helped generate H2O2. Biochar as electron shutter facilitated Fe3+/Fe2+ redox cycling and triggered more efficient photo-Fenton reaction. Biochar-derived dissolved organic matter (DOM) helped generate 3DOM*, a reactive intermediate to produce H2O2, •OH, and 1O2. Hem/BC composites have excellent photoactivity for the degradation of TC in different water matrixes under visible light irradiation. The degradation pathway was proposed based on theoretical calculation and detected degradation intermediates. These findings contribute to the development of biochar-based catalysts for organic pollutants removal.
Collapse
Affiliation(s)
- Qian Liu
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Zhuoyue Wang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Ting Chang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Tingxin Wang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Yafeng Wang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, 650500, China
| | - Zhilei Zhao
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Meifeng Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G2R3, Canada
| | - Jue Liu
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Wang Z, Meng S, Li J, Guo D, Fu S, Zhang D, Yang X, Sui G. Oxygen Vacancy Engineering and Constructing Built-In Electric Field in Fe-g-C 3N 4/Bi 2MoO 6 Z-Scheme Heterojunction for Boosting Photo-Fenton Catalytic Degradation Performance of Tetracycline. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406125. [PMID: 39246214 DOI: 10.1002/smll.202406125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Indexed: 09/10/2024]
Abstract
A novel Fe-g-C3N4/Bi2MoO6 (FCNB) Z-scheme heterojunction enriched with oxygen vacancy is constructed and employed for the photo-Fenton degradation of tetracycline (TC). The 2% FCNB demonstrates prominent catalytic performance and mineralization efficiency for TC wastewater, showing activity of 8.20 times greater than that of pure photocatalytic technology. Density-functional theory (DFT) calculations and degradation experiments confirm that the formation of Fe-N4 sites induces spin-polarization in the material, and the difference in Fermi energy levels results in the formation of built-in electric field at the contact interface, which facilitates the continuous generation and migration of photogenerated carriers to address the issue of insufficient cycling power of Fe (III)/Fe (II).The reactive radicals persistently target the extremely reactive sites anticipated by the Fukui function, causing the mineralization of TC molecules into "non-toxic" compounds through processes of hydroxylation, demethylation, and deamidation. This work holds significant importance in the domain of eliminating organic pollutants from water.
Collapse
Affiliation(s)
- Zhanshou Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Dantong Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, P. R. China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar, 161006, P. R. China
| |
Collapse
|
7
|
Liu K, Ni W, Zhang Q, Huang X, Luo T, Huang J, Zhang H, Zhang Y, Peng F. Based on T.E.S.T toxicity prediction and machine learning to forecast toxicity dynamics in the photocatalytic degradation of tetracycline. Phys Chem Chem Phys 2024; 26:28266-28273. [PMID: 39499539 DOI: 10.1039/d4cp04037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The integration of photocatalysis and biological treatment provides an effective strategy for controlling antibiotic contamination, which requires precise monitoring of toxicity changes during the photocatalytic process. In this study, nanoscale TiO2 (P25) was employed to degrade tetracycline (TC) under full-spectrum irradiation, with O2 identified as a crucial reactant for the generation reactive oxygen species (ROS). The toxicity simulation results of the degradation intermediates were closely correlated with the predictions of T.E.S.T software. By analyzing the content of intermediates under different experimental conditions, we developed a machine learning model utilizing the random forest algorithm with a correlation coefficient of R2 = 0.878 and a mean absolute error of MAE = 0.02. The model can track the changes of photocatalytic intermediates, in combination with toxicity simulation, which facilitates the prediction of toxicity at different degradation stages, thus allowing selection of the optimal timing of biological treatment interventions.
Collapse
Affiliation(s)
- Kaihang Liu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Wenhui Ni
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Qiaoyu Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Xu Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Tao Luo
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Jian Huang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Hua Zhang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Yong Zhang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Fumin Peng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| |
Collapse
|
8
|
Wang Z, Li Y, Wang J, Li S. Tetracycline antibiotics in agricultural soil: Dissipation kinetics, transformation pathways, and structure-related toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175126. [PMID: 39084385 DOI: 10.1016/j.scitotenv.2024.175126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Tetracyclines (TCs) are the most common antibiotics in agricultural soil, due to their widespread usage and strong persistence. Biotic and abiotic degradation of TCs may generate toxic transformation products (TPs), further threatening soil ecological safety. Despite the increasing attention on the environmental behavior of TCs, a systematic review on the dissipation of TCs, evolution of TPs, and structure-toxicity relationship of TCs in agricultural soil remains lacking. This review aimed to provide a comprehensive overview of the environmental fate of TCs in agricultural soil. We first introduced the development history and structural features of different generations of TCs. Then, we comparatively evaluated the dissipation kinetics, transportation pathways, and ecological impacts of three representative TCs, namely tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), in agricultural soil. The results showed that the dissipation kinetics of TCs generally followed the first-order kinetic model, with the median dissipation half-lives ranging from 20.0 to 38.8 days. Among the three TCs, OTC displayed the lowest dissipation rates due to its structural stability. The typical degradation pathways of TCs in soil included epimerization/isomerization, demethylation, and dehydration. Isomerization and dehydration reactions may lead to the formation of more toxic TPs, while demethylation was accompanied by the alteration of the minimal pharmacophore of TCs thus potentially reducing the toxicity. Toxicological experiments are urgently needed in future to comprehensively evaluate the ecological risks of TCs in agricultural soil.
Collapse
Affiliation(s)
- Zhu Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Xie H, Li S, Zhang Y, Xi S, Zheng H, Wang H, Li Y, Wei T. Sensitive and selective detection of tetracycline using fluorescence-enhanced Eu(III)-functionalized silver nanoparticles with homocysteine. CHEMOSPHERE 2024; 364:143278. [PMID: 39243907 DOI: 10.1016/j.chemosphere.2024.143278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Utilizing metal luminescence enhancement to design fluorescent probes is a very sensible strategy. Herein, a fluorescent probe based on europium (III)-functionalized silver nanoparticles-conjugated homocysteine (AgNPs-Hcy-Eu3+) was proposed for the selective and sensitive detection of tetracycline (TC). In this probe, Eu(III) was employed as the detection signal unit for TC, while AgNPs-Hcy was used as the ligand of fluorescence enhancement. When TC exists, it can bind to Eu3+ immobilized in AgNPs-Hcy, leading to an enhanced fluorescence signal from Eu3+ through energy transfer. Under optimal conditions, the fluorescence intensity of AgNPs-Hcy-Eu3+ increased linearly with increasing TC concentration in the range of 0.1-30 μM (R2 = 0.9964). The fluorescent probe own fluorescence enhancement, paving the way for sensitive detection with a low detection limit of 0.083 μM. It also has good selectivity for common antibiotics and anions. This work can be applied to the determination of TC in tap water and milk with recoveries of 94-98.5%. We expect AgNPs-Hcy-Eu3+ to have potential applications in environmental testing and food safety.
Collapse
Affiliation(s)
- Honglin Xie
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shaoqing Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Yao Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shuangli Xi
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongyang Zheng
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Yangmei Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Tan Wei
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| |
Collapse
|
10
|
Yi L, Zhang W, Chen Z, Li H, Lu Y, Tao S, Zhu D. Products from Photolysis Reactions of Tetracycline Mediated by Clay and Humic Substance Induce Contrasting Expressions of Target Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13950-13960. [PMID: 39051425 DOI: 10.1021/acs.est.4c03797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Phototransformation is a key process affecting the fate of many antibiotics in the environment, but little is known about whether their photoproducts exert selective pressure on bacteria by inducing antibiotic resistance genes (ARGs). Here, we examined the expression of tetracycline resistance gene tet(M) of a fluorescent Escherichia coli whole-cell bioreporter influenced by the phototransformation of tetracycline. The presence of suspended smectite clay (montmorillonite or hectorite, 1.75 g/L) or dissolved humic substance (Pahokee Peat humic acid or Pahokee peat fulvic acid, 10 mg C/L) in aqueous solutions markedly facilitated the transformation of tetracycline (initially at 400 μg/L) with half-life shortened by 1.4-2.6 times. Despite the similar phototransformation ratios (80-90%) of the total loaded tetracycline after 60 min irradiation, the decreased ratios of cell fluorescence intensity (which was proportional to the expression amount of ARG tet(M)) were much higher with the two clays (94 and 93%) than with the two humic substances (44 and 69%) when compared to the respective dark controls. As illustrated by mass spectroscopic and chemical analyses, tetracycline was proposed to be mainly transformed to amide (ineffective in inducing ARGs) with the presence of clays by reaction with self-photosensitized singlet oxygen (1O2), while the humic substances might catalyze the production of another two demethylated and/or deaminated compounds (still effective in inducing ARGs) in addition to the amide compound via reaction with triplet excited state dissolved organic matter (3DOM*). As clay minerals and humic substances are important soil constituents and ubiquitously present in surface environments, the observed clay and humic-dependent photooxidation pathways of tetracycline and the differing selective pressures of the associated products highlight the need for monitoring the transformation compounds of antibiotics and provide critical insight into the development of antibiotic treatment protocols.
Collapse
Affiliation(s)
- Langsha Yi
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Wei Zhang
- Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 48824-1325, United States
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hui Li
- Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 48824-1325, United States
| | - Yahai Lu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Shu Tao
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Lu C, Qin C, Zhao L, Ye H, Bai M, Sun Y, Li X, Weng L, Li Y. Overlooked interconversion between tetracyclines and their 4-epimers in soil and effects on soil resistome and bacterial community. ENVIRONMENT INTERNATIONAL 2024; 190:108941. [PMID: 39128374 DOI: 10.1016/j.envint.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
With the widespread use of tetracycline antibiotics (TCs) and the application of manure fertilizer in farmland, TCs and their metabolites especially 4-epimers have been heavily detected in agricultural soil. However, existing studies have focused on the residual and environmental behavior of maternal TCs, and few studies have looked at the ecotoxicity of their 4-epimers in soil. In this study, the degradation and interconversion of tetracycline (TC), oxytetracycline (OTC) and their 4-epimers (4-epitetracycline, ETC; 4-epioxytetracycline, OTC) were revealed. Their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community in soil were also investigated in comparison. The results showed that the 4-epimers could be substantially transformed to their parents and degraded as a whole. The degradation rates of four selected pollutants are followed: TC > OTC > ETC > EOTC. This indicated that when TCs entered the soil, part of TCs transformed into slower-degraded 4-epimers, and these 4-epimers could also be converted back to their antibiotic parents, causing the long-term residue of TCs in soil. When added to the soil alone, TC and OTC significantly promoted the proliferation of most ARGs and MGEs, among them, trb-C, IS1247 and IS1111 were the top three genes in abundance. ETC and EOTC had little effect at the beginning. However, as the 4-epimers continuously converted into their parents after one month of cultivation, ETC and EOTC treatments showed similar promoting effect on ARGs and MGEs, indicating that the effect of ETC and EOTC on soil resistome was lagged and mainly caused by their transformed parents. Nocardioides, unclassified_Rhizobiaceae, norank_Sericytochromatia, Microlunatus, Solirubrobacter and norank_67-14 were the most frequent hosts of ARGs, Most of which belong to the phylum Actinobacteria. Due to their large transformation to TCs, slow degradation rate and potential effects on soil microbes and ARGs, the harm of TCs' 4-epimers on soil ecosystem cannot be ignored.
Collapse
Affiliation(s)
- Chenxi Lu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Cheng Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen 6700 HB, The Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Xie H, Li Q, Wang M, Feng Y, Wang B. Unraveling the photochemical behavior of dissolved organic matter derived from hydrothermal carbonization process water: Insights from molecular transformation and photoactive species. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133946. [PMID: 38442603 DOI: 10.1016/j.jhazmat.2024.133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Hydrothermal carbonization process water (HTPW) has been utilized as a substitute for chemical fertilizers in agricultural applications. However, the input of HTPW into paddy water, particularly the significant proportion of dissolved organic matter (DOM) in HTPW (DOM-HTPW), directly engages in photochemical transformations, a phenomenon often overlooked. This study observed a consistent decrease in humification (SUVA280, 7.7-53.9%) and aromaticity (SUVA254, 6.1-40.0%) of DOM-HTPW after irradiation. The primary active photobleaching components of DOM-HTPW varied depending on the feedstock, such as protein for chicken manure DOM-HTPW and lignin for rice straw DOM-HTPW. The photochemical activity of DOM-HTPW was augmented by its lower molecular weight and higher hydrophilic composition, particularly evident in chicken manure DOM-HTPW, which exhibited higher generation rates for 1O2 (35.1-37.1%), 3DOM* (32.8-43.9%), and O2•- (28.6-48.8%) as measured by molecular probes. DOM-HTPW effectively facilitated the phototransformation of tetracycline, with the contribution of O2•- being more significant than 3DOM* and 1O2. These findings shed new light on the understanding the photochemical processes of DOM-HTPW as exogenous DOM and the interconnected fate of contaminants in aquatic environments.
Collapse
Affiliation(s)
- Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiaoqiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minli Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
13
|
Wang Z, Zhai Y, Zhou Y, Huang C, Zhang X, Xu M. The impact of dissolved organic matter on the photodegradation of tetracycline in the presence of microplastics. CHEMOSPHERE 2024; 349:140784. [PMID: 38006920 DOI: 10.1016/j.chemosphere.2023.140784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Microplastics (MPs), an emerging class of pollutants, significantly impact the photoconversion dynamics of tetracycline (TC). But the effect of prevalent dissolved organic matter (DOM) on TC photodegradation in the presence of MPs remains a gap in current research. In this study, the photoconversion behavior and mechanism of TC under simulated sunlight conditions were systematically investigated, both in the presence of DOM and in combination with polystyrene (PS) MPs. The results demonstrated that both DOM and MPs enhanced the photodegradation of TC when compared to its direct degradation. However, DOM, particularly humic acid (HA, 10 mg/L), exhibited a more pronounced enhancing effect on TC photodegradation within 1 h reaction, regardless of the presence or absence of MPs, reaching up to 80%. In reaction systems involving TC-HA and TC-HA-PS, the primary contributors to TC degradation were direct photolysis and HA photosensitization (free radical reactions). Conversely, photosensitization effects were not significant in the presence of fulvic acid (FA). Furthermore, even under dark reaction conditions, HA exhibited a 10% degradation effect on TC. Quenching experiments and electron spin resonance (ESR) results indicate that dark reaction processes involve free radical reactions. Additionally, toxicity test results showed a reduction in the acute toxicity of TC photodegradation products, yet the long-term cumulative risks to organisms deserved attention. In general, this investigation significantly advances our understanding of the intricate photoconversion behavior of TC in the presence of coexisting chemical components.
Collapse
Affiliation(s)
- Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xue Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Min Xu
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| |
Collapse
|
14
|
Pan M, Wang Y, Yang J, Li H, Han X, Wang S. Carbon dots-based fluorescent molecularly imprinted photonic crystal hydrogel strip: Portable and efficient strategy for selective detection of tetracycline in foods of animal origin. Food Chem 2024; 433:137407. [PMID: 37690131 DOI: 10.1016/j.foodchem.2023.137407] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Rapid, portable, and sensitive detection of tetracycline (TC) is crucial for the environment and human health. In this study, we developed carbon dots (CDs)-based fluorescent molecularly imprinted photonic crystal hydrogel (FMIPH) strips for TC detection in animal-derived foods. CDs emit fluorescent signals, and molecularly imprinted polymers provide specific recognition sites for TC. Inverse opal photonic crystals afford stable 3D macroporous mass transfer channels that considerably reduce binding time between TC and the strips. The portable FMIPH strip exhibited a linear fluorescence response to TC in the concentration range of 0.1-50 μg mL-1, with a detection limit of 0.067 μg mL-1. Good recoveries of TC (93.86-112.59%) were observed in TC-spiked commercially available pork, eggs, and milk. A combination of FMIPH strips with a portable fluorescent reading device could achieve sensitive, on-site, and real-time detection of TC in animal-derived foods.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457 Tianjin, China.
| |
Collapse
|
15
|
Li Y, Zhang G, Liang D, Wang X, Guo H. Tetracycline hydrochloride degradation in polarity inverted microbial fuel cells: Performance, mechanisms and microbiology. CHEMOSPHERE 2024; 349:140902. [PMID: 38096993 DOI: 10.1016/j.chemosphere.2023.140902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/08/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Tetracycline antibiotics are widely used in veterinary medicine, human therapy and agriculture, and their presence in natural water raises environmental concerns. In this study, more than 94% of tetracycline hydrochloride (TCH) could be rapidly degraded within 48 h in polarity-inverted microbial fuel cells. The electrochemically active bacteria had the best electrochemical performance at 1 mg/L of TCH with the minimum internal resistance of 77.38 Ω. The electron-rich functional groups of TCH were continuously attacked and finally degradated into small molecules in three possible degradation pathways. Microbial community structure analysis showed that Comamonas and Shinella were enriched at the electrode as polarity-inverted bacteria. Genomic analysis showed that both direct and indirect electron transfer participated in the degradation of TCH in polarity-inverted microbial fuel cell (MFC) and the functional genes related to electrical conductivity in polarity-inverted MFC were more enriched on the electrode surface than non-polarity-inverted MFC. This study can facilitate further investigations about the biodegradation of TCH in polarity-inverted microbial fuel cell.
Collapse
Affiliation(s)
- Yongkang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China.
| | - Danxin Liang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoqin Wang
- College of Chemistry, ZhengZhou University, Zhengzhou, China
| | - Haifeng Guo
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Insititute of Underground Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Montone CM, Giannelli Moneta B, Laganà A, Piovesana S, Taglioni E, Cavaliere C. Transformation products of antibacterial drugs in environmental water: Identification approaches based on liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 238:115818. [PMID: 37944459 DOI: 10.1016/j.jpba.2023.115818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In recent years, the presence of antibiotics in the aquatic environment has caused increasing concern for the possible consequences on human health and ecosystems, including the development of antibiotic-resistant bacteria. However, once antibiotics enter the environment, mainly through hospital and municipal discharges and the effluents of wastewater treatment plants, they can be subject to transformation reactions, driven by both biotic (e.g. microorganism and mammalian metabolisms) and abiotic factors (e.g. oxidation, photodegradation, and hydrolysis). The resulting transformation products (TPs) can be less or more active than their parent compounds, therefore the inclusion of TPs in monitoring programs should be mandatory. However, only the reference standards of a few known TPs are available, whereas many other TPs are still unknown, due to the high diversity of possible transformation reactions in the environment. Modern high-resolution mass spectrometry (HRMS) instrumentation is now ready to tackle this problem through suspect and untargeted screening approaches. However, for handling the large amount of data typically encountered in the analysis of environmental samples, these approaches also require suitable processing workflows and accurate tandem mass spectra interpretation. The compilation of a suspect list containing the possible monoisotopic masses of TPs retrieved from the literature and/or from laboratory simulated degradation experiments showed unique advantages. However, the employment of in silico prediction tools could improve the identification reliability. In this review, the most recent strategies relying on liquid chromatography-HRMS for the analysis of environmental TPs of the main antibiotic classes were examined, whereas TPs formed during water treatments or disinfection were not included.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
17
|
Xu C, Zhao S, Wang SG, Song C. Enhanced photolysis of tetracycline by Zn(II): Role of complexation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168484. [PMID: 37972777 DOI: 10.1016/j.scitotenv.2023.168484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Zn(II) is a necessary additive during antibiotic production and aquaculture, leading to the coexistence of Zn(II) and antibiotics in aquatic environment, especially in receiving waters of pharmaceutical and aquaculture wastewater. However, the roles of Zn(II) in the photochemical behavior of antibiotics are still not clear, which limits the understanding of the fate of antibiotic in nature. In this study, tetracycline (TC) was selected as typical antibiotic to evaluate the effect of Zn(II) on antibiotic photolysis. The removal of TC was accelerated by 22.75 % with TC:Zn(II) molar ratio at 1:5. The mechanism of Zn(II)-induced TC photolysis was explored via reactive oxygen species (ROS) analysis and density functional theory (DFT) calculation for the first time. Zn(II) could enhance the formation of TC excited states and further produce more singlet oxygen (12.54 % higher than control group) to promote indirect photolysis. Besides, Zn(II) could react with TC via complexation, and the complex was more vulnerable to attack by reactive oxygen species due to more active sites. Furthermore, the structure and toxicity of intermediates were identified with mass spectrometer, T.E.S.T. and ECOSAR software. Zn(II) hardly changed the degradation path of TC, and TC was mainly degraded via ring opening, demethylation, deamidation, and hydrogen abstraction with more toxic intermediates than the parent molecule. This work is significant to better understand the environmental fate of antibiotics, and also provides new insight into wastewater treatment in the pharmaceutical and aquaculture industry.
Collapse
Affiliation(s)
- Chang Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; WeiHai Research Institute of Industrial Technology of Shandong University, Weihai 264209, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
18
|
Ding J, Su G, Zhou Y, Yin H, Wang S, Wang J, Zhang W. Construction of Bi/BiOI/BiOCl Z-scheme photocatalyst with enhanced tetracycline removal under visible light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122942. [PMID: 37972681 DOI: 10.1016/j.envpol.2023.122942] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Bi/BiOI/BiOCl composite photocatalyst was constructed by one-step stirring approach at ambient environment to remove of tetracycline (TC) antibiotics via photodegradation in aqueous medium. A systematic discussion of the architecture, composition, formation, photochemical performance and photocatalytic activity of Bi/BiOI/BiOCl was carried out. By adjusting the experimental conditions, it was found that the Bi/BiOI/BiOCl photocatalyst obtained by using 0.7 mmol NaBH4, I/Cl = 5% and reacting for 6 h had the greatest removal performance. Under visible light irradiation, the photocatalytic degradation efficiency of TC reached 90.3% within 60 min, surpassing that of single BiOCl and BiOI. Through the active species removal experiment, it was determined that •O2- made a primary contribution to the photocatalytic degradation process. Moreover, the formation of Z-scheme heterojunction in Bi/BiOI/BiOCl was discussed, analyzing the photocatalytic mechanism and TC degradation pathway. The ecological toxicity of TC solution before and after degradation to rice seedlings was preliminarily tested. This study provides an idea for one-step synthesis of bismuth-based composite photocatalysts, with potential applications in the photocatalytic degradation of antibiotics.
Collapse
Affiliation(s)
- Jia Ding
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China; College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Guangxia Su
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Suo Wang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 271018, Tai'an, Shandong, People's Republic of China.
| | - Wenjuan Zhang
- Shandong Green and Blue Bio-technology Co. Ltd, Tai'an, People's Republic of China
| |
Collapse
|
19
|
Chu G, Qi W, Chen W, Zhang Y, Gao S, Wang Q, Gao C, Gao M. Metagenomic insights into the nitrogen metabolism, antioxidant pathway, and antibiotic resistance genes of activated sludge from a sequencing batch reactor under tetracycline stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132788. [PMID: 37856954 DOI: 10.1016/j.jhazmat.2023.132788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Tetracycline is prevalent in wastewater treatment plants and poses a potential threat to biological nitrogen removal under long-term exposure. In the present study, the influence of different tetracycline concentrations on the nitrogen removal, bioactivity response, and the spread of antibiotic resistance genes (ARGs) was assessed in sequencing batch reactor (SBR). The nitrogen removal efficiency, nitrification rate, and denitrification rate and their corresponding enzymatic activities gradually decreased with an increase in tetracycline concentration from 0.5 to 15 mg/L. The remarkable toxicity induced by tetracycline led to a significant increase in the peroxidation and the response of antioxidant system, as evidenced by strengthened antioxidant enzymatic activity and abundant genes (SOD12, katG, PXDN, gpx, and apx). Tetracycline addition significantly inhibited the ammonia-oxidizing bacterium Nitrosomonas and functional genes (amoA, amoB, and amoC). The presence of tetracycline decreased the abundance of citrate synthase and genes (CS, IDH3, and acnA) and interfered with carbon source metabolism, leading to impaired bioactivity and treatment performance. In addition, the presence of tetracycline induces diversity and differences in ARGs. The results provide reliable basic data for a deeper understanding of the effects of tetracycline on the nitrogen removal performance of bioreactors and provide a theoretical basis to build a promising strategy for relieving antibiotic-caused process fluctuations.
Collapse
Affiliation(s)
- Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Weiyi Qi
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuqiao Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shijiang Gao
- Logistics Support Division, Ocean University of China, Qingdao 266100, China.
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
20
|
Yu J, Han T, Hou Y, Zhao J, Zhang H, Wang X, Ge S. Integrated transcriptomic, proteomic and metabolomic analysis provides new insights into tetracycline stress tolerance in pumpkin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122777. [PMID: 37863256 DOI: 10.1016/j.envpol.2023.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aim of this study was to conduct transcriptomic, proteomic, and metabolomic analysis to provide a comprehensive view of plant response to tetracycline stress. Pumpkin seeds were cultured for 7 days without or with tetracycline at 10 mg/L. Pumpkin roots showed excessive growth inhibition, but not yet strong growth restraining in cotyledons. Tetracycline affected the abundance of metabolites related to flavonoid biosynthesis and amino acid metabolism. Main changes of metabolites in flavonoid biosynthesis were consistent with mRNA changes. Amino acid changes are mainly mediated by proteins or mRNAs. To be specific, tetracycline treatment increased the levels of rutin, caffeate, cinnamaldehyde, 4-hydroxycinnamic acid, ferulic acid, naringenin, apigenin, luteolin, (-)-epigallocatechin, astragalin, L-serine, and glutathione and the transcript levels related to these compounds; and decreased the levels of indole pyruvate, indole acetaldehyde, L-arginine, S-adenosylhomocysteine, L-glutamine, and gamma-glutamylcysteine and the transcript levels related to these compounds. Tetracycline treatment also increased the levels of oxoglutaric acid, L-glutamic acid, gamma-aminobutyric acid, and gamma-glutamylalanine and enzymes involved in their production; and decreased the levels of L-isoleucine, L-valine, and L-leucine and enzymes involved in their production. We elucidated several biological processes (e.g. phenylpropanoid/flavonoid biosynthesis pathways, amino acid metabolic pathways) that were altered by tetracycline, and provided a multi-omic perspective on the mechanisms underlying the response to tetracycline stress in pumpkin roots. We provide a useful reference for the development of environmental quality management methods.
Collapse
Affiliation(s)
- Jing Yu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Tao Han
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yingying Hou
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China; Department of Integrated TCM & Western Medicine, The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450000, China
| | - Jinjin Zhao
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Haiguang Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Xinjie Wang
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shidong Ge
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
21
|
Huang L, Zheng J, Ke J, Pan J, Zhuang L, Zhang M, Zhang W. Enhancing the photodegradation of tetracycline in aquaculture wastewater via iron(III)-alginate: Degradation pathway transformation and toxicity reduction. CHEMOSPHERE 2023; 341:140021. [PMID: 37659507 DOI: 10.1016/j.chemosphere.2023.140021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Tetracycline's (TC) incomplete self-photolysis by light irradiation generally produces toxic intermediate products, which posing serious harm to the aqueous environment. In order to diminish the environmental risks of TC self-photolysis, an iron(III)-alginate (Fe-SA) hydrogel assisted photocatalytic method was developed and the underlying mechanisms was also analyzed in this work. Under simulated sunlight, the photo-degradation efficiency of TC was 61.1% at pH 7.0 within 2 h. Importantly, four of the seven intermediate products that identified during the self-photolysis of TC were found toxic based on QSAR analysis. In contrast, the removal efficiency of TC could be improved to 87.4% by adding Fe-SA under the same conditions. Moreover, only two relatively weakly toxic intermediate products were detected after exposing to the Fe-SA photocatalytic system, indicating a significant reduction of the potential ecological risks caused by TC self-photolysis. Furthermore, the determination of reactive oxidation species (ROS) demonstrated that the addition of Fe-SA primarily facilitated the degradation of TC and the related toxic intermediate products through assisting the free radical (∙OH and ∙O2-) photocatalytic degradation pathway. Additionally, the photocatalytic application under actual sunlight conditions and the reusability experiments of Fe-SA further confirmed its effectiveness and low cost in removing TC. This study revealed the photodegradation mechanisms of TC from the perspective of the self-photolysis process, and also offering new insights into the removal of TC pollution in the environment.
Collapse
Affiliation(s)
- Lianyang Huang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jiahui Zheng
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jiaqi Ke
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China
| | - Jiahong Pan
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Lingling Zhuang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Menglu Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian, 350117, China; Institute of Environmental Science, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
22
|
Wang K, Yang S, Yu X, Liu Y, Bai M, Xu Y, Weng L, Li Y, Li X. Effect of microplastics on the degradation of tetracycline in a soil microbial electric field. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132313. [PMID: 37619277 DOI: 10.1016/j.jhazmat.2023.132313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The degradation of organic pollutants and the adsorption of organic pollutants onto microplastics (MPs) in the environment have recently been intensively studied, but the effects of biocurrents, which are widespread in various soil environments, on the environmental behavior of MPs and antibiotic pollutants have not been reported. In this study, it was found that polylactic acid (PLA) and polyvinyl chloride (PVC) MPs accelerated the mineralization of humic substances in microbial electrochemical systems (MESs). After tetracycline (TC) was introduced into the MESs, the internal resistance of the soil MESs decreased. Additionally, the presence of MPs enhanced the charge output of the soil MESs by 40% (PLA+TC) and 18% (PVC+TC) compared with a control group without MPs (424 C). The loss in MP mass decreased after TC was added, suggesting a promotion of TC degradation rather than MP degradation for charge output. MPs altered the distribution of the highest occupied molecular orbitals and lowest unoccupied molecular orbitals of TC molecules and reduced the energy barrier for the TC hydrolysis reaction. The microbial community of the plastisphere exhibited a greater ability to degrade xenobiotics than the soil microbial community, indicating that MPs were hotspots for TC degradation. This study provides the first glimpse into the influence of MPs on the degradation of TC in MESs, laying a theoretical and methodological foundation for the systematic evaluation of the potential risks of environmental pollutants in the future.
Collapse
Affiliation(s)
- Kai Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Side Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xin Yu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen 6700 HB, the Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
23
|
Yang M, Jiao Y, Sun L, Miao J, Song X, Yin M, Yan L, Sun N. The performance and mechanism of tetracycline and ammonium removal by Pseudomonas sp. DX-21. BIORESOURCE TECHNOLOGY 2023; 386:129484. [PMID: 37442397 DOI: 10.1016/j.biortech.2023.129484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
To remove ammonium and tetracycline (TC) from wastewater, a new strain, DX-21, was isolated and exhibited simultaneous removal ability. The performance of DX-21 in TC removal, its removal mechanism, and the potential toxicities of the degradation products were investigated with genomics, mass spectrometry, density functional theory calculations, quantitative structure-activity relationship analyses, and Escherichia coli exposure experiments. DX-21 exhibited removal of ammonium (9.64 mg·L-1·h-1) via assimilation, and TC removal (0.85 mg·L-1·h-1) primarily occurred through cell surface bio-adsorption and biodegradation. Among the 12 identified degradation products, the majority exhibited lower toxicities than TC. Moreover, potential degradation pathways were proposed, including hydroxylation and deamination. Furthermore, DX-21 possessed TC resistance genes, various oxygenases and peroxidases that could potentially contribute to TC degradation. DX-21 colonized activated sludge and significantly enhanced the biodegradation of TC. Therefore, DX-21 showed potential for treating wastewater containing both ammonium and TC.
Collapse
Affiliation(s)
- Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Nan Sun
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
24
|
Xiao X, Ren Y, Lei Y, Li X, Guo H, Zhang C, Jiao Y. Jasmine waste derived biochar as green sulfate catalysts dominate non-free radical paths efficiently degraded tetracycline. CHEMOSPHERE 2023; 339:139610. [PMID: 37482311 DOI: 10.1016/j.chemosphere.2023.139610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Because of the potential environmental harm caused by the extensive application of tetracycline (TC), this study used jasmine waste rich in organic matter as a precursor and one-step carbonization into metal-free carbon-based materials to efficiently activate peroxymonosulfate (PMS) toward degrading TC. The jasmine waste biochar (JWB) with a heating rate of 10 °C min-1 and a heating temperature of 700 °C was selected as the most suitable material based on its catalytic performance. The effects of catalyst dose, PMS dose, initial pH value, coexisting inorganic anions and TC concentration on the JWB/PMS/TC system were thoroughly optimized. The results showed that the degradation efficiency of TC by JWB/PMS system was 90%. Meanwhile, the combination of electron paramagnetic resonance, masking experiments and X-ray photoelectron spectrometry confirmed that JWB degraded TC mainly through the non-radical radical pathway of 1O2 oxidation and mediated the electron transfer to PMS. In addition, some degradation products were analyzed by LC-MS and possible degradation pathways of the system were proposed. Therefore, this paper proposes a novel method for recycling jasmine waste and providing a low-cost catalyst for the oxidation treatment of refractory organic matter.
Collapse
Affiliation(s)
- Xiuchan Xiao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China.
| | - Yaqi Ren
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China
| | - Yan Lei
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Xi Li
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China
| | - Hongyang Guo
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Chunhong Zhang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Yi Jiao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
25
|
Zhang Y, Sun M, Lu Y, Peng M, Du E, Xu X. Nitrogen-Doped Carbon Dots Encapsulated a Polyoxomolybdate-Based Coordination Polymer as a Sensitive Platform for Trace Tetracycline Determination in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2676. [PMID: 37836317 PMCID: PMC10574045 DOI: 10.3390/nano13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The requirement of simple, efficient and accurate detection of tetracycline (TC) in water environments poses new challenges for sensing platform development. Here, we report a simple method for TC sensing via fluorescence detection based on metal-organic coordination polymers (MOCPs, (4-Hap)4(Mo8O26)) coated with nitrogen-doped carbon dots (NCDs). These NCDs@(4-Hap)4(Mo8O26) composites showed excellent luminescence features of NCDs with stable bright-blue emission under UV light. The results of the sensing experiment showed that the fluorescence of NCDs@(4-Hap)4(Mo8O26) can be quenched by TC (166 µM) with 94.1% quenching efficiency via the inner filter effect (IFE) in a short time (10 s), with a detection limit (LOD) of 33.9 nM in a linear range of 8-107 µM. More significantly, NCDs@(4-Hap)4(Mo8O26) showed a high selectivity for TC sensing in the presence of anions and metal cations commonly found in water environments and can be reused in at least six cycles after washing with alcohol. The potential practicality of NCDs@(4-Hap)4(Mo8O26) was verified by sensing TC in real water samples with the standard addition method, and satisfactory recoveries from 91.95% to 104.72% were obtained.
Collapse
Affiliation(s)
- Yanqiu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Minrui Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Xia Xu
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| |
Collapse
|
26
|
Xu Z, Sun S, Gao M, Zheng R, Mu H, Qiu L, Ma J. Degradation of tetracyclines via calcium peroxide activation by ultrasonic: Roles of reactive species, oxidation mechanism and toxicity evaluation. CHEMOSPHERE 2023; 334:139033. [PMID: 37244553 DOI: 10.1016/j.chemosphere.2023.139033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Tetracyclines (TC) frequently detected in the aqueous environment pose threats to humans and ecosystems. The synergistic technology coupling ultrasound (US) and calcium peroxide (CaO2) has a great potential to abate TC in wastewater. However, the degradation efficiency and detailed mechanism of TC removal in the US/CaO2 system is unclear. This work was carried out to assess the performance and mechanism of TC removal in the US/CaO2 system. The results demonstrated that 99.2% of TC was degraded by the combination of 15 mM CaO2 with ultrasonic power of 400 W (20 kHz), but only about 30% and 4.5% of TC was removed by CaO2 (15 mM) or US (400 W) alone process, respectively. Experiments using specific quenchers and electron paramagnetic resonance (EPR) analysis indicated that the generation of hydroxyl radicals (•OH), superoxide radicals (O2-•), and single oxygen (1O2) in the process, whereas •OH and 1O2 were mainly responsible for the degradation of TC. The removal of TC in the US/CaO2 system has a close relationship with the ultrasonic power, the dosage of CaO2 and TC, and the initial pH. The degradation pathway of TC in the US/CaO2 process was proposed based on the detected oxidation products, and it mainly included N,N-dedimethylation, hydroxylation, and ring-opening reactions. The presence of 10 mM common inorganic anions including chloridion (Cl-), nitrate ion (NO3-), sulfate ion (SO42-), and bicarbonate ion (HCO3-) showed negligible influences on the removal of TC in the US/CaO2 system. The US/CaO2 process could efficiently remove TC in real wastewater. Overall, this work firstly demonstrated that •OH and 1O2 mainly contributed to the removal of pollutants in the US/CaO2 system, which was remarkable for understanding the mechanisms of CaO2-based oxidation process and its future application.
Collapse
Affiliation(s)
- Zujun Xu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Mingchang Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Ruibin Zheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Haotian Mu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Liping Qiu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
27
|
Wang Y, Qiu H, Niu H, Liu H, Liu J, Jia Y, Ma H, Xu F, Hao L, Qiu Z, Wang C. Effect and mechanism of simultaneous cadmium-tetracycline removal by a self-assembled microbial-photocatalytic coupling system. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131018. [PMID: 36812732 DOI: 10.1016/j.jhazmat.2023.131018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical bacteria Shewanella oneidensis MR-4 (MR-4) was used to biologically generate cadmium sulfide (bio-CdS) nanocrystals and construct a self-assembled intimately coupled photocatalysis-biodegradation system (SA-ICPB) to remove cadmium (Cd) and tetracycline hydrochloride (TCH) from wastewater. The characterization using EDS, TEM, XRD, XPS, and UV-vis confirmed the successful CdS bio-synthesis and its visible-light response capacity (520 nm). 98.4% of Cd2+ (2 mM) was removed during bio-CdS generation within 30 min. The electrochemical analysis confirmed the photoelectric response capability of the bio-CdS as well as its photocatalytic efficiency. Under visible light, SA-ICPB entirely eliminated TCH (30 mg/L). In 2 h, 87.2% and 43.0% of TCH were removed separately with and without oxygen. 55.7% more chemical oxygen demand (COD) was removed with oxygen participation, indicating the degradation intermediates elimination by SA-ICPB required oxygen participation. Biodegradation dominated the process under aerobic circumstances. Electron paramagnetic resonance analysis indicated that h+ and ·O2- played a decisive role in photocatalytic degradation. Mass spectrometry analysis proved that TCH was dehydrated, dealkylated, and ring-opened before mineralizing. In conclusion, MR-4 can spontaneously generate SA-ICPB and rapidly-deeply eliminate antibiotics by coupling photocatalytic and microbial degradation. Such an approach was efficient for the deep degradation of persistent organic pollutants with antimicrobial properties.
Collapse
Affiliation(s)
- Yu Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Hang Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Huan Niu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Hao Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Jinchang Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Yinxue Jia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Haitao Ma
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Zhongping Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Can Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| |
Collapse
|
28
|
Ding R, Ouyang Z, Zhang X, Dong Y, Guo X, Zhu L. Biofilm-Colonized versus Virgin Black Microplastics to Accelerate the Photodegradation of Tetracycline in Aquatic Environments: Analysis of Underneath Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5714-5725. [PMID: 36995247 DOI: 10.1021/acs.est.3c00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tire wear particles (TWPs) exposed to the aquatic environment are rapidly colonized by microorganisms and provide unique substrates for biofilm formation, which potentially serve as vectors for tetracycline (TC) to influence their behaviors and potential risks. To date, the photodegradation capacity of TWPs on contaminants due to biofilm formation has not been quantified. To accomplish this, we examined the ability of virgin TWPs (V-TWPs) and biofilm-developed TWPs (Bio-TWPs) to photodegrade TC when exposed to simulated sunlight irradiation. V-TWPs and Bio-TWPs accelerated the photodegradation of TC, with rates (kobs) of 0.0232 ± 0.0014 and 0.0152 ± 0.0010 h-1, respectively (kobs increased by 2.5-3.7 times compared to that for only TC solution). An important factor of increased TC photodegradation behavior was identified and linked to the changed reactive oxygen species (ROS) of different TWPs. The V-TWPs were exposed to light for 48 h, resulting in more ROS for attacking TC, with hydroxyl radicals (•OH) and superoxide anions (O2•-) playing a dominant role in TC photodegradation measured using scavenger/probe chemicals. This was primarily due to the greater photosensitization effects and higher electron-transfer capacity of V-TWPs in comparison to Bio-TWPs. In addition, this study first sheds light on the unique effect and intrinsic mechanism of the crucial role of Bio-TWPs in TC photodegradation, enhancing our holistic understanding of the environmental behavior of TWPs and the associated contaminants.
Collapse
Affiliation(s)
- Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yankai Dong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Yu C, Li C, Zhang Y, Du X, Wang JH, Chi ZY, Zhang Q. Effects of environment-relevant concentrations of antibiotics on seawater Chlorella sp. biofilm in artificial mariculture effluent. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|