1
|
Wang Q, An H, Ruan T, Lu X, Qiu D, Wu Z, Zhou Q, Xiao E. Study on short-chain fatty acids production from anaerobic fermentation of waste activated sludge pretreated by alkali-activated ammonium persulfate. BIORESOURCE TECHNOLOGY 2025; 428:132461. [PMID: 40164358 DOI: 10.1016/j.biortech.2025.132461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
As a sustainable method for carbon recovery from waste activated sludge (WAS), anaerobic fermentation to produce short-chain fatty acids (SCFAs) is often limited by disintegration of WAS. A novel pretreatment method of alkaline-activated ammonium persulfate (AP/Alk), employing an initial pH of 10 and an ammonium persulfate dosage of 1 mM/g VSS (mmol per gram volatile suspended solids), was proposed in this study to enhance disintegration of WAS and yield of SCFAs. It was compared with one control and five pretreatment groups including alkali, persulfate, free ammonia, ammonium persulfate, alkali-activated sodium persulfate to elucidate the synergistic effects of free ammonia and radicals in WAS dissolution and acidogenesis within the AP/Alk system. The highest sludge disintegration degree with 30.3 % and maximum SCFAs production with 295.4 mg COD/g VSS were achieved by using the method. Comparative analysis showed that free ammonia primarily disrupted microbial cells to release intracellular organics, while radicals preferentially degraded tightly bound extracellular polymeric substances (TB-EPS) proteins. The synergistic effects of free ammonia and radicals accelerated accumulation of soluble proteins and polysaccharides, improved selectively enrichment of hydrolytic-acidogenic genera (e.g., Macellibacteroides, Proteiniclasticum, Desulfobulbus), and upregulated antioxidant genes to alleviate oxidative stress, but suppressed SCFAs consumers (e.g., unclassified_f__Comamonadaceae) including methanogens (e.g., Methanosaeta), thereby promoting the accumulation of SCFAs and acetic acid proportion. AP/Alk offers a sustainable strategy for WAS utilization and energy recovery.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Heng An
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Ruan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Xinyi Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiaohong Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Enrong Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Hu T, He S, Gao Z, Feng L, Jiang J, Zhao Q, Wei L. Micro-mechanism of rhamnolipid promoting acid production during anaerobic digestion: protein structures, metagenomics and molecular dynamics simulations. WATER RESEARCH 2025; 283:123795. [PMID: 40354774 DOI: 10.1016/j.watres.2025.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The addition of rhamnolipid (RL) is a promising strategy to enhance volatile fatty acids (VFAs) production in anaerobic digestion (AD) systems. However, the microscopic mechanisms underlying this enhancement remain poorly understood. This study investigates the micro-mechanisms by which RL promotes VFAs production, integrating protein structural analysis, metagenomics, and molecular dynamics simulations. Experimental results revealed that adding RL at 0.08 g/g TS significantly increased VFAs production to 11,441.8 mg COD/L. Protein structural analysis revealed disruption of amide I-related C = O groups and amide II-related CN and NH bonds, indicating the release or structural alteration of sludge proteins. Metagenomic analysis indicated an increase in the abundance of microbial communities and related genes, suggesting that RL enhanced the activity of acid-producing microorganisms and related metabolic pathways. Furthermore, molecular docking and molecular dynamics simulations indicated that RL spontaneously aggregated and absorbed acetate kinase (AK), altering its conformation and reducing structural compactness, which made acetyl phosphate (AcP) more accessible to the binding site of AK. RL reduced the energy barrier associated with the polar solvation interactions, increasing the contributions of key residues (LYS176 and GLU234) to the binding free energy, which enhanced the binding affinity of AK-AcP complex. This study provides a comprehensive molecular basis for how RL promotes VFAs production in AD, offering a promising strategy for optimizing acid production.
Collapse
Affiliation(s)
- Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Zeng Y, Shen Y, Lin H, Tan Q, Sun J, Shen L, Li R, Xu Y, Teng J. A synergistic approach integrating potassium ferrate oxidation with polyacrylamide flocculation to enhance sludge dewatering and its mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125323. [PMID: 40239355 DOI: 10.1016/j.jenvman.2025.125323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/06/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Sludge dewatering is a critical phase in sludge treatment and disposal, significantly impacting storage, transportation, and subsequent handling. This study introduces an innovative approach combining potassium ferrate (PF) oxidation and polyacrylamide (PAM) flocculation to synergistically enhance sludge dewatering efficiency. PF disrupts EPS and releases bound water, while PAM restores floc structure, addressing the limitations of standalone oxidation. Initial PF conditioning significantly reduced sludge water content (Wc) to 75.18 %, attributed to the oxidative breakdown of extracellular polymeric substances (EPS) and the release of bound water. However, higher PF doses increased specific filtration resistance (SFR) and capillary suction time (CST), indicating deteriorated filterability. The subsequent addition of PAM mitigated these issues, further reducing Wc to 73.64 %, SFR from 12.75 × 1012 m/kg to 3.62 × 1012 m/kg, and reduced CST from 88.95 s to 32.3 s, demonstrating marked improvements in dewatering performance. Characterization studies revealed the underlying mechanisms: PF-induced sludge fragmentation and EPS degradation, followed by PAM-mediated re-flocculation and structural reorganization. Further, applying XDLVO theory and Flory-Huggins lattice theory revealed changes in the sludge's surface hydrophilicity and the system's chemical potential, improving SFR and enhancing dewatering efficiency while reducing moisture content. This investigation not only offers an innovative dewatering approach but also underpins the mechanism of improved dewaterability.
Collapse
Affiliation(s)
- Yansha Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yue Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Qiyin Tan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiahao Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
4
|
Yu X, Sun Y, Chen H. Choline chloride-assisted thermal hydrolysis pretreatment improves short-chain fatty acid recovery from waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124866. [PMID: 40058047 DOI: 10.1016/j.jenvman.2025.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Recovery of short-chain fatty acids (SCFAs) from waste activated sludge (WAS) by anaerobic fermentation (AF) is limited by the slow rate of WAS hydrolysis. Here, choline chloride (ChCl)-assisted thermal hydrolysis pretreatment (THP) was proposed to improve the hydrolysis rate and SCFA recovery from WAS. ChCl-assisted THP (140 °C, 30 min, 0.60 g/g TSS) increased the SCFA yield by 139 % compared to the control (unpretreated) group, rising from 2629 ± 190 mg COD/L to 6276 ± 153 mg COD/L, and raised the percentage of acetic acid from 28.7 % to 58.0 %. The hydrogen-bonding effect of ChCl facilitates sludge destruction by THP and induces oxidative stress through quaternary ammonium groups to destroy cells, thus creating a synergistic effect on WAS hydrolysis. In addition, ChCl-assisted THP promotes the production of SCFAs by increasing the activity of key enzymes and enriching hydrolyzing and acidifying bacteria. This article provides a new approach to enhance SCFA recovery from WAS.
Collapse
Affiliation(s)
- Xiaoman Yu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Yihu Sun
- Hunan Diya Environmental Engineering Co., Ltd., Changsha, 410007, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
5
|
Xin X, Xie J, Cheng J, Li W, Liu Q, Wang Y, Li L, He J, Yang Y, Zhang L, Yan W. Enhancing concurrent production of volatile fatty acids and phosphorus minerals from waste activated sludge via magnesium ferrate pre-oxidation. BIORESOURCE TECHNOLOGY 2025; 421:132156. [PMID: 39921004 DOI: 10.1016/j.biortech.2025.132156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
This study investigated the strategy of magnesium ferrate (MF) pre-oxidation to enhance acidogenic fermentation of waste activated sludge (WAS), targeting the simultaneous production of volatile fatty acids (VFAs) and phosphorus-minerals (struvite and vivianite). Results showed that such fermentation produced a high-value liquid within four days, achieving a peak VFA content of 241 ± 4 mg COD/ g VSfeed, ammonia nitrogen levels below 350 mg/L of and PO43-P under 3 mg/L. Further investigation revealed that the MF pre-oxidation raised the pH, enhanced key hydrolases activity, enriched acidogens and iron-reducing bacteria for driving the concurrent production of VFAs and phosphorus-minerals. The MF pre-oxidation promoted VFAs and phosphorus-minerals formation by enhancing the cooperation among the hydrolyzing bacteria of Acinetobacter and Proteocatella, acidogens of Fusibacter and Tissierella_Soehngenia, and iron-reducing bacteria of Dechloromonas and Thauera. This study provided an effective strategy for realizing concurrent production of high-purity VFAs along with struvite and vivianite from WAS.
Collapse
Affiliation(s)
- Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808 PR China
| | - Jiaqian Xie
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021 PR China
| | - Jian Cheng
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd., Changchun 130021 PR China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808 PR China
| | - Qian Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808 PR China
| | - Yanfang Wang
- North China Municipal Engineering Design & Research Institute CO., LTD, Tianjin 300381 PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045 PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006 PR China
| | - Yue Yang
- School of Environment, South China Normal University, Guangzhou 510006 PR China
| | - Liguo Zhang
- School of Environment, South China Normal University, Guangzhou 510006 PR China
| | - Wangwang Yan
- School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China.
| |
Collapse
|
6
|
Gaballah ES, Gao L, Shalaby EA, Yang B, Sobhi M, Ali MM, Samer M, Tang C, Zhu G. Performance and mechanism of a novel hydrolytic bacteria pretreatment to boost waste activated sludge disintegration and volatile fatty acids production during acidogenic fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124399. [PMID: 39914216 DOI: 10.1016/j.jenvman.2025.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
In this study, an innovative mixed hydrolytic bacteria culture (HB) (the main dominant bacterial species: Lactobacillus acetotolerans), as an environmentally friendly pretreatment technique, was developed to enhance the volatile fatty acids (VFAs) production from waste-activated sludge (WAS). The highest VFAs production of 517 and 518 mg/g VSS were achieved with HB 8% and HB 8%-35 °C pretreatments, which were almost 3.6 folds compared to the control (143 mg/g VSS), respectively. The mechanism analysis revealed that HB boosted the bioavailability of organics released from WAS and significantly accelerated sludge solubilization. Protease and α-glucosidase enzymatic activity were improved and associated with hydrolysis and acidogenesis. Furthermore, the microbial community analysis showed that HB pretreatment significantly increased the hydrolytic and acidifying bacteria proportions (e.g., Veillonella, Macellibacteroides sp., Clostridium_sensu_stricto_1 and Bacteroides sp., etc.). This study provides a promising, low-cost, and eco-friendly approach for recovering resources from WAS and transforming them into high-value products.
Collapse
Affiliation(s)
- Eid S Gaballah
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Agricultural Engineering Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Lei Gao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Emad A Shalaby
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Biao Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Mostafa Sobhi
- Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Ali
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Agricultural Engineering Research Institute (AEnRI), Agricultural Research Center (ARC), Giza, 12611, Egypt
| | - Mohamed Samer
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, El-Gammaa Street, 12613, Giza, Egypt
| | - Chongpeng Tang
- China CAMCE Environmental Technology Co., Ltd, Beijing, 100080, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
7
|
Zheng J, You Z, Sun Y, Chen H. Improving methane production from waste-activated sludge by coupling thermal hydrolysis with potassium ferrate pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123332. [PMID: 39536572 DOI: 10.1016/j.jenvman.2024.123332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Thermal hydrolysis (TH) is effective in improving the solubilization of waste-activated sludge, but opportunities for enhancement remain, particularly in increasing organic matter conversion and reducing the generation of refractory substances. This study proposed a novel pretreatment method combining TH and potassium ferrate (PF) and evaluated its performance in improving sludge methane production. The results indicated that the combined pretreatment increased the methane yield from 118 ± 2 mL/g VS to 215 ± 7 mL/g VS, an increase of 82.2 % compared to the control. Combined pretreatment promoted the exposure of functional groups in the extracellular polymeric substances (EPS) and altered protein secondary structure composition, thereby disrupting EPS. PF improved the biodegradability of TH-treated sludge by degrading humic acids and Maillard reaction products. In addition, Fe(III) produced by PF induces dissimilar iron reduction, which enhances microbial electron transfer activity and facilitates subsequent hydrolysis and acidification processes. Combined pretreatment increased the abundance of hydrolyzing and acidifying bacteria, but reduced hydrogenotrophic methanogens. This article reveals that PF improves the biodegradability of TH-treated sludge and provides new ideas for advanced TH technologies for sludge resource recovery.
Collapse
Affiliation(s)
- Jun Zheng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhimin You
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Yihu Sun
- Hunan Diya Environmental Engineering Co., Ltd., Changsha, 410007, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
8
|
Zhao Z, Wu F, Sun J, Jiang L, Zhang Y, Wang J, Shao Z, Sun Y, Duan Z, Zhang Y, Bai T, Liu Y, Qian X, Gu J, Wang X. Metagenomic insights into the mechanism of sophorolipid in facilitating co-anaerobic digestion of mushroom residues and cattle manure: Functional microorganisms and metabolic pathway analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123048. [PMID: 39454389 DOI: 10.1016/j.jenvman.2024.123048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The present study aimed to enhance the co-anaerobic digestion system of mushroom residues and cattle manure by incorporating biosurfactant sophorolipid. Results demonstrated that the addition of 75 mg/L sophorolipid increased cumulative methane production by 33.68%, acetate content by 9-10 times, and the abundance of Methanosarcina by 69.22%. The electroactive microorganisms (Bacteroides, Petrimonas, etc.) were enriched, while the up-regulation of functional genes associated with carbohydrate metabolism and methane metabolism was observed. The metagenomic analysis revealed the significant involvement of inter-microbial communication and extracellular electron transfer in anaerobic digestion. Petrimonas was identified as the predominant host involved in cellular processes and environmental information processing. The supplementation of sophorolipid significantly enhanced its abundance during the late anaerobic digestion period (by 12.30%-64.84%). The results emphasize the crucial function of sophorolipid as biosurfactant in enhancing the efficiency of anaerobic digestion.
Collapse
Affiliation(s)
- Zixuan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiran Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhijiang Shao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zichen Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tongtong Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yucheng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Wang H, Xing D, Jin C, Zhao Y, Guo L. Cooperation of rhamnolipid and thermophilic bacteria modifies proteinic structure, microbial community, and metabolic traits for efficient solubilization and acidogenesis of mariculture solid wastes. WATER RESEARCH 2024; 268:122634. [PMID: 39461217 DOI: 10.1016/j.watres.2024.122634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Anaerobic fermentation combined with thermophilic bacteria (TB) pretreatment is a promising method to realize effective waste management and carbon resource recovery. However, undesirable properties of high-strength mariculture solid wastes (MSW) such as high solids concentration, excessive salinity and poor bioavailability limited the overall solubilization and acidogenic efficiency. This study innovatively introduced rhamnolipid (RL) to alleviate this adverse effect, and unveiled its cooperation with TB on enhancing organic matter dissolution and volatile fatty acids (VFAs) production. The results showed that VFAs yield from pretreated MSW was improved by 9.4-15.1 folds with enriched acetate (81.4%-94.4%) in the TB+RL groups. The co-pretreatment of RL and TB disintegrated substrate structure for efficient release of electron shuttles and biodegradable organics. This was because introducing RL reconstructed solid-liquid interfacial charge and molecular arrangement, improved thermophilic enzyme activity, and reduced apoptosis and necrosis cells of TB. Substrate bioavailability was further improved with proteinic structure shifted from α-helix and β-sheet to random coil and aggregated strands, and amide II and carboxyl groups interacted with RL molecules. These changes induced the selective enrichment of hydrolytic and acidogenic bacteria, and the upregulated expression of encoding genes responsible for transmembrane transport, protein hydrolysis, carbohydrate metabolism and acetate biosynthesis. This study provides a new strategy to overcome the bottlenecks of acidogenesis from high-strengthen organic wastes and deciphers the underlying mechanism.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
10
|
Xing D, Wang H, Li S, Jin C, Zhao Y, Gao M, Guo L. Stable isotope labeling and functional gene prediction elucidate the carbon metabolism in fermentative bacteria and microalgae coupling system. WATER RESEARCH 2024; 263:122153. [PMID: 39079194 DOI: 10.1016/j.watres.2024.122153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
The application of the fermentative bacteria and microalgae coupling system in the wastewater treatment has been studied, but there remains few knowledge regarding the organic and inorganic carbon metabolism within this system. In this study, the carbon metabolism of microalgae and fermentative bacteria was elucidated by 13C stable isotope labeling and functional gene prediction, respectively. The 13C glucose and 13C NaHCO3 were used as stable isotope tracers to clarify the organic and inorganic carbon metabolism of microalgae, indicating that approximately 71.5 % of the Acetyl-CoA in microalgae was synthesized from organic carbon sources, while 26.8 % was synthesized through the utilization of inorganic carbon sources. Inorganic carbon sources can enhance the activity of photosynthetic system and facilitate the Calvin cycle. Considering the adequate organic carbon sources and insufficient inorganic carbon sources in the fermentative bacteria and microalgae coupling system, NaHCO3 was added to improve carbon utilization of microalgae. The maximum microalgal lipid yield reached 1130.37 mg/L with 1000 mg/L NaHCO3 supplementation. Functional gene prediction was used to analysis the effect of various carbon composition on the bacterial carbon metabolism. Notably, the additional inorganic carbon sources increased the abundance of bacterial functional genes associated with the fermentation and acetic acids synthesis, which was advantageous for VFAs production and further promoted microalgae growth. This study can gain a deeper understanding of microbial metabolic mechanisms during the operation of fermentative bacteria and microalgae system, and improve its sustained operational stability.
Collapse
Affiliation(s)
- Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
11
|
Zhang P, Wang X, Zhang Z, Wang Y, Zhu T, Liu Y. Hydrocyclone combines with alkali-thermal pretreatment to enhance short-chain fatty acids production from anaerobic fermentation of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122409. [PMID: 39236612 DOI: 10.1016/j.jenvman.2024.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The production of short-chain fatty acids (SCFAs) through anaerobic fermentation of waste activated sludge (WAS) is commonly constrained by limited substrate availability, particularly for WAS with low organic content. Combining the hydrocyclone (HC) selection with alkali-thermal (AT) pretreatment is a promising solution to address this limitation. The results indicated that HC selection modified the sludge properties by enhancing the ratio of mixed liquid volatile suspended solids (MLVSS)/mixed liquid suspended solids (MLSS) by 19.0% and decreasing the mean particle size by 17.4%, which were beneficial for the subsequent anaerobic fermentation process. Under the optimal HC + AT condition, the peak value of SCFAs production reached 4951.9 mg COD/L, representing a 23.2% increase compared to the raw sludge with only AT pretreatment. Mechanism investigations revealed such enhancement beyond mechanical separation. It involved an increase in bound extracellular polymeric substances (EPS) through HC selection and the disruption of sludge spatial structure by AT pretreatment. Consequently, this combination pretreatment accelerated the transfer of particulate organics (i.e., bound EPS and intracellular components) to the supernatant, thus increasing the accessibility of WAS substrate to hydrolytic and acidifying bacteria. Furthermore, the microbial structure was altered with the enrichment of key functional microorganisms, probably due to the facilitation of substrate biotransformation and product output. Meanwhile, the activity of hydrolases and SCFAs-forming enzymes increased, while that of methanogenic enzymes decreased. Overall, this strategy successfully enhanced SCFAs production from WAS while reducing the environmental risks of WAS disposal.
Collapse
Affiliation(s)
- Peiyao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Beijing Enterprises Water Group Limited, Beijing, 100102, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
12
|
Liu C, Li L, Xu L, Zhang T, He Q, Xin X. Enhancing volatile fatty acids production from waste activated sludge: The role of pretreatment by N,N-bis(carboxymethyl)-l-glutamate (GLDA). ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100393. [PMID: 38357479 PMCID: PMC10864876 DOI: 10.1016/j.ese.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
N,N-bis(carboxymethyl)-l-glutamate (GLDA) is an eco-friendly chelating agent that effectively extracts multivalent metal ions from waste activated sludge (WAS) flocs, which could potentially alter their structure. However, the effect of GLDA on the production of volatile fatty acids (VFAs) from WAS is not well known. Here, we demonstrate that pretreatment with GLDA at a concentration of 200 mmol per kg VSS results in a significant increase of 142% in extractable extracellular polymeric substances and enhances the total VFAs yield by 64% compared to untreated samples. We reveal GLDA's capability to mobilize organic-binding multivalent metal ions within sludge flocs. Specifically, post-pretreatment analyses showed the release of 69.1 mg L-1 of Ca and 109.8 mg L-1 of Fe ions from the flocs, leading to a more relaxed floc structure and a reduced apparent activation energy (10.6 versus 20 kJ mol-1) for WAS solubilization. Molecular dynamic simulations further demonstrate GLDA's preferential binding to Fe3+ and Ca2+ over Mg2+. Our study suggests that GLDA pretreatment causes minimal disruption to reactor stability, thereby indicating the stability of microbial community composition. GLDA has emerged as a viable pretreatment agent for enhancing volatile fatty acids production from waste activated sludge.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Tanglong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| |
Collapse
|
13
|
Zhang J, Zhang Y, Lv N, Li F, Li Y, Guo Z. Electrochemistry promotion of Fe(Ⅲ)/Fe(Ⅱ) cycle for continuous activation of PAA for sludge disintegration: Performance and mechanism. ENVIRONMENTAL RESEARCH 2024; 256:119268. [PMID: 38815721 DOI: 10.1016/j.envres.2024.119268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this study, electrochemistry was used to enhance the advanced oxidation of Fe(Ⅱ)/PAA (EC/Fe(Ⅱ)/PAA) to disintegrate waste activated sludge, and its performance and mechanism was compared with those of EC, PAA, EC/PAA and Fe(Ⅱ)/PAA. Results showed that the EC/Fe(Ⅱ)/PAA process effectively improved sludge disintegration and the concentrations of soluble chemical oxygen demand, polysaccharides and nucleic acids increased by 62.85%, 41.15% and 12.21%, respectively, compared to the Fe(Ⅱ)/PAA process. Mechanism analysis showed that the main active species produced in the EC/Fe(Ⅱ)/PAA process were •OH, R-O• and FeIVO2+. During the reaction process, sludge flocs were disrupted and particle size was reduced by the combined effects of active species oxidation, electrochemical oxidation and PAA oxidation. Furthermore, extracellular polymeric substances (EPS) was degraded, the conversion of TB-EPS to LB-EPS and S-EPS was promoted and the total protein and polysaccharide contents of EPS were increased. After sludge cells were disrupted, intracellular substances were released, causing an increase in nucleic acids, humic acids and fulvic acids in the supernatant, and resulting in sludge reduction. EC effectively accelerated the conversion of Fe(Ⅲ) to Fe(Ⅱ), which was conducive to the activation of PAA, while also enhancing the disintegration of EPS and sludge cells. This study provided an effective approach for the release of organic matter, offering significant benefits in sludge resource utilization.
Collapse
Affiliation(s)
- Jing Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Yanping Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| | - Ning Lv
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Fen Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, Heilongjiang, China
| | - Yibing Li
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Zhenjie Guo
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
14
|
Wang Y, Hui X, Wang H, Chen H. Boosting Volatile fatty acids (VFAs) production in fermentation microorganisms through genes expression control: Unraveling the role of iron homeostasis transcription factors. WATER RESEARCH 2024; 259:121850. [PMID: 38851109 DOI: 10.1016/j.watres.2024.121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Iron (Fe0, Fe (II), and Fe (III)) has been previously documented to upregulate the expression of key genes, enhancing the production of volatile fatty acids (VFAs) to achieve waste/wastewater resource recovery. However, the precise mechanism by why iron influences gene expression remains unclear. This study applied iron-assisted fermentation systems to explore the behind enhancing mechanism by constructing regulon networks among genes, microbes, and transcription factors. In iron-conditioned systems, a significant enhancement in VFAs production and upregulation of genes expression (1.19-3.92 folds) related to organic conversion and the electron transfer chain was observed. Besides, gene co-expression network and Procrustes analysis identified ten hub transcription factors (e.g., arsR, crp, iscR, perR) and their major contributors (genus) (e.g., Paludibacter, Acinetobacter, Tolumonas). Further analysis suggested that most of hub transcription factors were implicated in iron homeostasis regulation, which speculated that the induced iron homeostasis transcription factors probably effectively regulated the expression of genes encoding enzymes involving in VFAs production and electron transfer of functional microbes, in the case of Paludibacter, Acinetobacter, and Tolumonas while regulating the iron homeostasis, resulting in the efficient production of VFAs in iron-conditioned systems. This study might contribute to an enhanced understanding of the underlying genetic mechanisms by why iron influences gene expression regulation of microbes, which also provides a genetic theoretical basis for improving system VFAs production and resource recovery.
Collapse
Affiliation(s)
- Yanqiong Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuesong Hui
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongwu Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China.
| | - Hongbin Chen
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Wang Y, Guo H, Li X, Chen X, Peng L, Zhu T, Sun P, Liu Y. Peracetic acid (PAA)-based pretreatment effectively improves medium-chain fatty acids (MCFAs) production from sewage sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100355. [PMID: 38192428 PMCID: PMC10772567 DOI: 10.1016/j.ese.2023.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
Peracetic acid (PAA), known for its environmentally friendly properties as a oxidant and bactericide, is gaining prominence in decontamination and disinfection applications. The primary product of PAA oxidation is acetate that can serve as an electron acceptor (EA) for the biosynthesis of medium-chain fatty acids (MCFAs) via chain elongation (CE) reactions. Hence, PAA-based pretreatment is supposed to be beneficial for MCFAs production from anaerobic sludge fermentation, as it could enhance organic matter availability, suppress competing microorganisms and furnish EA by providing acetate. However, such a hypothesis has rarely been proved. Here we reveal that PAA-based pretreatment leads to significant exfoliation of extracellular polymeric substances (EPS) from sludge flocs and disruption of proteinic secondary structures, through inducing highly active free radicals and singlet oxygen. The production of MCFAs increases substantially to 11,265.6 mg COD L-1, while the undesired byproducts, specifically long-chain alcohols (LCAs), decrease to 723.5 mg COD L-1. Microbial activity tests further demonstrate that PAA pretreatment stimulates the CE process, attributed to the up-regulation of functional genes involved in fatty acid biosynthesis pathway. These comprehensive findings provide insights into the effectiveness and mechanisms behind enhanced MCFAs production through PAA-based technology, advancing our understanding of sustainable resource recovery from sewage sludge.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian, 350116, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
16
|
Xie Y, Liu X, Liu L, Zhou Y, Wang Z, Huang C, He H, Zhai Y. Deep eutectic solvents pretreatment enhances methane production from anaerobic digestion of waste activated sludge: Effectiveness evaluation and mechanism elucidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120615. [PMID: 38518499 DOI: 10.1016/j.jenvman.2024.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.
Collapse
Affiliation(s)
- Yu Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Liming Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China; Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, 612-8135, Japan
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
17
|
Li Y, Campos LC, Hu Y. Microwave pretreatment of wastewater sludge technology-a scientometric-based review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26432-26451. [PMID: 38532216 PMCID: PMC11052793 DOI: 10.1007/s11356-024-32931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This manuscript presents a scientometric review of recent advances in microwave pretreatment processes for sewage sludge, systematically identifying existing gaps and prospects. For this purpose, 1763 papers on the application of microwave technology to sludge pretreatment were retrieved from the Web of Science (WoS) using relevant keywords. These publications were then analyzed using diverse scientometric indices. The results show that research in this field encompasses applications based on the non-thermal effects of microwaves, enhanced effectiveness of anaerobic digestion (AD), and the energy balance of this pretreatment system. Overcoming existing technical challenges, such as the cleavage of extracellular polymers, reducing microwave energy consumption, understanding the non-thermal effects of microwaves, promoting AD of sludge in combination with other chemical and physical methods, and expanding the application of the technology, are the main scientific focuses. Additionally, this paper thoroughly examines both the constraints and potential of microwave pretreatment technology for wastewater treatment.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Civil, Environmental & Geomatic Engineering, University College London, London, WC1E 6BT, UK
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, University College London, London, WC1E 6BT, UK
| | - Yukun Hu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Du J, Tian C, Xiao J, Liu Y, Zhang F, Gao X, Xing B, Zhao Y. Co-fermentation of titanium-flocculated-sludge with food waste towards simultaneous water purification and resource recovery. WATER RESEARCH 2024; 251:121110. [PMID: 38198972 DOI: 10.1016/j.watres.2024.121110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Recovery of resources from domestic sewage and food waste has always been an international-thorny problem. Titanium-based flocculation can achieve high-efficient destabilization, quick concentration and separation of organic matter from sewage to sludge. This study proposed co-fermentation of the titanium-flocculated sludge (Ti-loaded sludge) and food waste towards resource recovery by converting organic matter to value-added volatile fatty acids (VFAs) and inorganic matter to struvite and TiO2 nanoparticles. When Ti-loaded sludge and food waste were co-fermented at a mass ratio of 3:1, the VFAs yield reached 3725.2 mg-COD/L (VFAs/SCOD 91.0%), which was more than 4 times higher than the case of the sludge alone. The 48-day semicontinuous co-fermentation demonstrated stable long-term operation, yielding VFAs at 2529.0 mg-COD/L (VFAs/SCOD 89.8%) and achieving a high CODVFAs/NNH4 of 58.9. Food waste provided sufficient organic substrate, enriching plenty of acid-producing fermentation bacteria (such as Prevotella 7 about 21.0% and Bacteroides about 9.4%). Moreover, metagenomic sequencing analysis evidenced the significant increase of the relative gene abundance corresponding to enzymes in pathways, such as extracellular hydrolysis, substrates metabolism, and VFAs biosynthesis. After fermentation, the precious element P (≥ 99.0%) and extra-added element Ti (≥99.0%) retained in fermented residues, without releasing to VFAs supernatant, which facilitated the direct re-use of VFAs as resource. Through simple and commonly used calcination and acid leaching methodologies, 80.9% of element P and 82.1% of element Ti could be successfully recovered as struvite and TiO2 nanoparticles, respectively. This research provides a strategy for the co-utilization of domestic sludge and food waste, which can realize both reduction of sludge and recovery of resources.
Collapse
Affiliation(s)
- Jinming Du
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Chang Tian
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, 250353, Jinan, Shandong, China
| | - Jianan Xiao
- Shandong Huankeyuan Environmental Testing Co., Ltd, 250013, Shandong, China
| | - Yuyu Liu
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Fenfen Zhang
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Xiaomei Gao
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Baoshan Xing
- Shaanxi Provincial Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China.
| |
Collapse
|
19
|
Li X, Zhao Q, Li L, Mei W, Wang Z, Gao Q, Wang K, Zhou H, Wei L, Jiang J. Enhanced dewaterability of food waste digestate by biochar/potassium ferrate treatments: Performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120268. [PMID: 38364546 DOI: 10.1016/j.jenvman.2024.120268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
The combined process of biochar (BC) and potassium ferrate (PF) offers a fascinating technique for efficient dewatering of digestate. However, the effects of BC/PF treatment on the dewaterability and mechanisms of FWD are still unknown. This study aimed to reveal the impact mechanisms of BC/PF treatment on digestate dewatering performance. Experimental results indicated that BC/PF treatment significantly enhanced the dewaterability of digestate, with the minimum specific resistance to filtration of (1.05 ± 0.02) × 1015 m·kg-1 and water content of 57.52 ± 0.51% being obtained at the concentrations of 0.018 g·g-1 total solid (TS) BC300 and 0.20 g·g-1 TS PF, which were 8.60% and 13.59% lower than PF treatment, respectively. BC/PF treatment proficiently reduced the fractal dimension, bound water content, apparent viscosity, and gel-like network structure strength of digestate, as well as increased the floc size and zeta potential of digestate. BC/PF treatment promoted the conversion of extracellular polymeric substances (EPS) fractions from inner EPS to soluble EPS, increased the fluorescence intensity of the dissolved compounds, and enhanced the hydrophobicity of proteins. Mechanisms investigations showed that BC/PF enhanced dewatering through non-reactive oxygen species pathways, i.e., via strong oxidative intermediate irons species Fe(V)/Fe(IV). BC/PF treatment enhanced the solubilization of nutrients, the inactivation of fecal coliforms, and the mitigation of heavy metal toxicity. The results suggested that BC/PF treatment is an effective digestate dewatering technology which can provide technological supports to the closed-loop treatment of FWD.
Collapse
Affiliation(s)
- Xinwen Li
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Li
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wangyang Mei
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhaoxia Wang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingwei Gao
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- Department of Environment Science and Engineering, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
20
|
Wang Y, Chen F, Guo H, Sun P, Zhu T, Horn H, Liu Y. Permanganate (PM) pretreatment improves medium-chain fatty acids production from sewage sludge: The role of PM oxidation and in-situ formed manganese dioxide. WATER RESEARCH 2024; 249:120869. [PMID: 38007897 DOI: 10.1016/j.watres.2023.120869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/28/2023]
Abstract
Medium-chain fatty acids (MCFAs) production from sewage sludge is mainly restricted by the complex substrate structure, competitive metabolism and low electron transfer rate. This study proposes a novel permanganate (PM)-based strategy to promote sludge degradation and MCFAs production. Results show that PM pretreatment significantly increases MCFAs production, i.e., attaining 12,036 mg COD/L, and decreases the carbon fluxes of electron acceptor (EA)/electron donor (ED) to byproducts. Further analysis reveals that PM oxidation enhances the release and biochemical conversion of organic components via disrupting extracellular polymers (EPS) structure and reducing viable cells ratio, providing directly available EA for chain elongation (CE). The microbial activity positively correlated with MCFAs generation are apparently heightened, while the competitive metabolism of CE (i.e., methanogensis) can be completely inhibited. Accordingly, the functional bacteria related to critical bio-steps and dissimilatory manganese reduction are largely enriched. Further mechanism exploration indicates that the main contributors for sludge solubilization are 1O2 (61.6 %) and reactive manganese species (RMnS), i.e., Mn(V)/Mn(VI) (22.3 %) and Mn(III) (∼16.1 %). As the main reducing product of PM reaction, manganese dioxide (MnO2) can enable the formation of microbial aggregates, and serve as electron shuttles to facilitate the carbon fluxes to MCFAs during CE process. Overall, this strategy can achieve simultaneous hydrogen recovery, weaken competitive metabolisms and provide electron transfer accelerator for CE reactions.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, Karlsruhe 76131, Germany
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
21
|
Wang Y, Zhang Z, Wang X, Guo H, Zhu T, Ni BJ, Liu Y. Percarbonate-strengthened ferrate pretreatment for enhancing short-chain fatty acids production from sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166771. [PMID: 37660812 DOI: 10.1016/j.scitotenv.2023.166771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Sewage sludge management poses a pressing environmental challenge, demanding the implementation of sustainable solutions to facilitate resource recovery. Short-chain fatty acids (SCFAs) serve as valuable chemicals and renewable energy sources, underscoring the importance of maximizing their production to achieve sustainable waste management. Therefore, this study proposes a novel and green strategy, i.e., percarbonate-strengthened ferrate pretreatment to enhance SCFAs synthesis from sewage sludge, because percarbonate could activate ferrate oxidation through providing (bi) carbonate and hydrogen peroxide. Results show that percarbonate largely reduces the required ferrate dosage for fermentation improvement, and their combination exhibits obvious synergistic effects on SCFAs accumulation and sludge reduction. Under the optimal pretreatment conditions, SCFAs production is promoted to 3670.2 mg COD/L, representing a remarkable increase of 5512.4 %, 156.0 % or 395.1 % compared to the control, percarbonate alone or ferrate alone, respectively. Mechanism explorations demonstrate that percarbonate-strengthened ferrate pretreatment significantly enhances sludge solubilization, elevates substrate biodegradability, and alters the physiochemical properties of sludge to favor organics fermentation. The synergistic effects on solid organics release and sludge properties can be attributed to the combined mechanisms of enhanced oxidation and alkaline hydrolysis. Further investigations on metabolic pathways reveal that the combination substantially improves key enzyme activities associated with hydrolysis and SCFAs formation, while severely inhibits that of SCFAs consumption. These findings are further supported by the functional genes coding relevant enzymes. Moreover, the combination alters microbial structures and compositions, leading to the screening and enrichment of key microbes that facilitate SCFAs accumulation. This innovative strategy holds significant promise in advancing sewage sludge management towards a more circular and resource-efficient paradigm.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
22
|
Ye B, Zhang J, Zhou Y, Tang M, You F, Li X, Yang Q, Wang D, Liu X, Duan A, Liu J. Pretreatment of free nitrous acid combined with calcium hypochlorite for enhancement of hydrogen production in waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165774. [PMID: 37499831 DOI: 10.1016/j.scitotenv.2023.165774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
A variety of variables limit the recovery of resources from anaerobic fermentation of waste activated sludge (WAS), hence pretreatment strategies are necessary to be investigated to increase its efficiency. A combination of free nitrous acid (FNA) and calcium hypochlorite [Ca(ClO)2] was employed in this investigation to significantly improve sludge fermentation performance. The yields of cumulative hydrogen for the blank and FNA treatment group were 1.09 ± 0.16 and 7.36 ± 0.21 mL/g VSS, respectively, and 6.59 ± 0.24 [0.03 g Ca(ClO)2/g TSS], 7.75 ± 0.20 (0.06), and 8.58 ± 0.22 (0.09) mL/g VSS for the Ca(ClO)2 groups. The co-treatment greatly boosted hydrogen generation, ranging from 39.97 ± 2.26 to 76.20 ± 4.78 % as compared to the solo treatment. Mechanism analysis demonstrated that the combined treatment disturbed sludge structure and cell membrane permeability even more, which released more organic substrates and enhanced biodegradability of fermentation broth. This paper describes a unique strategy to sludge pretreatment that expands the use of Ca(ClO)2 and FNA in anaerobic fermentation, with implications for sludge disposal and energy recovery.
Collapse
Affiliation(s)
- Boqun Ye
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiamin Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yintong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mengge Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fengyuan You
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junwu Liu
- Hunan Engineering Research Center of Mining Site Pollution Remediation, Changsha 410082, PR China
| |
Collapse
|
23
|
Tang CC, Zhang M, Wang B, Zou ZS, Yao XY, Zhou AJ, Liu W, Ren YX, Li ZH, Wang A, He ZW. Contribution identification of hydrolyzed products of potassium ferrate on promoting short-chain fatty acids production from waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118886. [PMID: 37673008 DOI: 10.1016/j.jenvman.2023.118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Potassium ferrate (K2FeO4) has been extensively employed to promote short-chain fatty acids (SCFAs) production from anaerobic fermentation of waste activated sludge (WAS) because of its potent oxidizing property and formation of alkaline hydrolyzed products (potassium hydroxide, KOH and ferric hydroxide, Fe(OH)3). However, whether K2FeO4 actually works as dual functions of both an oxidizing agent and an alkalinity enhancer during the anaerobic fermentation process remains uncertain. This study aims to identify the contributions of hydrolyzed products of K2FeO4 on SCFAs production. The results showed that K2FeO4 did not execute dual functions of oxidization and alkalinity in promoting SCFAs production. The accumulation of SCFAs using K2FeO4 treatment (183 mg COD/g volatile suspended solids, VSS) was less than that using either KOH (192 mg COD/g VSS) or KOH & Fe(OH)3 (210 mg COD/g VSS). The mechanism analysis indicated that the synergistic effects caused by oxidization and alkalinity properties of K2FeO4 did not happen on solubilization, hydrolysis, and acidogenesis stages, and the inhibition effect caused by K2FeO4 on methanogenesis stage at the initial phase was more severe than that of its hydrolyzed products. It was also noted that the inhibition effects of K2FeO4 and its hydrolyzed products on the methanogenesis stage could be relieved during a longer sludge retention time, and the final methane yields using KOH or KOH & Fe(OH)3 treatment were higher than that using K2FeO4, further confirming that dual functions of K2FeO4 were not obtained. Therefore, K2FeO4 may not be an alternative strategy for enhancing the production of SCFAs from WAS compared to its alkaline hydrolyzed products. Regarding the strong oxidization property of K2FeO4, more attention could be turned to the fates of refractory organics in the anaerobic fermentation of WAS.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Min Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bo Wang
- Center for Electromicrobiology, Section for Microbiology, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| | - Zheng-Shuo Zou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xing-Ye Yao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
24
|
Yang J, Wang W, Yang X, Long S, Tian X, Chen L, Liu X, Yang Q, Zhou T, Wang D. Enhancing acidogenic fermentation of waste activated sludge via urea hydrogen peroxide pretreatment: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129483. [PMID: 37454957 DOI: 10.1016/j.biortech.2023.129483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Improving the anaerobic treatment performance of waste activated sludge (WAS) to achieve resource recovery is an indispensable requirement to reduce carbon emissions, minimize and stabilize biosolids. In this study, a novel strategy by using urea hydrogen peroxide (UHP) to enhance SCFAs production through accelerating WAS disintegration, degrading recalcitrant substances and alleviating competitive suppression of methanogens. The SCFAs production and acetate proportion rose from 436.9 mg COD/L and 31.3% to 3102.6 mg COD/L and 54.1%, respectively, when UHP grew from 0 to 80 mg/g TSS. Mechanism investigation revealed that OH, O2 and urea were the major contributors to accelerate WAS disintegration with the sequence of OH> O2 > urea. Function microbes related to acidification and genes associated with acetate production ([EC:2.3.1.8] and [EC:2.7.2.1]) were upregulated while genes encoding propionic acid production ([EC:6.4.1.3] and [EC:6.2.1.1]) were downregulated. These results raised the application prospects of UHP in WAS resource utilization.
Collapse
Affiliation(s)
- Jingnan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Xianli Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiaohang Tian
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lizhen Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qiliang Yang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Tao Zhou
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
25
|
Xiang Z, Huang X, Chen H, Liu B, Liu Z, Dong W, Wang H. Insights into thermal hydrolysis pretreatment temperature for enhancing volatile fatty acids production from sludge fermentation: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 379:129032. [PMID: 37031805 DOI: 10.1016/j.biortech.2023.129032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
To reveal the impact of thermal hydrolysis pretreatment (THP) temperature on the unclear mechanisms of volatile fatty acids (VFAs) production, four groups were established with different temperatures (100, 120, 140 and 160 °C), and high throughput sequencing technology was utilized. The results indicated that the optimal VFAs production occurred at 140 °C. Moreover, as the THP temperature increased, the proportion of acetic acid also increased, accounting for 10.8% to 26.7% of the VFAs, compared to only 4.9% in the control group. Mechanism investigations revealed that THP facilitated the hydrolysis and release of biodegradable organic matter. Moreover, the abundance of VFAs production and hydrolytic microorganisms and related metabolic functional genes expression were evidently improved by THP. Overall, this study deepens the understanding of the mechanisms through which different THP temperatures stimulate the production of VFAs through acidogenic fermentation, providing technical support for future THP application in sludge treatment.
Collapse
Affiliation(s)
- Zhuangzhuang Xiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hanfeng Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Biming Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ziming Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| |
Collapse
|
26
|
Xin X, Xie J, Wang Y, Li L, Li W, Lv S, Wen Z, He J, Xin Y. Sludge source-redox mediators obtainment and availability for enhancing bioelectrogenesis and acidogenesis: Deciphering characteristics and mechanisms. WATER RESEARCH 2023; 236:119974. [PMID: 37084579 DOI: 10.1016/j.watres.2023.119974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Anaerobic biological treatment was regarded as one of promising options for realizing concurrent WAS reduction, stabilization and bioenergy/bioresource recycle. But the relatively low treatment efficiency limited its spreading application toward larger scale considerably in China. Aimed at such barrier, this study offered a novel enhancing strategy for achieving high-efficiency of bioenergy/bioresource recycle from WAS anaerobic treatment via improving bioelectrogenesis/acidogenesis using sludge source-redox mediators (SSRMs). SSRMs not only facilitated bioeletrogenesis with an increasing efficiency of 36% for voltage output and 39% for bioelectricity bioconversion, but also enhanced acidogenesis of WAS with a mean elevating efficiency of 37.5% of volatile fatty acids (VFAs) production within 5 d Mechanistic investigations indicated that SSRMs had a potential influence on improving the protein and carbohydrate metabolisms-related genes' expression for enhancing bioelectrogenesis and acidogenesis. Moreover, SSRMs exerted roles of electrochemical "catalysts" or as terminal electron acceptors with affecting functional proteins of complexes of Ⅰ and Ⅳ in electron transfer chains for improving electron transfer efficiency. Meanwhile, the core members' abundance, microbial diversity and community distributive evenness were prompted concurrently for carrying out superior bioelectrogenesis and acidogenesis. A schematic illustration was established for demonstrating the mechanism of SSRMs for enhancing bioelectrogenesis and acidogenesis via changing microbial metabolism functions, enhancing electron transfer efficiency, and regulating functional genes' expression of functional proteins (up-regulating cytochrome c oxidase and down-regulating-NADH dehydrogenase). This study provided an effective enhancing strategy for facilitating WAS bioconversion to bioenergy/bioresource with well-process sustainability.
Collapse
Affiliation(s)
- Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China; Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China.
| | - Jiaqian Xie
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Yanfang Wang
- North China municipal engineering design &research institute CO., LTD, Tianjin 300381, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ying Xin
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, PR China; National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, PR China
| |
Collapse
|
27
|
Yang Q, Xu W, Yang Y, Liu X, Su Q, Zhang Y, Wang J, Luo X, Zhou M, Luo W, Ge H. Mechanistic study of the effect of potassium ferrate and straw fiber on the enhancement of strength in cement-based solidified municipal sludge. Sci Rep 2023; 13:7660. [PMID: 37169857 PMCID: PMC10175490 DOI: 10.1038/s41598-023-34869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
The high content of organic matter in sludge is the primary reason for the poor solidifying effect and excessive dosage of the cement base. In this study, potassium ferrate and straw fiber are utilized to synergistically enhance the solidifying effect of the cement and elaborate the strength mechanisms. Among them, potassium ferrate was selected to oxidize and crack the structure of organic matter in sludge and consume part of organic matter; straw fiber was used as an adsorption material to absorb some of the organic material and reduce its interference with the cement hydration reaction; the skeleton function of straw fiber in solidified sludge was used to improve the final solidified sludge strength. It is shown that the presence of these two additives significantly improved the cement solidification strength and reduced the moisture content of the solidified body. Moreover, the moisture content and strength followed an obvious linear relationship (adjusted R2 = 0.92), with the strength increasing as the moisture content decreased. After pretreatment with potassium ferrate, the free water content in the dewatered sludge increased by 4.5%, which was conducive to the adequate hydration reaction with cement. The analysis using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), and mercury intrusion porosimetry (MIP) revealed potassium ferrate synergizes with straw fibers to promote the production of hemihydrate gypsum and gismondine. However, hemihydrate gypsum, calcium carbonate, and gismondine resulted in structural swelling, which was confirmed by the microscopic morphology and pore structure analysis. However, the adverse effects due to swelling were offset by the increase in strength brought by the above crystalline substances.
Collapse
Affiliation(s)
- Qiyong Yang
- Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang, 332005, Jiangxi, China.
- College of Resources & Environment, Jiujiang University, Jiujiang, 332005, Jiangxi, China.
| | - Weixin Xu
- Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang, 332005, Jiangxi, China
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Yahong Yang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Xinxia Liu
- Jiujiang Three Gorges, Water Co. LTD, Jiujiang, 332005, Jiangxi, China
| | - Qizheng Su
- Jiujiang Three Gorges, Water Co. LTD, Jiujiang, 332005, Jiangxi, China
| | - Yangfan Zhang
- College of Resources & Environment, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Ji Wang
- College of Resources & Environment, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Xiang Luo
- College of Resources & Environment, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Mengjing Zhou
- College of Resources & Environment, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Weiping Luo
- College of Resources & Environment, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| | - Haoran Ge
- College of Resources & Environment, Jiujiang University, Jiujiang, 332005, Jiangxi, China
| |
Collapse
|
28
|
Cheng B, Wang Y, Zhang D, Wu D, Zan F, Ma J, Miao L, Wang Z, Chen G, Guo G. Thiosulfate pretreatment enhancing short-chain fatty acids production from anaerobic fermentation of waste activated sludge: Performance, metabolic activity and microbial community. WATER RESEARCH 2023; 238:120013. [PMID: 37148694 DOI: 10.1016/j.watres.2023.120013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
A novel strategy based on thiosulfate pretreatment for enhancing short-chain fatty acids (SCFAs) from anaerobic fermentation (AF) of waste activated sludge (WAS) was proposed in this study. The results showed that the maximal SCFA yield increased from 206.1 ± 4.7 to 1097.9 ± 17.2 mg COD/L with thiosulfate dosage increasing from 0 to 1000 mg S/L, and sulfur species contribution results revealed that thiosulfate was the leading contributor to improve SCFA yield. Mechanism exploration disclosed that thiosulfate addition largely improved WAS disintegration, due to thiosulfate serving as a cation binder for removing organic-binding cations, especially Ca2+ and Mg2+, dispersing the extracellular polymeric substance (EPS) structure and further entering into the intracellularly by stimulated carrier protein SoxYZ and subsequently caused cell lysis. Typical enzyme activities and related functional gene abundances indicated that both hydrolysis and acidogenesis were remarkably enhanced while methanogenesis was substantially suppressed, which were further strengthened by the enriched hydrolytic bacteria (e.g. C10-SB1A) and acidogenic bacteria (e.g. Aminicenantales) but severely reduced methanogens (e.g. Methanolates and Methanospirillum). Economic analysis confirmed that thiosulfate pretreatment was a cost-effective and efficient strategy. The findings obtained in this work provide a new thought for recovering resource through thiosulfate-assisted WAS AF for sustainable development.
Collapse
Affiliation(s)
- Boyi Cheng
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Da Zhang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Di Wu
- Centre for Environmental and Energy Research, Department of Green Chemistry and Technology, Ghent University Global Campus, Ghent University, Ghent B9000, Belgium.
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Jie Ma
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Lei Miao
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Guanghao Chen
- Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China.
| |
Collapse
|