1
|
Deng W, Zhang X, Liu W, Wang X, Wang Z, Liu J, Zhai W, Wang J, Zhao Z. Deciphering the effects of long-term exposure to conventional and biodegradable microplastics on the soil microbiome. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137890. [PMID: 40073571 DOI: 10.1016/j.jhazmat.2025.137890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Despite recent advances in the understanding of the impacts of microplastics (MPs) on the soil microbiome under short-term exposure, little information is known regarding the long-term ecological effects of MPs in soil, especially biodegradable MPs (BMPs). Here, we systematically compared the effects of four prevalent microplastics, including two conventional MPs (CMPs) and two BMPs, on the soil microbiome over short- and long-term exposure durations. The soil microbial community were not significantly affected by the MP addition under short-term exposure; however, the soil microbial composition was obviously impacted by MP exposure under long-term exposure, some MP-adapted microbes (e.g., the phyla Protobacteria and Actinobacteria) were enriched but the phyla Acidobacteriota declined. These results indicated that the effects of the MP exposure on the soil microbiome were time dependent. PERMANOVA analysis demonstrated that the exposure time played a more important role in the variation in soil microbiome than the polymer type. The soil microbes which were reshaped by MPs were specialized in genetic potential of lipid metabolism and xenobiotics degradation and metabolism and weakened in microbial genetic information process. The carbon metabolic capacity and nitrogen transformation of soil microbes were disturbed by MPs under long-term exposure. Compared with CMPs, many more MPs derivatives, such as dissolved organic matter and low molecular-weight oligomers, were released from BMPs during the long-term degradation process in soil; thus, BMPs had a stronger effect on the soil microbiome than CMPs under long-term exposure. This study underscores the potential risk of the replacement of conventional plastics with biodegradable plastics.
Collapse
Affiliation(s)
- Wenbo Deng
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xiaoqi Zhang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Xingfei Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zihan Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jinxian Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Zhai
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Zhibo Zhao
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Espinosa LDOS, Lacerda AL, Oddone MC, Kessler F, Proietti MC. Interaction of elasmobranchs with litter in South Brazil: ingestion and oviposition patterns. MARINE POLLUTION BULLETIN 2025; 216:117992. [PMID: 40279775 DOI: 10.1016/j.marpolbul.2025.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Elasmobranchs, one of the most endangered animal groups, have been affected by different anthropogenic stressors, including marine litter. To better understand the interactions of elasmobranchs with litter we analyzed the gastrointestinal tract of sharks and examined skate nest composition in southern Brazil. Among 47 sharks caught in longline fisheries, three had ingested mesoplastic items (FO = 6.4 %); a subsample of 18 of these sharks was assessed for microplastic ingestion, revealing 34 microplastics in 12 individuals (FO = 66 %). Gillnet-captured sharks (n = 7) only ingested three microplastics (FO = 42.85 %). Sixteen skate nests examined for litter interaction presented a total of 269 egg capsules and 1676 litter items. The FO of litter in nests was 100 %, with plastic being the predominant material (96.71 %), mainly fishing lines (85.98 %). While litter ingestion by sharks was less frequent than other groups, litter prevalence in skate nests was high and primarily linked to fishing activities.
Collapse
Affiliation(s)
| | - Ana Luzia Lacerda
- Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil; UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Maria Cristina Oddone
- Instituto de Ciências Biológicas, Setor de Morfologia, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Felipe Kessler
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Maíra Carneiro Proietti
- Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil; The Ocean Cleanup, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Niu L, Shen J, Li Y, Chen Y, Zhang W, Wang L. Plastic additives alter the influence of photodegradation on biodegradation of polyethylene/polypropylene polymers in natural rivers. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137542. [PMID: 39938381 DOI: 10.1016/j.jhazmat.2025.137542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
The biodegradation of microplastics in river sediments was subject to the prior photodegradation in surface water and can be greatly affected by polymers and additives. However, the understanding of the effects of additives on the cascade photo- and biodegradation processes remains limited. In this study, the characteristics of morphology, functional groups, and indictive degrading bacteria of polyethylene (PE) and polypropylene (PP) were detected to analyze the effects of Dioctyl phthalate (DOP), Bisphenol A (BPA) and Benzotriazole (BTA), on the single and cascade photo- and biodegradation processes of PP/PE films (PP/PEP, PP/PEB, PP/PEPB). The results showed that photodegradation enhanced the biodegradation, by creating smaller fractions which induced the proliferation of new PP/PE-degrading bacteria (P-bacteria). Compared to the general PP/PE-degrading bacteria, P-bacteria displayed higher standard betweenness centrality and carbon metabolism. Among the three additives, DOP most obviously promoted photo- and biodegradation processes, followed by BPA. BTA inhibited the photodegradation to biodegradation by absorbing UV light. Overall, these findings provide insights into the nonnegligible joint influence of photodegradation and additives on the biodegradation of PP/PE resins in natural rivers.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China; Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Changsha 430068, PR China
| | - Jiayan Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China.
| | - Yamei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Chen S, Huang Q, Qi R, He G, Wang Y. Effects of BDE-47 injection on vertical redox zonation and microbial community assemblage in capped sediment columns. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104613. [PMID: 40398112 DOI: 10.1016/j.jconhyd.2025.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs) are of significant interest in ecological risk assessment and bioremediation in sediments. However, their impact on microbial diversity and activity in capped lake sediments remains unclear, despite the widespread use of capping in lake management. In this study, two series of sediment columns were established to examine vertical redox zonation at 2-cm intervals from 2 to 16 cm and evaluate the impact of artificially injected PBDEs on microbial communities during a 60-day capping period. Variations in redox indicators, including nitrate, sulfate, total dissolved iron, and total dissolved manganese in porewater, showed that the capping layer (1 cm, d = 75 μm) increased the redox potential of subsurface sediments. BDE-47 was primarily concentrated in the injection layer (4-6 cm), but over time, it exhibited upward migration (0.4-0.7 cm) and a broader distribution range (0.5-1.0 cm), with no consistent decrease in the total BDE-47 mass. Microbial α-diversity declined, whereas microbial network analysis revealed increased connectivity and enhanced cooperation within communities in the BDE group. Notably, negative correlations between microbial taxa and iron exclusively in the BDE group, suggesting that BDE-47 counteracted capping-induced iron reduction. In contrast, sulfate showed an opposite trend with iron between the BDE and noBDE groups. Methanolinea [Euryarchaeota] and certain co-metabolizing dechlorinating bacteria, such as Flavobacterium dominated in the capping layer, were correlated to BDE-47. These findings provide the first evidence of redox-regulated natural attenuation of PBDEs in capped lake sediments, shedding light on their environmental impact and guiding sediment management strategies.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Qiujin Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Rao Qi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Ge He
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Yafen Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China; MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China.
| |
Collapse
|
5
|
Chen Y, Li Y, Niu L. Microbial degradation potential of microplastics in urban river sediments: Assessing and predicting the enrichment of PE/PP-degrading bacteria using SourceTracker and machine learning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125755. [PMID: 40378793 DOI: 10.1016/j.jenvman.2025.125755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/24/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025]
Abstract
Microplastic mitigation strategies that adapt to various actual aquatic environments require the ability to predict their microbial degradation potential. However, the sources and enrichment characteristics of the degrading bacteria in the plastisphere from river sediments, and their relationship with environmental conditions remain poorly understood. Here, SourceTracker analysis was adopted to investigate the sources and distribution characteristics of total PE/PP-degrading bacteria (TD) and local PE/PP-degrading bacteria (LD) in the plastisphere and surrounding sediments of the urban river. To better characterize the enrichment property of PE/PP-degrading bacteria in the plastisphere, two specific indices, the enrichment ratios of TD (ERTD) and LD (ERLD) separately, were first defined in this study. Furthermore, machine learning models were constructed to predict these enrichment ratios. The results showed that river sediments represented an important reservoir of PE/PP-degrading bacteria within the plastisphere (representing 81.8 %). Both the enrichment ratio of TD (R2 = 0.720) and the enrichment ratio of LD (R2 = 0.537) showed a significant positive correlation with the carbonyl index of PE/PP, indicating that the enrichment ratios can effectively reflect the microbial degradation potential of PE/PP in sediments. Compared to gradient boosting regression tree, multilayer perceptron, and support vector machines, the random forest (RF) model demonstrated superior accuracy in predicting both the enrichment ratio of TD (R2Test = 0.954, MSE = 0.180) and the enrichment ratio of LD (R2Test = 0.924, MSE = 0.009. It was also observed that the enrichment ratios were higher in river bends, indicating that river bends were potential hot zones for microbial degradation of PE/PP. SHAP analysis highlighted that the key environmental factors exhibited synergistic effects on both enrichment ratios of TD and LD. Finally, the concentration range of key environmental factors that maximize the enrichment ratio was determined. This study constitutes a powerful example of predicting microplastic microbial degradation potential across various scientific disciplines and provides a basis for the effective management of microplastics.
Collapse
Affiliation(s)
- Yamei Chen
- State Key Laboratory of Water Cycle and Water Security in River Basin , College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yi Li
- State Key Laboratory of Water Cycle and Water Security in River Basin , College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Lihua Niu
- State Key Laboratory of Water Cycle and Water Security in River Basin , College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
6
|
Xu L, An X, Jiang H, Pei R, Li Z, Wen J, Pi W, Zhang Q. A novel Gordonia sp. PS3 isolated from the gut of Galleria mellonella larvae: Mechanism of polystyrene biodegradation and environmental toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137219. [PMID: 39893981 DOI: 10.1016/j.jhazmat.2025.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Plastic pollution is a global concern, with polystyrene (PS) being a major source of plastic waste. In this study, a PS-degrading bacterial strain, Gordonia sp. PS3, was isolated from the gut of Galleria mellonella larvae. After 40 days, strain PS3 exhibited a 33.59 ± 1.12 % degradation rate of PS-microplastics (PS-MPs). The biodegradation mechanism of PS by strain PS3 was investigated using genomics, molecular docking, and metabolomics. Degradation resulted in a significant decrease in molecular weight, disappearance of characteristic aromatic peaks, and the appearance of new functional groups (e.g., hydroxyl and carbonyl), indicating oxidative depolymerization and enhanced hydrophilicity. Four key enzymes involved in PS degradation were identified, with alkane 1-monooxygenase initiating cleavage of C-C bonds in PS and cytochrome P450 monooxygenase catalyzing oxidation of the aromatic ring. Metabolomics analysis revealed upregulation of proline, branched-chain amino acids, and polyamines, indicating oxidative stress response and energy acquisition during PS degradation. The PS degradation products showed no significant adverse effects on Arabidopsis thaliana growth, and PS residues were less harmful to G. mellonella larvae than untreated PS-MPs. This study presents a novel strain for PS biodegradation and provides new insights into the microbial degradation mechanism of PS and the safety of its degradation products.
Collapse
Affiliation(s)
- Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huoyong Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rui Pei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiehao Wen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjie Pi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Zhou M, Luo C, Zhang J, Li R, Chen J, Ren P, Tang Y, Suo Z, Chen K. Potential risk of microplastics in plateau karst lakes: Insights from metagenomic analysis. ENVIRONMENTAL RESEARCH 2025; 270:120984. [PMID: 39884534 DOI: 10.1016/j.envres.2025.120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Microplastic (MP) pollution has become one of global concern. While MP pollution in lakes has been well studied, research on MP sources, distribution, and ecological risks in the Tibetan Plateau is limited. We systematically investigated the MP abundance and distribution in alpine travertine lakes in Jiuzhai nature reserve located in east edge of Qinghai-Tibetan Plateau and assessed the distributions of microbiomes, antibiotic resistance genes (ARGs), and virulence factor genes (VFGs) in water, sediments, and MPs, using macrogenomics. MP abundance was 20.27-58.80 n/L in water and 583.33-996.67 n/kg in sediments. MPs were dominantly fibrous and transparent. The particle size distribution was 0.1-0.5 mm for MPs in water, and 0.5-1 mm in sediments. MPs were mainly composed of polyethylene and polyethylene terephthalate. The microbial community of MP biofilms differed from that in the surrounding environmental medium, and Proteobacteria were more abundant in biofilm than in water and sediment. MP biofilms exhibited more cooperative behavior with microorganisms in water than with those in sediments. MPs were selectively enriched for ARGs and VFGs, and MP biofilms had a higher diversity of ARGs, the most abundant isoform being msbA, which is a multidrug resistance gene. VFGs were more abundant in MP biofilms than in water and sediment. The study results are useful for understanding MP sources and ecological risks in plateau karst lakes and provide a valuable dataset and theoretical basis for studies on MP pollution in other alpine calcareous lakes.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Chunyan Luo
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Jiawen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Ruixin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Juelin Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Zhirong Suo
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China.
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China.
| |
Collapse
|
8
|
Yang G, Quan X, Shou D, Guo X, Ouyang D, Zhuang L. New insights into microbial degradation of polyethylene microplastic and potential polyethylene-degrading bacteria in sediments of the Pearl River Estuary, South China. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137061. [PMID: 39764953 DOI: 10.1016/j.jhazmat.2024.137061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 03/12/2025]
Abstract
Microplastics (MPs) are widely distributed pollutants in various ecosystems, and biodegradation is a crucial process for removal of MPs from environments. Pearl River Estuary, one of the largest estuaries in China, is an important reservoir for MPs with polyethylene MPs (PE-MPs) as the most abundant MPs. Here, biodegradation of PE-MPs and the potential PE-degrading bacteria in sediments of eight major outlets of Pearl River Estuary were firstly investigated. Results showed that biodegradation extent of PE-MPs varied for different sourced sediments, with highest extent for Hongqimen sediment and lowest extent for Jitimen sediment. Selective enrichment of specific bacteria occurred on PE-MPs with Pseudomonadaceae as the predominant family. Potential PE-degrading bacteria of Pseudomonas, Vulcaniibacterium, Cupriavidus, Bacillus were selectively enriched on PE-MPs and their abundance showed positive correlations with degradation extent of PE-MPs, indicating a vital role of them in degrading PE-MPs. Diverse pure cultured strains affiliated to the genera Bacillus, Pseudomonas, Priestia, Lysinibacillus, Marinobacter, Stutzerimonas and Achromobacter isolated from the plastispheres were capable of degrading PE-MPs rapidly, and members in Bacillus showed highest efffeciency of PE-MPs degradation with 6.5 % weight loss of PE-MPs within 40 days. This study provides a new perspective on the natural degradation potential by microbial communities in sediments.
Collapse
Affiliation(s)
- Guiqin Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Xiaoyun Quan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Danyang Shou
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Xin Guo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Dongkun Ouyang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Li Zhuang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
9
|
Miao L, Jin Z, Ci H, Adyel TM, Deng X, You G, Xu Y, Wu J, Yao Y, Kong M, Hou J. Dynamic changes of leachates of aged plastic debris under different suspended sand concentrations and their toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136874. [PMID: 39700944 DOI: 10.1016/j.jhazmat.2024.136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Plastic pollution in aquatic environments poses significant ecological risks, particularly through released leachates. While traditional or non-biodegradable plastics (non-BPs) are well-studied, biodegradable plastics (BPs) have emerged as alternatives that are designed to degrade more rapidly within the environment. However, research on the ecological risks of the leachates from aged BPs in aquatic environments is scarce. This controlled laboratory study investigated the leachate release processes and associated toxicity of traditional non-BPs, i.e., polyethylene terephthalate (PET) and polypropylene (PP) and BPs, i.e., polylactic acid (PLA) combined with polybutylene adipate terephthalate (PBAT) and starch-based plastic (SBP) under different aging time and suspended sand concentrations (0, 50, 100, 250, and 500 mg/L). The results indicated that BPs release significantly higher levels of dissolved organic carbon (DOC) than those of non-BPs, particularly at elevated suspended sand concentrations. The DOC concentrations in PLA+PBAT leachate reached 2.69 mg/L, surpassing those of PET and PP. Additionally, BPs released organic matter of larger molecular weight and protein-like substances. Toxicity tests showed that leachates from BPs inhibited the activity of Daphnia magna more than those from non-BPs. At a suspended sand concentration of 500 mg/L, PLA+PBAT leachate caused a 30 % inhibitory rate of Daphnia magna. Despite enhanced degradability, leachates from BPs may pose increased environmental risks in ecosystems with high suspended sand concentrations. Comprehensive ecological risk assessments are essential for effectively managing and mitigating these hazards of plastic pollution.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhuoyi Jin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hanlin Ci
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200434, PR China
| | - Tanveer M Adyel
- Centre for Nature Positive Solutions, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
10
|
Xu W, Lam C, Wang Y, Wan SH, Ho PH, Myung J, Yung CCM. Temporal succession of marine microbes drives plastisphere community convergence in subtropical coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125572. [PMID: 39725195 DOI: 10.1016/j.envpol.2024.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Marine plastic pollution is a pervasive environmental issue, with microplastics serving as novel substrates for microbial colonization in aquatic ecosystems. This study investigates the succession of plastisphere communities on four common plastic types (polyethylene, polypropylene, polyethylene terephthalate, and polystyrene) in subtropical coastal waters of Hong Kong SAR. Over a 42-day period, we analysed the temporal development of microbial communities using a three-domain universal metabarcoding method. Our results reveal that temporal succession is a stronger driver of community structure than plastic type, with prokaryotic communities converging across different plastics as biofilms mature. Despite this convergence, plastisphere communities remain distinct from planktonic communities throughout the experiment, suggesting that plastics create unique ecological niches in marine environments. We observed differences in diversity patterns and community composition among prokaryotic, eukaryotic, and chloroplastic communities, highlighting the importance of multi-domain analyses in plastisphere research. Functional predictions suggest potential roles of prokaryotic communities in biogeochemical cycling and possible pathogenicity, highlighting the ecological and public health implications of plastisphere formation. This study provides valuable insights into the dynamics of microbial colonization across domains on marine plastics and enhances our understanding of how these anthropogenic substrates influence microbial ecology in marine ecosystems.
Collapse
Affiliation(s)
- Wenqian Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cindy Lam
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yijin Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Siu Hei Wan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pun Hang Ho
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
11
|
Huang C, Wang L, Wu WM, Capowiez Y, Qiao Y, Hou D. When plastisphere and drilosphere meet: Earthworms facilitate microbiome and nutrient turnover to accelerate biodegradation of agricultural plastic films. ENVIRONMENT INTERNATIONAL 2025; 196:109309. [PMID: 39904096 DOI: 10.1016/j.envint.2025.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Agricultural plastic mulching films have been an environmental concern for decades. The effects of the interactions between the anthropogenic plastisphere and other soil biospheres, particularly that of earthworms, on the fate of plastics remain poorly understood. Here, we investigated the decomposition of buried nonbiodegradable low-density polyethylene (LDPE) versus biodegradable PBTA/PLA copolymers in the presence of earthworms (Amynthas cortices) in dynamic microcosms. Earthworms significantly enhanced the biodegradation of plastic films in situ, as confirmed by mass reduction, surface modification, and changes in the molecular weights of films. Notably, the PBTA/PLA films exhibited a 1.41-fold increase in mass loss and a 5.69% reduction in the number-average molecular weight when incubated with earthworms. Earthworms influenced the microbial assembly within the plastisphere by increasing both bacterial and fungal biodiversity, as well as their network complexity. The time-decay patterns in the abundance of keystone degrader taxa, including the genera Noviherbaspirillum, Rhizobacter, and Mortierella, were mitigated by earthworms over the 60-day period. Additionally, earthworms preferentially consumed recalcitrant dissolved organic matter in LDPE and PBAT/PLA plastisphere soils, thereby increasing the bioavailability of components that serve as nutrient supplies for plastisphere microbiomes. Our findings demonstrate that earthworms enhance the decomposition of plastics in soils via cross-species interplay within the plastisphere and drilosphere, contributing not only to soil conditioning and biodiversity but also to plastic biodegradation in natural agroecosystems.
Collapse
Affiliation(s)
- Caide Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305-4020, United States
| | - Yvan Capowiez
- INRAE, UMR EMMAH INRAE-Université d'Avignon, Site Agroparc, 84914, Avignon, Cedex 09, France
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Chen Y, Huang M, Fu Y, Gao T, Gan Z, Meng F. Construction of polylactic acid plastisphere microbiota for enhancing nitrate reduction in denitrification biofilters. BIORESOURCE TECHNOLOGY 2025; 417:131853. [PMID: 39577778 DOI: 10.1016/j.biortech.2024.131853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Developing methods for reusing biodegradable plastics, like polylactic acid (PLA) straws, is highly needed. Here, PLAs were applied to substitute traditional commercial ceramic media (CCM) in denitrification biofilters. During long-term operation, replacing CCM with PLA significantly enhanced nitrate removal efficiency from 32.68-54.39 % to 41.64-66.26 %. Ammonia nitrogen effluent maintained below 0.5 mg/L in all reactors. PLA plastisphere shaped unique microbial communities, i.e., denitrifying bacteria Bacillus, Pseudomonas and Acidovorax preferred to inhabit or degrade PLA. Compared to CCM biofilms, PLA diminished the importance of stochastic process in biofilm assembly of PLA plastisphere. Metagenomic sequencing suggested that PLA biofilms possessed greater metabolic capabilities of denitrification and glycolysis compared to CCM. Additionally, Bacillus strain P01 isolated from PLA plastisphere demonstrated strong PLA depolymerization. Overall, this study revealed that PLA serves as carbon source and biofilm carrier, offering a promising approach to integrating plastic reuse with wastewater treatment.
Collapse
Affiliation(s)
- Yanxi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Mengzhen Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Tianyu Gao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| |
Collapse
|
13
|
Bai X, Li K, Xu L, Zhang G, Zhang M, Huang Y. Direct evidence for selective microbial enrichment with plastic degradation potential in the plastisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176576. [PMID: 39343400 DOI: 10.1016/j.scitotenv.2024.176576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Plastisphere, characterized by microbial colonization on plastic debris, has attracted concern with its adverse environmental effects. The microbial features have been increasingly investigated; however, there lacks direct evidence for microplastics serving as carbon sources and enriching plastic-degrading microorganisms. Here, we obtained microbial communities from soil microplastics, analyzed the dissimilarity compared with soil, and characterized the plastic-degrading potential of isolates from plastisphere. Results showed the plastisphere communities significantly differed from soil communities and exhibited a higher relative abundance of Nocardia and Rhodococcus. To verify the selective enrichment of plastic-degrading microorganisms in the plastisphere, culture-based strategies were employed to evaluate the polyethylene (PE) degradation potential of two isolates Nocardia asteroides No.11 and Rhodococcus hoagii No.17. They could grow solely on PE and led to significant weight loss. FTIR and SEM analysis revealed the formation of new functional groups and the destruction of structural integrity on PE surfaces. Genes related to PE biodegradation were identified by genome-wide sequencing thus recognizing relevant enzymes and elucidating potential pathways. Overall, this report combined culture-free and culture-based approaches to confirm the plastic degradation potential of selectively enriched microorganisms in soil plastisphere, providing a positive perspective toward promoting microplastic biodegradation in farmland soil by enhancing natural microbial processes.
Collapse
Affiliation(s)
- Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
14
|
Miao L, Deng X, Qin X, Huang Y, Su L, Adyel TM, Wang Z, Lu Z, Luo D, Wu J, Hou J. High-altitude aquatic ecosystems offer faster aging rate of plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175827. [PMID: 39197763 DOI: 10.1016/j.scitotenv.2024.175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
While research on the aging behavior of plastics in aquatic systems is extensive, studies focusing on high-altitude ecosystems, characterized by higher solar radiation and lower temperatures, remain limited. This study investigated the long-term aging behavior of non-biodegradable plastics (non-BPs), namely polyethylene terephthalate (PET) and polypropylene (PP) and biodegradable plastics (BPs), specifically polylactic acid plus polybutylene adipate-co-terephthalate (PLA + PBAT) and starch-based plastic (SBP), in a tributary of the Yarlung Zangbo River on the high-altitude Tibetan Plateau. Over 84 days of field aging, all four types of plastics exhibited initial rapid aging followed by deceleration. This aging process can be divided into two phases: rapid surface oxidation aging and an aging plateau phase. Notably, PP aged at a rate comparable to BPs, contrary to expectations of faster aging for BPs. Compared to low-altitude aquatic ecosystems, plastics in this study showed a faster aging rate. This was primarily due to intense ultraviolet radiation causing severe photoaging. Furthermore, the lower temperatures contributed to the formation of thinner biofilms. These thinner biofilms exhibited a reduced capacity to block light, further exacerbating the photoaging process of plastics. Statistical analysis results indicated that temperature, total nitrogen TN, and total phosphorus TP were likely the main water quality parameters influencing plastic aging. The varying effects of water properties and nutrients underscore the complex interaction of water quality parameters in high-altitude environments. Given the delicate nature of the high-altitude environment, the environmental impact of plastics, especially BPs, warrants careful consideration.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xiangchao Qin
- Eco-environmental Monitoring and Scientific Research Center, Yellow River Basin Ecology and Environment Administration, Zhengzhou 450004, People's Republic of China.
| | - Yi Huang
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Libin Su
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia; Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, Nanjing 210029, People's Republic of China
| | - Zhao Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region 850030, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
15
|
Yan Z, Chen Y, Su P, Liu S, Jiang R, Wang M, Zhang L, Lu G, Yuan S. Microbial carbon metabolism patterns of microplastic biofilm in the vertical profile of urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122422. [PMID: 39243653 DOI: 10.1016/j.jenvman.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics (MPs) can provide a unique niche for microbiota in waters, thus regulating the nutrients and carbon cycling. Following the vertical transport of MPs in waters, the compositions of attached biofilm may be dramatically changed. However, few studies have focused on the related ecological function response, including the carbon metabolism. In this study, we investigated the microbial carbon metabolism patterns of attached biofilm on different MPs in the vertical profile of urban rivers. The results showed that the carbon metabolism capacity of biofilm on the degradable polylactic acid (PLA) MPs was higher than that in the non-degradable polyethylene terephthalate (PET) MPs. In the vertical profile, the carbon metabolism rates of biofilm on two MPs both decreased with water depth, being 0.74 and 0.91 folds in bottom waters of that in surface waters. Specifically, the utilization of polymers, carbohydrate, and amine of PLA biofilm was significantly inhibited in the bottom waters, which were not altered on the PET. Compared with surface waters, the microbial metabolism function index of PLA biofilm was inhibited in deep waters, but elevated in the PET biofilm. In addition, the water quality parameters (e.g., nutrients) in the vertical profile largely shaped carbon metabolism patterns. These findings highlight the distinct carbon metabolism patterns in aquatic environments in the vertical profile, providing new insights into the effects of MPs on global carbon cycle.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Pengpeng Su
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
| | - Shiqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
16
|
Pang R, Wang X, Zhang L, Lei L, Han Z, Xie B, Su Y. Genome-Centric Metagenomics Insights into the Plastisphere-Driven Natural Degradation Characteristics and Mechanism of Biodegradable Plastics in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18915-18927. [PMID: 39380403 DOI: 10.1021/acs.est.4c04965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Biodegradable plastics (BPs) are pervasively available as alternatives to traditional plastics, but their natural degradation characteristics and microbial-driven degradation mechanisms are poorly understood, especially in aquatic environments, the primary sink of plastic debris. Herein, the three-month dynamic degradation process of BPs (the copolymer of poly(butylene adipate-co-terephthalate) and polylactic acid (PLA) (PBAT/PLA) and single PLA) in a natural aquatic environment was investigated, with nonbiodegradable plastics polyvinyl chloride, polypropylene, and polystyrene as controls. PBAT/PLA showed the weight loss of 47.4% at 50 days and severe fragmentation within two months, but no significant decay for other plastics. The significant increase in the specific surface area and roughness and the weakening of hydrophobicity within the first month promoted microbial attachment to the PBAT/PLA surface. Then, a complete microbial succession occurred, including biofilm formation, maturation, and dispersion. Metagenomic analysis indicated that plastispheres selectively enriched degraders. Based on the functional genes involved in BPs degradation, a total of 16 high-quality metagenome-assembled genomes of degraders (mainly Burkholderiaceae) were recovered from the PBAT/PLA plastisphere. These microbes showed the greatest degrading potential at the biofilm maturation stage and executed the functions by PLA_depolymerase, polyesterase, hydrolase, and esterase. These findings will enhance understanding of BPs' environmental behavior and microbial roles on plastic degradation.
Collapse
Affiliation(s)
- Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Liangmao Zhang
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Lang Lei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Liu S, Zhang Z, Hao J, Zhao C, Han F, Xiong Q, Wang X, Du C, Xu H. Plastic debris mediates bacterial community coalescence by breaking dispersal limitation in the sediments of a large river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124603. [PMID: 39047888 DOI: 10.1016/j.envpol.2024.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Plastic debris has recently been proposed as a novel habitat for bacterial colonization, which can raise perturbations in bacterial ecology after burial in riverine sediments. However, community coalescence, as a prevalent process involving the interrelationships of multiple communities and their surrounding environments, has been rarely discussed to reveal the impact of the plastisphere on sedimentary bacterial community. This study analyzed the bacterial community in plastic debris and sediment along the Nujiang River, elucidating the role of the plastisphere in mediating community coalescence in sediments. Our results demonstrated that the plastisphere and sedimentary bacterial communities exhibited distinct biogeography along the river (r = 0.694, p < 0.01). Based on overlapped taxa and SourceTracker, the extent of coalescence between adjacent communities was in following orders: plastic-plastic (0.589) > plastic-sediment (0.561) > sediment-sediment (0.496), indicating the plastisphere promoted bacterial community coalescence along the river. Flow velocity and geographic distance were the major factors driving the plastisphere changes, suggesting that the plastisphere were vulnerable to dispersal. The null model and the neutral model provided additional support for the higher immigration ability of the plastisphere to overcome dispersal limitation, highlighting the potential importance of the plastisphere in community coalescence. Network analysis indicated the critical role of keystone species (Proteobacteria, Bacteroidetes, and Gemmatimonadetes) in mediating the coalescence between sedimentary bacterial community and the plastisphere. In summary, the plastisphere could mediate the coalescence of bacterial communities by overcoming dispersal limitation, which provides new perspectives on the plastisphere altering bacterial ecology in riverine sediments.
Collapse
Affiliation(s)
- Sheng Liu
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China.
| | - Zixuan Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Jie Hao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Qingrong Xiong
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenggong Du
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Hongzhe Xu
- Dept of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
18
|
Wang Z, Liu L, Zhou G, Yu H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Chen J. Impact of microplastics on microbial community structure in the Qiantang river: A potential source of N 2O emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124755. [PMID: 39151781 DOI: 10.1016/j.envpol.2024.124755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the spatial distribution of microplastics (MPs) and the features of the bacterial community in the Qiantang River urban river. Surface water samples from the Qiantang River were analyzed for this purpose. The results of the 16S high-throughput sequencing indicated that the microbial community diversity of MPs was significantly lower than in natural water but higher than in natural substrates. The biofilm of MPs was mainly composed of Enterobacteriaceae (28.00%), Bacillaceae (16.25%), and Phormidiaceae (6.75%). The biodiversity on MPs, natural water, and natural substrates varied significantly and was influenced by seasonal factors. In addition, the presence of MPs hindered the denitrification process in the aquatic environment and intensified N2O emission when the nitrate concentration was higher than normal. In particular, polyethylene terephthalate (PET) exhibited a 12% residue of NO3--N and a 4.2% accumulation of N2O after a duration of 48 h. Further findings on gene abundance and cell viability provided further confirmation that PET had a considerable impact on reducing the expression of nirS (by 0.34-fold) and nosZ (by 0.53-fold), hence impeding the generation of nicotinamide adenine dinucleotide (NADH) (by 0.79-fold). Notably, all MPs demonstrated higher the nirK gene abundances than the nirS gene, which could account for the significant accumulation of N2O. The results suggest that MPs can serve as a novel carrier substrate for microbial communities and as a potential promoter of N2O emission in aquatic environments.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Gang Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, 15008, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
19
|
Wu W, Zhou X, Zhao Z, Wang C, Jiang H. Impacts of microplastic concentrations and sizes on the rheology properties of lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174294. [PMID: 38925378 DOI: 10.1016/j.scitotenv.2024.174294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The information concerning the effects of microplastics (MPs) on lake sediment environment, particularly structural properties, is still scant. This study aimed to investigate the effect of MPs characteristics (including concentration and size) on the sediment rheological properties, which affected sediment resuspension. After 60-day experiments, it was found that (0.5-2 %) MP in sediments decreased sediment viscosity, yield stress, and flow point shear stress by 14.7-38.4 %, 3.9-24.1 % and 13.5-36.5 %. Besides, sediment (with 50 μm MP addition) yield stress and flow point shear stress also dropped by 1.1-14.1 % and 9.6-12.9 % compared to 100 and 200 μm MP addition. The instability in sediment structure could be attributed to MP-induced EPS production and cation exchange capacity (CEC) changes. Accordingly, the decreases in rheological properties induced by different sizes and concentrations MPs might facilitate the sediments resuspension with wind and wave disturbances. The study shed light on previously overlooked environmental issues caused by MPs characteristics from a new perspective, thereby enhancing our understanding about the environmental behavior of MPs in lake sediment ecosystems.
Collapse
Affiliation(s)
- Wenbin Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zheng Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
20
|
Yuan F, Zou X, Liao Q, Wang T, Zhang H, Xue Y, Chen H, Ding Y, Lu M, Song Y, Fu G. Insight into the bacterial community composition of the plastisphere in diverse environments of a coastal salt marsh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124465. [PMID: 38942280 DOI: 10.1016/j.envpol.2024.124465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
The microbial community colonized on microplastics (MPs), known as the 'plastisphere', has attracted extensive concern owing to its environmental implications. Coastal salt marshes, which are crucial ecological assets, are considered sinks for MPs. Despite their strong spatial heterogeneity, there is limited information on plastisphere across diverse environments in coastal salt marshes. Herein, a 1-year field experiment was conducted at three sites in the Yancheng salt marsh in China. This included two sites in the intertidal zone, bare flat (BF) and Spartina alterniflora vegetation area (SA), and one site in the supratidal zone, Phragmites australis vegetation area (PA). Petroleum-based MPs (polyethylene and expanded polystyrene) and bio-based MPs (polylactic acid and polybutylene succinate) were employed. The results revealed significant differences in bacterial community composition between the plastisphere and sediment at all three sites examined, and the species enriched in the plastisphere exhibited location-specific characteristics. Overall, the largest difference was observed at the SA site, whereas the smallest difference was observed at the BF site. Furthermore, the MP polymer types influenced the composition of the bacterial communities in the plastisphere, also exhibiting location-specific characteristics, with the most pronounced impact observed at the PA site and the least at the BF site. The polybutylene succinate plastisphere bacterial communities at the SA and PA sites were quite different from the plastispheres from the other three MP polymer types. Co-occurrence network analyses suggested that the bacterial community network in the BF plastisphere exhibited the highest complexity, whereas the network in the SA plastisphere showed relatively sparse interactions. Null model analyses underscored the predominant role of deterministic processes in shaping the assembly of plastisphere bacterial communities across all three sites, with a more pronounced influence observed in the intertidal zone than in the supratidal zone. This study enriches our understanding of the plastisphere in coastal salt marshes.
Collapse
Affiliation(s)
- Feng Yuan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Qihang Liao
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing, 210098, China.
| | - Hexi Zhang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Yue Xue
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Hongyu Chen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Yongcheng Ding
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Ming Lu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Yuyang Song
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
| | - Guanghe Fu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Meng L, Liang L, Shi Y, Yin H, Li L, Xiao J, Huang N, Zhao A, Xia Y, Hou J. Biofilms in plastisphere from freshwater wetlands: Biofilm formation, bacterial community assembly, and biogeochemical cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134930. [PMID: 38901258 DOI: 10.1016/j.jhazmat.2024.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Microorganisms can colonize to the surface of microplastics (MPs) to form biofilms, termed "plastisphere", which could significantly change their physiochemical properties and ecological roles. However, the biofilm characteristics and the deep mechanisms (interaction, assembly, and biogeochemical cycles) underlying plastisphere in wetlands currently lack a comprehensive perspective. In this study, in situ biofilm formation experiments were performed in a park with different types of wetlands to examine the plastisphere by extrinsic addition of PVC MPs in summer and winter, respectively. Results from the spectroscopic and microscopic analyses revealed that biofilms attached to the MPs in constructed forest wetlands contained the most abundant biomass and extracellular polymeric substances. Meanwhile, data from the high-throughput sequencing showed lower diversity in plastisphere compared with soil bacterial communities. Network analysis suggested a simple and unstable co-occurrence pattern in plastisphere, and the null model indicated increased deterministic process of heterogeneous selection for its community assembly. Based on the quantification of biogeochemical cycling genes by high-throughput qPCR, the relative abundances of genes involving in carbon degradation, carbon fixation, and denitrification were significantly higher in plastisphere than those of soil communities. This study greatly enhanced our understanding of biofilm formation and ecological effects of MPs in freshwater wetlands.
Collapse
Affiliation(s)
- Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou 310058, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Longrui Liang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yansong Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haitao Yin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Li Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiamu Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nannan Huang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Angang Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yangrongchang Xia
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Nava V, Leoni B, Arienzo MM, Hogan ZS, Gandolfi I, Tatangelo V, Carlson E, Chea S, Soum S, Kozloski R, Chandra S. Plastic pollution affects ecosystem processes including community structure and functional traits in large rivers. WATER RESEARCH 2024; 259:121849. [PMID: 38851112 DOI: 10.1016/j.watres.2024.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Plastics in aquatic ecosystems rapidly undergo biofouling, giving rise to a new ecosystem on their surface, the 'plastisphere.' Few studies quantify the impact of plastics and their associated community on ecosystem traits from biodiversity and functional traits to metabolic function. It has been suspected that impacts on ecosystems may depend on its state but comparative studies of ecosystem responses are rare in the published literature. We quantified algal biomass, bacterial and algal biodiversity (16S and 18S rRNA), and metabolic traits of the community growing on the surface of different plastic polymers incubated within rivers of the Lower Mekong Basin. The rivers selected have different ecological characteristics but are similar regarding their high degree of plastic pollution. We examined the effects of plastics colonized with biofilms on ecosystem production, community dark respiration, and the epiplastic community's capability to influence nitrogen, phosphorus, organic carbon, and oxygen in water. Finally, we present conceptual models to guide our understanding of plastic pollution within freshwaters. Our findings showed limited microalgal biomass and bacterial dominance, with potential pathogens present. The location significantly influenced community composition, highlighting the role of environmental conditions in shaping community development. When assessing the effects on ecosystem productivity, our experiments showed that biofouled plastics led to a significant drop in oxygen concentration within river water, leading to hypoxic/anoxic conditions with subsequent profound impacts on system metabolism and the capability of influencing biogeochemical cycles. Scaling our findings revealed that plastic pollution may exert a more substantial and ecosystem-altering impact than initially assumed, particularly in areas with poorly managed plastic waste. These results highlighted that the plastisphere functions as a habitat for biologically active organisms which play a pivotal role in essential ecosystem processes. This warrants dedicated attention and investigation, particularly in sensitive ecosystems like the Mekong River, which supports a rich biodiversity and the livelihoods of 65 million people.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Barbara Leoni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy.
| | - Monica M Arienzo
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, United States
| | - Zeb S Hogan
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Valeria Tatangelo
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Emily Carlson
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States
| | - Seila Chea
- Institute of Technology of Cambodia, PO Box 86, Russian Conf. Blvd. Phnom Penh, Cambodia
| | - Savoeurn Soum
- Royal University of Phnom Penh, Russian Federation Blvd (110), Phnom Penh, Cambodia
| | - Rachel Kozloski
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, United States
| | - Sudeep Chandra
- Global Water Center and Biology Department, University of Nevada, 1664 N. Virginia, Reno, NV 89557-0314, United States.
| |
Collapse
|
23
|
Al-Tarshi M, Dobretsov S, Al-Belushi M. Bacterial Communities across Multiple Ecological Niches (Water, Sediment, Plastic, and Snail Gut) in Mangrove Habitats. Microorganisms 2024; 12:1561. [PMID: 39203403 PMCID: PMC11356523 DOI: 10.3390/microorganisms12081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial composition across substrates in mangroves, particularly in the Middle East, remains unclear. This study characterized bacterial communities in sediment, water, Terebralia palustris snail guts, and plastic associated with Avicennia marina mangrove forests in two coastal lagoons in the Sea of Oman using 16S rDNA gene MiSeq sequencing. The genus Vibrio dominated all substrates except water. In the gut of snails, Vibrio is composed of 80-99% of all bacterial genera. The water samples showed a different pattern, with the genus Sunxiuqinia being dominant in both Sawadi (50.80%) and Qurum (49.29%) lagoons. There were significant differences in bacterial communities on different substrata, in particular plastic. Snail guts harbored the highest number of unique Operational Taxonomic Units (OTUs) in both lagoons, accounting for 30.97% OTUs in Sawadi and 28.91% OTUs in Qurum, compared to other substrates. Plastic in the polluted Sawadi lagoon with low salinity harbored distinct genera such as Vibrio, Aestuariibacter, Zunongwangia, and Jeotgalibacillus, which were absent in the Qurum lagoon with higher salinity and lower pollution. Sawadi lagoon exhibited higher species diversity in sediment and plastic substrates, while Qurum lagoon demonstrated lower species diversity. The principal component analysis (PCA) indicates that environmental factors such as salinity, pH, and nutrient levels significantly influence bacterial community composition across substrates. Variations in organic matter and potential anthropogenic influences, particularly from plastics, further shape bacterial communities. This study highlights the complex microbial communities in mangrove ecosystems, emphasizing the importance of considering multiple substrates in mangrove microbial ecology studies. The understanding of microbial dynamics and anthropogenic impacts is crucial for shaping effective conservation and management strategies in mangrove ecosystems, particularly in the face of environmental changes.
Collapse
Affiliation(s)
- Muna Al-Tarshi
- Marine Conservation Department, DG of Nature Conservation, Environment Authority, P.O. Box 323, Muscat 100, Oman
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
- UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 P.O. Box 50, Muscat 123, Oman
| | - Mohammed Al-Belushi
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman;
- Central Laboratory for Food Safety, Food Safety and Quality Center, Ministry of Agricultural, Fisheries Wealth & Water Resources, P.O. Box 3094, Airport Central Post, Muscat 111, Oman
| |
Collapse
|
24
|
Zeng H, Wang Y, Zhao Z, Zhu D, Xia H, Wei Y, Kuang P, An D, Chen K, Li R, Lei Y, Sun G. Travertine deposition rather than tourism activity is the primary contributor to the microplastic risks in alpine karst lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135192. [PMID: 39002479 DOI: 10.1016/j.jhazmat.2024.135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are emerging as anthropogenic vectors to form plastisphere, facilitating microbiome colonization and pathogenic dissemination, thus contributing to environmental and health crises across various ecosystems. However, a knowledge gap persists regarding MPs risks and their driving factors in certain unique and vulnerable ecosystems, such as Karst travertine lakes, some of which are renowned World Natural Heritage Sites under ever-increasing tourism pressure. We hypothesized that tourism activities serve as the most important factor of MPs pollution, whereas intrinsic features, including travertine deposition can exacerbate potential environmental risks. Thus, metagenomic approaches were employed to investigate the geographical distribution of the microbiome, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their combined environmental risks in Jiuzhaigou and Huanglong, two famous tourism destinations in Southwest China. The plastisphere risks were higher in Huanglong, contradicting our hypothesis that Jiuzhaigou would face more crucial antibiotic risks due to its higher tourist activities. Specifically, the levels of Lipopolysaccharide Lewis and fosD increased by sevenfold and 20-fold, respectively, from upstream to downstream in Huanglong, whereas in Jiuzhaigou, no significant accrual was observed. Structural equation modeling results showed that travertine deposition was the primary contributor to MPs risks in alpine karstic lakes. Our findings suggest that tourism has low impact on MPs risks, possibly because of proper management, and that travertine deposition might act as an MPs hotspot, emphasizing the importance of considering the unique aspects of travertine lakes in mitigating MPs pollution and promoting the sustainable development of World Natural Heritage Sites.
Collapse
Affiliation(s)
- Hanyong Zeng
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijin Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhen Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Dalin Zhu
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongxia Xia
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yihua Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peigang Kuang
- Jiuzhaigou Nature Reserve Administration Bureau, Jiuzhaigou 623402, China
| | - Dejun An
- Huanglong Nature Reserve Administration Bureau, Songpan 623300, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruilong Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanbao Lei
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Geng Sun
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
25
|
Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100407. [PMID: 38544950 PMCID: PMC10965471 DOI: 10.1016/j.ese.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024]
Abstract
Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain
- Agroecology and Food Institute (IAA), University of Vigo – Campus Auga, 32004, Ourense, Spain
| | - Mattia Parati
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
- FlexSea Ltd., London, EC2A4NE, United Kingdom
| | - Brian Johnston
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - Elif Erdem
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Xufeng Liu
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine, University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Peter Lindblad
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
26
|
Zhang D, Yu H, Yu X, Yang Y, Wang C, Wu K, Niu M, He J, He Z, Yan Q. Mechanisms underlying the interactions and adaptability of nitrogen removal microorganisms in freshwater sediments. ADVANCED BIOTECHNOLOGY 2024; 2:21. [PMID: 39883300 PMCID: PMC11740870 DOI: 10.1007/s44307-024-00028-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 01/31/2025]
Abstract
Microorganisms in eutrophic water play a vital role in nitrogen (N) removal, which contributes significantly to the nutrient cycling and sustainability of eutrophic ecosystems. However, the mechanisms underlying the interactions and adaptation strategies of the N removal microorganisms in eutrophic ecosystems remain unclear. We thus analyzed field sediments collected from a eutrophic freshwater ecosystem, enriched the N removal microorganisms, examined their function and adaptability through amplicon, metagenome and metatranscriptome sequencing. We found that the N removal activities could be affected through potential competition and inhibition among microbial metabolic pathways. High-diversity microbial communities generally increased the abundance and expression of N removal functional genes. Further enrichment experiments showed that the enrichment of N removal microorganisms led to a development of simplified but more stable microbial communities, characterized by similar evolutionary patterns among N removal microorganisms, tighter interactions, and increased adaptability. Notably, the sustained provision of NH4+ and NO2- during the enrichment could potentially strengthen the interconnections among denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) processes. Moreover, the identification of shared metabolic traits among denitrification, anammox and DNRA implies important cooperative associations and adaptability of N removal microorganisms. Our findings highlight the microbial interactions affect the adaptive strategies of key microbial taxa involved in N removal.
Collapse
Affiliation(s)
- Dandan Zhang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Huang Yu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
- School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Xiaoli Yu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yuchun Yang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Cheng Wang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Kun Wu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Mingyang Niu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.
| |
Collapse
|
27
|
Chen Y, Niu L, Li Y, Wang Y, Shen J, Zhang W, Wang L. Distribution characteristics and microbial synergistic degradation potential of polyethylene and polypropylene in freshwater estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134328. [PMID: 38643575 DOI: 10.1016/j.jhazmat.2024.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.
Collapse
Affiliation(s)
- Yamei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yingjie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiayan Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
28
|
Xue T, Yan X, Li W, Xu J, Yang X. Synergistic effect and microbial community structure of waste-activated sludge and kitchen waste solids residue mesophilic anaerobic co-digestion. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3163-3177. [PMID: 39150418 DOI: 10.2166/wst.2024.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/17/2024] [Indexed: 08/17/2024]
Abstract
Anaerobic co-digestion was conducted on the solid residues after three-phase separation of kitchen waste (KWS) and waste-activated sludge (WAS), the synergistic effects and process performance were studied during co-digestion at different ratios of KWS to WAS. KWS and WAS mix ratios of 0:1, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1 and 1:0 (based on TS). The results showed that a ratio of KWS to WAS of 1:1 got a very high methane recovery with a methane yield of 310.45 ± 30.05 mL/g VSadded. The highest concentration of free ammonia among all reaction systems was only 70.23 ± 5.53 mg/L, which was not enough to produce ammonia inhibition in the anaerobic co-digestion system. However, when the KWS content exceeded 50%, methane inhibition and prolongation of the lag phase were observed due to the accumulation of volatile fatty acids (VFAs), and during the lag phase. Microbial community analysis showed that various bacterial groups involved in acid production and hydrolysis were mainly dominated by phylum Firmicutes, Chloroflexi, Proteobacteria and Bacteroidetes. Hydrogenotrophic methanogen was found to dominate all archaeal communities in the digesters. Co-digestion of KWS with WAS significantly increased the relative abundance of Methanobacterium compared with anaerobic digestion of WAS alone.
Collapse
Affiliation(s)
- Tongzhan Xue
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, Anhui 230601, China
| | - Xiangyu Yan
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China E-mail:
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, Anhui 230601, China
| | - Jiajia Xu
- School of Architectural Engineering, Tongling University, Tongling, Anhui 244000, China
| | - Xinlei Yang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
| |
Collapse
|
29
|
Rai P, Mehrotra S, Gautam K, Verma R, Anbumani S, Patnaik S, Priya S, Sharma SK. A polylactic acid-carbon nanofiber-based electro-conductive sensing material and paper-based colorimetric sensor for detection of nitrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38712986 DOI: 10.1039/d3ay02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Plastics are ubiquitous in today's lifestyle, and their indiscriminate use has led to the accumulation of plastic waste in landfills and oceans. The waste accumulates and breaks into micro-particles that enter the food chain, causing severe threats to human health, wildlife, and the ecosystem. Environment-friendly and bio-based degradable materials offer a sustainable alternative to the vastly used synthetic materials. Here, a polylactic acid and carbon nanofiber-based membrane and a paper-based colorimetric sensor have been developed. The membrane had a surface area of 3.02 m2 g-1 and a pore size of 18.77 nm. The pores were evenly distributed with a pore volume of 0.0137 cm3 g-1. The membrane was evaluated in accordance with OECD guidelines and was found to be safe for tested aquatic and terrestrial models. The activated PLA-CNF membrane was further used as a bio-based electrode for the electrochemical detection of nitrates (NO3-) in water samples with a detection limit of 0.046 ppm and sensitivity of 1.69 × 10-4 A ppm-1 mm-2, whereas the developed paper-based colorimetric sensor had a detection limit of 156 ppm for NO3-. This study presents an environment-friendly, low-carbon footprint disposable material for sensing applications as a sustainable alternative to plastics.
Collapse
Affiliation(s)
- Pawankumar Rai
- Food Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| | - Srishti Mehrotra
- Food Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Krishna Gautam
- Environmental Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Verma
- Drug & Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Environmental Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Satyakam Patnaik
- Drug & Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Priya
- Systems Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sandeep K Sharma
- Food Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Bocci V, Galafassi S, Levantesi C, Crognale S, Amalfitano S, Congestri R, Matturro B, Rossetti S, Di Pippo F. Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. Front Microbiol 2024; 15:1395401. [PMID: 38699475 PMCID: PMC11064797 DOI: 10.3389/fmicb.2024.1395401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources.
Collapse
Affiliation(s)
- Valerio Bocci
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Silvia Galafassi
- Water Research Institute, CNR-IRSA, National Research Council, Verbania, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Caterina Levantesi
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Simona Crognale
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Stefano Amalfitano
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Roberta Congestri
- Laboratory of Biology of Algae, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Bruna Matturro
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Simona Rossetti
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Francesca Di Pippo
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| |
Collapse
|
31
|
Deng W, Wang Y, Wang Z, Liu J, Wang J, Liu W. Effects of photoaging on structure and characteristics of biofilms on microplastic in soil: Biomass and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133726. [PMID: 38341883 DOI: 10.1016/j.jhazmat.2024.133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Understanding of the environmental behaviors of microplastics is limited by a lack of knowledge about how photoaging influences biofilm formation on microplastics in soil. Here, original microplastics (OMPs) and photoaged-microplastics (AMPs) were incubated in soil to study the effect of photoaging on formation and characteristics of biofilm on the poly (butylene succinate) microplastics. Because photoaging decreased the hydrophobicity of the microplastic, the biomass of biofilm on the OMPs was nearly twice that on the AMPs in the early stage of incubation. However, the significance of the substrate on biomass in the biofilm declined as the plastisphere developed. The bacterial communities in the plastisphere were distinct from, and less diverse than, those in surrounding soil. The dominant genera in the OMPs and AMPs plastispheres were Achromobacter and Burkholderia, respectively, indicating that photoaging changed the composition of the bacterial community of biofilm at the genus level. Meantime, photoaging decreased the complexity and stability of the plastisphere bacterial community network. Results of Biolog ECO-microplate assays and functional prediction from amplicons showed that photoaging treatment enhanced the carbon metabolic capacity of the microplastic biofilm. This study provides new insights into the formation of plastispheres in soil.
Collapse
Affiliation(s)
- Wenbo Deng
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yajing Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zihan Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jinxian Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Wenjuan Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
32
|
Pawano O, Jenpuntarat N, Streit WR, Pérez-García P, Pongtharangkul T, Phinyocheep P, Thayanukul P, Euanorasetr J, Intra B. Exploring untapped bacterial communities and potential polypropylene-degrading enzymes from mangrove sediment through metagenomics analysis. Front Microbiol 2024; 15:1347119. [PMID: 38638899 PMCID: PMC11024650 DOI: 10.3389/fmicb.2024.1347119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
The versatility of plastic has resulted in huge amounts being consumed annually. Mismanagement of post-consumption plastic material has led to plastic waste pollution. Biodegradation of plastic by microorganisms has emerged as a potential solution to this problem. Therefore, this study aimed to investigate the microbial communities involved in the biodegradation of polypropylene (PP). Mangrove soil was enriched with virgin PP sheets or chemically pretreated PP comparing between 2 and 4 months enrichment to promote the growth of bacteria involved in PP biodegradation. The diversity of the resulting microbial communities was accessed through 16S metagenomic sequencing. The results indicated that Xanthomonadaceae, unclassified Gaiellales, and Nocardioidaceae were promoted during the enrichment. Additionally, shotgun metagenomics was used to investigate enzymes involved in plastic biodegradation. The results revealed the presence of various putative plastic-degrading enzymes in the mangrove soil, including alcohol dehydrogenase, aldehyde dehydrogenase, and alkane hydroxylase. The degradation of PP plastic was determined using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Water Contact Angle measurements. The FTIR spectra showed a reduced peak intensity of enriched and pretreated PP compared to the control. SEM images revealed the presence of bacterial biofilms as well as cracks on the PP surface. Corresponding to the FTIR and SEM analysis, the water contact angle measurement indicated a decrease in the hydrophobicity of PP and pretreated PP surface during the enrichment.
Collapse
Affiliation(s)
- Onnipa Pawano
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Mahidol University and Osaka Collaborative Research Center on Bioscience and Biotechnology, Bangkok, Thailand
| | - Nuttarin Jenpuntarat
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Mahidol University and Osaka Collaborative Research Center on Bioscience and Biotechnology, Bangkok, Thailand
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Pablo Pérez-García
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
- Molecular Microbiology, Institute of General Microbiology, Kiel University, Kiel, Germany
| | | | - Pranee Phinyocheep
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Parinda Thayanukul
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Faculty of Science, Center of Excellence for Vectors and Vector-Borne Diseases, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Jirayut Euanorasetr
- Laboratory of Biotechnological Research for Energy and Bioactive Compound (BREBC), Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Mahidol University and Osaka Collaborative Research Center on Bioscience and Biotechnology, Bangkok, Thailand
| |
Collapse
|
33
|
Huang H, Shi Y, Gong Z, Wang J, Zheng L, Gao S. Revealing the characteristics of biofilms on different polypropylene plastic products: Comparison between disposable masks and takeaway boxes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133400. [PMID: 38198871 DOI: 10.1016/j.jhazmat.2023.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
The increasingly severe plastic pollution issue was intensified by the enormous plastic emissions into ecosystems during the Covid-19 pandemic. Plastic wastes entering the environment were swiftly exposed to microorganisms and colonized by biofilms, and the plastic-biofilm combined effects further influenced the ecosystem. However, the non-woven structure of disposable masks discarded carelessly during the COVID-19 pandemic was different from those of plastics with flat surface. To reveal the potential effects of plastic structure on colonized biofilms, white disposable surgical masks (DM) and transparent takeaway boxes (TB), both made of polyethylene, were selected for the incubation of organic conditioning films and biofilms. The results indicated that the non-woven structure of disposable mask was destroyed by the influence of water infiltration and biofilm colonization. The influence of surface structure on conditioning films led to a relatively higher proportion of tryptophan-like substances on DM than those on TB samples. Therefore, biofilms with significantly higher microbial biomass and carbon metabolic capacity were formed on DM than those on TB samples owing to the combined effects of their differences in surface structure and conditioning films. Moreover, abundant functional microorganisms associated with stress tolerance, carbon metabolism and biofilm formation were observed in biofilms on disposable mask. Combining with the results of partial least squares regression analysis, the selective colonization of functional microorganisms on disposable masks with uneven surface longitudinal fluctuation was revealed. Although the predicted functions of biofilms on disposable masks and takeaway boxes showed more similarity to each other than to those of free-living aquatic microorganisms owing to the existence of the plastisphere, biofilms on disposable masks may potentially trigger environmental risks different from those of takeaway boxes by unique carbon metabolism and abundant biomass.
Collapse
Affiliation(s)
- Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jiahao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lezhou Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
34
|
Zhang H, Huang Y, Shen J, Xu F, Hou H, Xie C, Wang B, An S. Mechanism of polyethylene and biodegradable microplastic aging effects on soil organic carbon fractions in different land-use types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168961. [PMID: 38042203 DOI: 10.1016/j.scitotenv.2023.168961] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Microplastics (MPs) are widely present in terrestrial ecosystems, but knowledge about the aging characteristics of MPs in different land-use types and their impact on soil organic carbon fractions is still limited. Polyethylene (PE) and biodegradable MPs (Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC + PBAT, Bio)), at 0 %, 0.03 %, and 0.3 % (w/w) dosages, were added to grassland, farmland, and facility soils for eight-week incubation. The aging degree of MPs was explored by quantifying the carbonyl index (CI). Soil organic C fractions such as SOC, particulate organic carbon (POC), mineral-associated organic carbon (MAOC), and microbial-derived C were analyzed. MPs underwent rapid aging after incubation, and the CI value for 0.03 % PE-MPs increased from 0.05 to 0.27 (farmland) and 0.26 (facility) (p < 0.05). The aging degree of 0.03 % and 0.3 % Bio-MPs was most significant in grassland, with CI decreasing by 46.6 % and 69.0 %, respectively. The CI of MPs were negatively correlated with their dosage. The 0.03 % and 0.3 % PE-MPs decreased soil organic carbon (SOC) content by 7.4 % and 8.2 % in grassland, and 3.0 % and 6.0 % in the facility (p < 0.05). POC content of farmland and facility soil was negatively correlated with PE-MPs' CI (p < 0.05). The 0.03 % PE and Bio-MPs decreased fungal necromass C (FNC) by 0.40 and 0.05 g kg-1 in grassland and 0.48 and 0.21 g kg-1 in farmland. Besides, the dosage of MPs regulated FNC content through soil pH, nutrients, and extracellular enzyme activity, either directly or indirectly, ultimately affecting the soil C pool. Therefore, this study demonstrates that MPs strongly affect SOC dynamics by influencing soil microbial enzyme activity and fungal necromass.
Collapse
Affiliation(s)
- Haixin Zhang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China.
| | - Jikai Shen
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Fengjing Xu
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Hongyang Hou
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Chunjiao Xie
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Baorong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
35
|
Chen Y, Yan Z, Zhang Y, Zhu P, Jiang R, Wang M, Wang Y, Lu G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132951. [PMID: 37951174 DOI: 10.1016/j.jhazmat.2023.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peiyuan Zhu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
36
|
Chen Y, Yan Z, Zhou Y, Zhang Y, Jiang R, Wang M, Yuan S, Lu G. Dynamic evolution of antibiotic resistance genes in plastisphere in the vertical profile of urban rivers. WATER RESEARCH 2024; 249:120946. [PMID: 38043355 DOI: 10.1016/j.watres.2023.120946] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) can vertically transport in the aquatic environment due to their aging and biofouling, forming distinct plastisphere in different water layers. However, even though MPs have been regarded as hotspots for antibiotic resistance genes (ARGs), little is known about the propagation and transfer of ARGs in plastisphere in waters, especially in the vertical profile. Therefore, this study investigated the dynamic responses and evolution of ARGs in different plastisphere distributed vertically in an urbanized river. The biofilm biomass in the polylactic acid (PLA) plastisphere was relatively higher than that in the polyethylene terephthalate (PET), showing depth-decay variations. The ARGs abundance in plastisphere were much higher than that in the surrounding waters, especially for the PLA. In the vertical profiles, the ARGs abundance in the PET plastisphere increased with water depths, while the highest abundance of ARGs in the PLA mostly appeared at intermediate waters. In the temporal dynamic, the ARGs abundance in plastisphere increased and then decreased, which may be dominated by the MP types at the initial periods. After long-term exposure, the influences of water depths seemed to be strengthened, especially in the PET plastisphere. Compared with surface waters, the microbiota attached in plastisphere in deep waters showed high species richness, strong diversity, and complex interactions, which was basically consistent with the changes of nutrient contents in different water layers. These vertical variations in microbiota and nutrients (e.g., nitrogen) may be responsible for the propagation of ARGs in plastisphere in deep waters. The host bacteria for ARGs in plastisphere was also developed as water depth increased, leading to an enrichment of ARGs in deep waters. In addition, the abundance of ARGs in plastisphere in bottom waters was positively correlated with the mobile genetic elements (MGEs) of intI1 and tnpA05, indicative of a frequent horizontal gene transfer of ARGs. Overall, water depth played a critical role in the propagation of ARGs in plastisphere, which should not be ignored in a long time series. This study provides new insights into the dynamic evolution of ARGs propagation in plastisphere under increasing global MPs pollution, especially in the vertical profile.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yixin Zhou
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
37
|
Maisto M, Ranauda MA, Zuzolo D, Tartaglia M, Postiglione A, Prigioniero A, Falzarano A, Scarano P, Castelvetro V, Corti A, Modugno F, La Nasa J, Biale G, Sciarrillo R, Guarino C. Effects of microplastics on microbial community dynamics in sediments from the Volturno River ecosystem, Italy. CHEMOSPHERE 2024; 349:140872. [PMID: 38056715 DOI: 10.1016/j.chemosphere.2023.140872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, the sources, abundance, and ecological implications of microplastic (MP) pollution in Volturno, one of the main rivers in southern Italy, were explored by investigating the MP concentration levels in sediments collected along the watercourse. The samples were sieved through 5- and 2-mm sieves and treated with selective organic solvents. The polymer classes polystyrene (PS), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), nylon 6 (PA6), and nylon 6,6 (PA66) were quantified using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and high-performance liquid chromatography (HPLC). Furthermore, a 16S rRNA metagenomic analysis was performed using next-generation sequencing in Ion Torrent™ to explore the bacterial taxonomy and ecological dynamics of sediment samples. The MPs were detected in all samples collected from the study area. PP and PET were the most abundant and frequently detected polymer types in the analysed samples. The total MP concentration ranged from 1.05 to 14.55 ppm (parts per million), identifying two distinct data populations: high- and low-MP-contaminated sediments. According to the Polymer Hazard Index (PHI), MP pollution was categorised as hazard levels III and IV (corresponding to the danger category). Metagenomic data revealed that the presence of MPs significantly affected the abundance of bacterial taxa; Flavobacteraceae and Nocardiaceae, which are known to degrade polymeric substances, were present in high-MP-contaminated sediments. This study provides new insights into the ecological relevance of MP pollution and suggests that microorganisms may serve as biomarkers of MP pollution.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy.
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Alessia Postiglione
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Alessandra Falzarano
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, 56124, Pisa, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Via de Sanctis Snc, 82100, Benevento, Italy
| |
Collapse
|
38
|
Zhang H, Huang Y, An S, Wang P, Xie C, Jia P, Huang Q, Wang B. Mulch-derived microplastic aging promotes phthalate esters and alters organic carbon fraction content in grassland and farmland soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132619. [PMID: 37757559 DOI: 10.1016/j.jhazmat.2023.132619] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Agricultural plastic mulch is a major microplastics (MPs) source in terrestrial ecosystems. However, knowledge about the aging characteristics of mulch-derived MPs entering natural and agricultural soils and their effects on phthalate esters (PAEs) and organic carbon fractions is still limited. Black (contains black masterbatches) and white polyethylene (PE) and biodegradable (Bio, Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC+PBAT)) mulch-derived MPs, at 0.3% (w/w) dose, were added to grassland and farmland soils for eight-week incubation. Microplastic (MP) aging degree was explored by quantifying the carbonyl index (CI). The soil PAEs and organic carbon fractions were also analyzed. After incubation, black and white PE-MP aged greater in farmland than in grassland. PAEs accumulated highest in PE-MP treatment (5.27-6.41 mg kg-1) followed by Bio-MP (1.88-2.38 mg kg-1). Soil organic carbon (SOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) were reduced by 5.3%-8.2%, 31.8%-41.6%, and 39.7%-63.0%, dissolved organic carbon (DOC) was increased by 10.1%-27.6% in grassland containing MP compared to control. MPs' aging degree promoted PAEs content or altered nutrients, then regulated soil microbial biomass and extracellular enzyme activity directly or indirectly, ultimately affecting SOC. ENVIRONMENTAL IMPLICATION: Microplastics are persistent environmental pollutants that gradually undergo surface aging in response to extracellular enzymes secreted by microorganisms. As microplastics age, their surface roughness and functional groups change; thus, organochemical contaminants gradually leach out. Therefore, this study analyzed the aging of mulch film-derived microplastics under the action of diverse microorganisms in farmland and grassland soils and the effect on plasticizer and organic carbon fractions. The results proved that polyethylene microplastic aging degree was highest in farmland soil. Besides, biodegradable microplastic caused lower contamination of phthalate esters than polyethylene, but they affected soil carbon balance in grassland and farmland soils. STATEMENT OF ENVIRONMENTAL IMPLICATION: This study highlights that MPs affect organic carbon fractions by influencing the PAEs, available nutrients, and extracellular enzyme activity.
Collapse
Affiliation(s)
- Haixin Zhang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China.
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pan Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Chunjiao Xie
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Penghui Jia
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Qian Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Baorong Wang
- College of Grassland Agriculture, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
39
|
Zhang W, Liang S, Grossart HP, Christie-Oleza JA, Gadd GM, Yang Y. Convergence effect during spatiotemporal succession of lacustrine plastisphere: loss of priority effects and turnover of microbial species. ISME COMMUNICATIONS 2024; 4:ycae056. [PMID: 38711932 PMCID: PMC11073396 DOI: 10.1093/ismeco/ycae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Succession is a fundamental aspect of ecological theory, but studies on temporal succession trajectories and ecological driving mechanisms of plastisphere microbial communities across diverse colonization environments remain scarce and poorly understood. To fill this knowledge gap, we assessed the primary colonizers, succession trajectories, assembly, and turnover mechanisms of plastisphere prokaryotes and eukaryotes from four freshwater lakes. Our results show that differences in microbial composition similarity, temporal turnover rate, and assembly processes in the plastisphere do not exclusively occur at the kingdom level (prokaryotes and eukaryotes), but also depend on environmental conditions and colonization time. Thereby, the time of plastisphere colonization has a stronger impact on community composition and assembly of prokaryotes than eukaryotes, whereas for environmental conditions, the opposite pattern holds true. Across all lakes, deterministic processes shaped the assembly of the prokaryotes, but stochastic processes influenced that of the eukaryotes. Yet, they share similar assembly processes throughout the temporal succession: species turnover over time causes the loss of any priority effect, which leads to a convergent succession of plastisphere microbial communities. The increase and loss of microbial diversity in different kingdoms during succession in the plastisphere potentially impact the stability of entire microbial communities and related biogeochemical cycles. Therefore, research needs to integrate temporal dynamics along with spatial turnovers of the plastisphere microbiome. Taking the heterogeneity of global lakes and the diversity of global climate patterns into account, we highlight the urgency to investigate the spatiotemporal succession mechanism of plastisphere prokaryotes and eukaryotes in more lakes around the world.
Collapse
Affiliation(s)
- Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Shuxin Liang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Hans-Peter Grossart
- Leibniz-Institute for Freshwater Ecology and Inland Fisheries (IGB), Neuglobsow 16775, Germany
- Institute for Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | | | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
40
|
Yu Y, Yao Y, Adyel TM, Shahid Iqbal S, Wu J, Miao L, Hou J. Characterization of the dynamic aging and leached dissolved organic carbon from biodegradable and conventional plastics under photooxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119561. [PMID: 37980792 DOI: 10.1016/j.jenvman.2023.119561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/28/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Biodegradable plastics have been regarded as promising candidates in the struggle against plastic pollution. However, the aging and dynamic leaching process of biodegradable and conventional plastics under photooxidation is still unclear. Herein, three types of non-biodegradable plastics (polypropylene, polyethylene, and polyethylene terephthalate), and two types of biodegradable plastics (polylactic acid and cornstarch-based plastics) were treated with 21 days of photooxidation followed by 13 days of dark conditions. Scanning electron microscopy was applied to display the morphological changes. Also, the carbonyl index, oxygen-to-carbon ratio, and contact angle were utilized to characterize the aging degree of the plastic surface. Unexpectedly, biodegradable plastics did not always display a greater aging degree than non-biodegradable plastics. Moreover, the dissolved organic carbon during the leaching process was identified using excitation-emission matrix fluorescence spectroscopy. The findings suggested that biodegradable plastics showed the potential to release more dissolved organic carbon. Particularly, the polylactic acid plastic displayed higher concentrations and more types of dissolved organic carbon release than that of conventional plastics in our experiment. This research highlights the necessity for monitoring the aging process of both biodegradable and non-biodegradable plastics and the non-negligible ecological risk of leached organic pollutants due to plastic degradation.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, 8093, Switzerland
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia
| | - Sayyed Shahid Iqbal
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
41
|
Di Pippo F, Bocci V, Amalfitano S, Crognale S, Levantesi C, Pietrelli L, Di Lisio V, Martinelli A, Rossetti S. Microbial colonization patterns and biodegradation of petrochemical and biodegradable plastics in lake waters: insights from a field experiment. Front Microbiol 2023; 14:1290441. [PMID: 38125574 PMCID: PMC10731271 DOI: 10.3389/fmicb.2023.1290441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Once dispersed in water, plastic materials become promptly colonized by biofilm-forming microorganisms, commonly known as plastisphere. Methods By combining DNA sequencing and Confocal Laser Scanning Microscopy (CLSM), we investigated the plastisphere colonization patterns following exposure to natural lake waters (up to 77 days) of either petrochemical or biodegradable plastic materials (low density polyethylene - LDPE, polyethylene terephthalate - PET, polylactic acid - PLA, and the starch-based MaterBi® - Mb) in comparison to planktonic community composition. Chemical composition, water wettability, and morphology of plastic surfaces were evaluated, through Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and static contact angle analysis, to assess the possible effects of microbial colonization and biodegradation activity. Results and Discussion The phylogenetic composition of plastisphere and planktonic communities was notably different. Pioneering microbial colonisers, likely selected from lake waters, were found associated with all plastic materials, along with a core of more than 30 abundant bacterial families associated with all polymers. The different plastic materials, either derived from petrochemical hydrocarbons (i.e., LDPE and PET) or biodegradable (PLA and Mb), were used by opportunistic aquatic microorganisms as adhesion surfaces rather than carbon sources. The Mb-associated microorganisms (i.e. mostly members of the family Burkholderiaceae) were likely able to degrade the starch residues on the polymer surfaces, although the Mb matrix maintained its original chemical structure and morphology. Overall, our findings provide insights into the complex interactions between aquatic microorganisms and plastic materials found in lake waters, highlighting the importance of understanding the plastisphere dynamics to better manage the fate of plastic debris in the environment.
Collapse
Affiliation(s)
- Francesca Di Pippo
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Valerio Bocci
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Stefano Amalfitano
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Simona Crognale
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Caterina Levantesi
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | | | - Valerio Di Lisio
- Donostia International Physics Center, Paseo Manuel de Lardizabal, San Sebastián, Spain
| | | | - Simona Rossetti
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| |
Collapse
|
42
|
Yang Y, Suyamud B, Liang S, Liang X, Wan W, Zhang W. Distinct spatiotemporal succession of bacterial generalists and specialists in the lacustrine plastisphere. Environ Microbiol 2023; 25:2746-2760. [PMID: 37190986 DOI: 10.1111/1462-2920.16400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
The assembly processes of generalists and specialists and their driving mechanisms during spatiotemporal succession is a central issue in microbial ecology but a poorly researched subject in the plastisphere. We investigated the composition variation, spatiotemporal succession, and assembly processes of bacterial generalists and specialists in the plastisphere, including non-biodegradable (NBMPs) and biodegradable microplastics (BMPs). Although the composition of generalists and specialists on NBMPs differed from that of BMPs, colonization time mainly mediated the composition variation. The relative abundance of generalists and the relative contribution of species replacement were initially increased and then decreased with colonization time, while the specialists initially decreased and then increased. Besides, the richness differences also affected the composition variation of generalists and specialists in the plastisphere, and the generalists were more susceptible to richness differences than corresponding specialists. Furthermore, the assembly of generalists in the plastisphere was dominated by deterministic processes, while stochastic processes dominated the assembly of specialists. The network stability test showed that the community stability of generalists on NBMPs and BMPs was lower than corresponding specialists. Our results suggested that different ecological assembly processes shaped the spatiotemporal succession of bacterial generalists and specialists in the plastisphere, but were less influenced by polymer types.
Collapse
Affiliation(s)
- Yuyi Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Bongkotrat Suyamud
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Shuxin Liang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Science, Tibet University, Lhasa, China
| | - Xinjin Liang
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, UK
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
43
|
Nardulli P, Ballini A, Zamparella M, De Vito D. The Role of Stakeholders' Understandings in Emerging Antimicrobial Resistance: A One Health Approach. Microorganisms 2023; 11:2797. [PMID: 38004808 PMCID: PMC10673085 DOI: 10.3390/microorganisms11112797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The increasing misuse of antibiotics in human and veterinary medicine and in agroecosystems and the consequent selective pressure of resistant strains lead to multidrug resistance (AMR), an expanding global phenomenon. Indeed, this phenomenon represents a major public health target with significant clinical implications related to increased morbidity and mortality and prolonged hospital stays. The current presence of microorganisms multi-resistant to antibiotics isolated in patients is a problem because of the additional burden of disease it places on the most fragile patients and the difficulty of finding effective therapies. In recent decades, international organizations like the World Health Organization (WHO) and the European Centre for Disease Prevention and Control (ECDC) have played significant roles in addressing the issue of AMR. The ECDC estimates that in the European Union alone, antibiotic resistance causes 33,000 deaths and approximately 880,000 cases of disability each year. The epidemiological impact of AMR inevitably also has direct economic consequences related not only to the loss of life but also to a reduction in the number of days worked, increased use of healthcare resources for diagnostic procedures and the use of second-line antibiotics when available. In 2015, the WHO, recognising AMR as a complex problem that can only be addressed by coordinated multi-sectoral interventions, promoted the One Health approach that considers human, animal, and environmental health in an integrated manner. In this review, the authors try to address why a collaboration of all stakeholders involved in AMR growth and management is necessary in order to achieve optimal health for people, animals, plants, and the environment, highlighting that AMR is a growing threat to human and animal health, food safety and security, economic prosperity, and ecosystems worldwide.
Collapse
Affiliation(s)
- Patrizia Nardulli
- S.C. Farmacia e UMACA IRCCS Istituto Tumori “Giovanni Paolo II”, Viale O. Flacco 65, 70124 Bari, Italy;
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | - Danila De Vito
- Department of Translational Biomedicine and Neuroscience, Medical School, University Aldo Moro of Bari, 70124 Bari, Italy;
| |
Collapse
|
44
|
Zhang J, Shao Y, Li Z, Han G, Jing X, Wang N, Xu J, Chen G. Characteristics analysis of plastisphere biofilm and effect of aging products on nitrogen metabolizing flora in microcosm wetlands experiment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131336. [PMID: 37027924 DOI: 10.1016/j.jhazmat.2023.131336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
The marsh, a significant terrestrial ecosystem, has steadily developed the capacity to act as a microplastics collection place (MPs). Here, 180 days of exposure to three different polymer kinds of plastics: polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC), were conducted in miniature wetlands (CWs). Water contact angle (WCA), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and High-throughput sequencing were used to study the succession of microbial community structure and function on MPs after 0, 90, and 180 days of exposure. The results showed that different polymers were degrading and aging differing degrees; PVC contained new functional groups with the symbols -CC-, -CO-, and -OH, while PE had the biggest range of contact angles (74.0-45.5°). Bacteria colonization was discovered on plastic surfaces, and as time went on, it became increasingly evident that the surfaces' composition had altered, and their hydrophobicity had diminished. The plastisphere's microbial community structure as well as water nitrification and denitrification were altered by MPs. In general, our study created a vertical flow-built wetland environment, monitored the impacts of plastic aging and breakdown products on nitrogen metabolizing microorganisms in wetland water, and offered a reliable site for the screening of plastic-degrading bacteria.
Collapse
Affiliation(s)
- Jian Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Zhao Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Guolan Han
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xinxin Jing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Gao Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
45
|
Sun Y, Wu M, Zang J, Du L, Huang M, Chen C, Wang J. Plastisphere microbiome: Methodology, diversity, and functionality. IMETA 2023; 2:e101. [PMID: 38868423 PMCID: PMC10989970 DOI: 10.1002/imt2.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/14/2024]
Abstract
Broad topics of the plastisphere in various environments are reviewed, including its methodologies, diversity, functionality, and outlook.
Collapse
Affiliation(s)
- Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Mochen Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Jingxi Zang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Linna Du
- College of Advanced Materials EngineeringJiaxing Nanhu UniverisityJiaxingChina
| | - Muke Huang
- China International Engineering Consulting CorporationBeijingChina
| | - Cheng Chen
- China International Engineering Consulting CorporationBeijingChina
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
46
|
Yu Y, Miao L, Adyel TM, Waldschläger K, Wu J, Hou J. Aquatic plastisphere: Interactions between plastics and biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121196. [PMID: 36736560 DOI: 10.1016/j.envpol.2023.121196] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Because of the high production rates, low recycling rates, and poor waste management of plastics, an increasing amount of plastic is entering the aquatic environment, where it can provide new ecological niches for microbial communities and form a so-called plastisphere. Recent studies have focused on the one-way impact of plastic substrata or biofilm communities. However, our understanding of the two-way interactions between plastics and biofilms is still limited. This review first summarizes the formation process and the co-occurrence network analysis of the aquatic plastisphere to comprehensively illustrate the succession pattern of biofilm communities and the potential consistency between keystone taxa and specific environmental behavior of the plastisphere. Furthermore, this review sheds light on mutual interactions between plastics and biofilms. Plastic properties, environmental conditions, and colonization time affect biofilm development. Meanwhile, the biofilm communities, in turn, influence the environmental behaviors of plastics, including transport, contaminant accumulation, and especially the fragmentation and degradation of plastics. Based on a systematic literature review and cross-referencing from these disciplines, the current research focus, and future challenges in exploring aquatic plastisphere development and biofilm-plastic interactions are proposed.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, 8093, Switzerland
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC, 3125, Australia
| | - Kryss Waldschläger
- Hydrology and Quantitative Water Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| |
Collapse
|