1
|
Xu Q, Yan T, Guo S, Zhai L, Lei Q, Zhang T, Du X, Liu H. Integrating stable isotopes and hydrological models to track nitrogen sources and transport pathways in plateau watersheds: a case study in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126292. [PMID: 40274212 DOI: 10.1016/j.envpol.2025.126292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Exogenous nitrogen inputs from agriculture and anthropogenic activities have dramatically altered the material cycling processes in the Plateau watershed, leading to a range of water pollution issues. Effective management of nitrogen pollution in water bodies is predicated on clarifying N export loads under different pathways in the watershed, as well as the contributions of different sources. Here, this study proposes an integrated framework that introduces multiple stable isotope techniques (δD-H2O, δ18O-H2O, δ15N-NO3- and δ18O-NO3-) based on the coupled Eckhardt's digital baseflow filter (ECK) and load estimation model (LOADEST). The integrated approach was applied for the first time in a typical plateau watershed in southwest China. Results showed that baseflow as the Fengyu River watershed (FRW) major hydrologic pathway, provides 69.6 % of the mean annual stream flow and 59.1 % of the mean annual NO3--N load. Furthermore, the FRW average annual TN and NO3--N export is 94.0 t and 55.1 t, respectively. The NO3--N was the primary form of N pollutant, with its average concentration in groundwater being 7 times that in river water. In groundwater, manure and sewage (M&S) and soil nitrogen (SN) contribution rates to NO3--N 53.6 %, and 37.2 %, respectively. While the river water shows low M&S (26.8 %) and high SN (61.5 %) characteristics. It can be seen that the baseflow is a key pathway for coupled water-nitrogen export from plateau agricultural watersheds. Blocking the migration of nitrogen-containing pollutants to groundwater is an important measure to control the degradation of the water environment in plateau watersheds from the root cause.
Collapse
Affiliation(s)
- Qiyu Xu
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiezhu Yan
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shufang Guo
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Limei Zhai
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qiuliang Lei
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianpeng Zhang
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinzhong Du
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongbin Liu
- State Key Laboratory of Efficient Utilization of Arable Land in China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Li B, Han D, Yang L, Song X, Qin M, Diamantopoulos E. New insights into nitrate sources and transformations in riparian groundwater of a sluice-controlled river: An integrated approach using major ions, stable isotopes and microbial gene methods. ENVIRONMENTAL RESEARCH 2025; 271:121065. [PMID: 39922258 DOI: 10.1016/j.envres.2025.121065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Nitrate pollution in water environment is a serious problem worldwide. Identifying nitrate sources and transformations in the riparian aquifer is critical for effectively controlling and mitigating nitrate contamination, especially in sluice-controlled rivers. This study employs an integrated approach combining hydrochemical analysis, isotopes (δ18O-H2O, δ2H-H2O, δ15N-NO3- and δ18O-NO3-), quantification of nitrogen (N) functional genes and a Bayesian mixing model (MixSIAR) to comprehensively investigates nitrate sources and transformation processes in the riparian groundwater of a sluice-controlled Shaying River, China. Results revealed severe nitrate contamination in both the river (mean: 2.33-5.25 mg/L) and the riparian groundwater (mean: 0.42-24.46 mg/L). Manure and sewage were the primary sources (66.20-91.20 %) of nitrate contamination in both river and riparian groundwater. Key processes influencing nitrate dynamics in riparian groundwater included mixing with river water, external N supply, and transformation processes such as nitrification, vegetation uptake and anammox. We found that when sluices are closed, the nitrate concentration in riparian groundwater decreases. In contrast, during the flood season with sluices open, the nitrate concentration in the river water increases. This study also developed the first conceptual model illustrating the impact of sluice regulation on riparian nitrate dynamics, highlighting the complex interplay between sluice operations, hydrological conditions, and biogeochemical processes that govern nitrate behavior. These findings provide valuable insights into nitrate dynamics in riparian aquifers of sluice-controlled rivers, offering a robust scientific foundation for targeted nutrient management strategies in the Shaying River Basin and similar regulated environments globally.
Collapse
Affiliation(s)
- Baoling Li
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China; Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen, 1871, Denmark
| | - Dongmei Han
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihu Yang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Technical Innovation Base for Natural Resources Monitoring in the Lower Reaches of Yongding River Area, China Geological Society, 065000, Langfang, China.
| | - Xianfang Song
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China; Technical Innovation Base for Natural Resources Monitoring in the Lower Reaches of Yongding River Area, China Geological Society, 065000, Langfang, China.
| | - Mingzhou Qin
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China
| | - Efstathios Diamantopoulos
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen, 1871, Denmark; Chair of Soil Physics, University of Bayreuth, Bayreuth, 95447, Germany
| |
Collapse
|
3
|
Wu H, Zhang H, Dong T, Li Z, Guo X, Chen H, Yao Y. Overcoming Extreme Ammonia Inhibition on Methanogenesis by Artificially Constructing a Synergistically Community with Acidogenic Bacteria and Hydrogenotrophic Archaea. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502743. [PMID: 40162572 DOI: 10.1002/advs.202502743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/09/2025] [Indexed: 04/02/2025]
Abstract
High total ammonia nitrogen (TAN) inhibits anaerobic digestion (AD) and cannot be completely eliminated by merely enhancing a stage of AD. This study incorporates TAN-tolerant inoculum into substrates hydrolyzed by Rhizopus mixed agents to simultaneously enhance hydrolysis-acidogenesis-methanogenesis. The results show a 16.46-fold increase in CH4 production under TAN-inhibited (6870.97 mg L-1) conditions, even exceeding the AD without TAN by 21.10%. Model substrates sodium acetate and mixed H2 confirm hydrogenotrophic methanogenesis is the main pathway, with reduced TAN inhibition. Furthermore, a synergistic metabolic microbial community dominated by hydrolytic bacteria JAAYGG01 sp. and DTU014 sp., acidogenic bacteria DTU015 sp., DTU013 sp., and JAAYLO01 sp., and methanogens Methanosarcina mazei and an unclassified species in the Methanoculleus is reconstructed to resist TAN inhibition. Metagenomic combined with metatranscriptomic sequencing identifies that this microbial community carries xynD and bglB to regulate substrate hydrolysis, leading to acetate production through glycolysis, butyrate, and pyruvate metabolism with high acetate kinase activity, thereby CH4 produced primarily via hydrogenotrophic methanogenesis with high coenzyme F420 activity, facilitated by efficient mass transfer processes and quorum sensing regulation. This cleaner strategy obtains higher economic benefit (US$149.02) than conventional AD and can increase 154.64-fold energy production of a 24 000 m3 biogas plant, guided by machine learning.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Taili Dong
- Shandong Min-he Biotechnology Co. Ltd., Penglai, 265600, China
| | - Zhenyu Li
- Water Technologies Innovation Institute & Research Advancement, Saudi Water Authority, P.O. Box 8328, Al-Jubail, 31951, Saudi Arabia
| | - Xiaohui Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Heyu Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| |
Collapse
|
4
|
Li J, Sun Q, Lei K. Multiple Isotopes Reveal the Nitrate Sources in Aojiang River Basin, Eastern China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:53. [PMID: 40119931 DOI: 10.1007/s00128-025-04026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
Excessive nitrate (NO3-) in water poses a global environmental challenge. Identifying NO3- sources and their contributions is crucial for improving water quality. We collected surface water samples in the Aojiang River basin, Eastern China, during dry and wet seasons. Hydrochemical indicators, δ15N-NO3- and δ18O-NO3- were used to identify NO3- sources and assess their contributions. The findings revealed nitrification as the primary nitrogen transformation process. Isotopic analysis identified manure and sewage (M&S), soil nitrogen (SN), and nitrogen fertilizer (NF) as major NO3- contributors. The MixSIAR model analysis showed proportional contributions of atmospheric deposition (AD), NF, M&S, and SN to NO3- during the dry season as 2.84%, 19.63%, 44.67%, and 34.87%, respectively. In the wet season, the contributions were 3.61%, 22.32%, 32.37%, and 41.70%, respectively. This study enhances understanding of nitrogen sources and transformations in the Aojiang River basin, aiding better nitrogen contamination management.
Collapse
Affiliation(s)
- Jiangnan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Qianhang Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kun Lei
- Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
5
|
Cao S, Yin P, Liu C, Hu X, Liu Y, Zhao Y, Guan X, Li Y. Deciphering denitrification drivers in a high‑nitrogen estuary: Insights from stable isotope analysis and microbial molecular techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178987. [PMID: 40022970 DOI: 10.1016/j.scitotenv.2025.178987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Coastal estuaries are increasingly impacted by anthropogenic nitrogen inputs, disrupting nitrogen cycling and posing significant threats to ecosystem health. This study investigates nitrogen sources and transformation processes in the Jiulong River Estuary (JRE), a highly eutrophic subtropical estuary in Southeast China. By analyzing and comparing samples from groundwater, surface water, and sediment, this study reveals distinct nitrogen transformation dynamics across interconnected environmental compartments. A comprehensive framework integrating stable isotope analysis, sediment incubation experiments, and microbial molecular techniques was employed to characterize nitrogen dynamics both regionally and at the sediment-water interface within diverse wetland types. Manure and sewage were identified as the primary nitrogen sources. Salinity emerged as a key regulator of nitrogen transformations, with freshwater wetlands exhibiting the highest denitrification potential, followed by mudflats, aquaculture ponds, and mangroves. Abiotic factors, including hydrological conditions and wetland types, were found to predominantly drive nitrogen transformations, while biotic factors, such as microbial community composition and functional gene abundances, played a secondary but interconnected role under the influence of abiotic drivers. These findings offer valuable insights into nitrogen cycling in estuarine ecosystems and propose a robust framework for mitigating nitrogen pollution and managing eutrophication in coastal regions.
Collapse
Affiliation(s)
- Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ping Yin
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China.
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Xiujian Hu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China.
| |
Collapse
|
6
|
Liu Y, Zhang Y, Lv H, Zhao L, Wang X, Yang Z, Li R, Chen W, Song G, Gu H. Research on the traceability and treatment of nitrate pollution in groundwater: a comprehensive review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:107. [PMID: 40053144 DOI: 10.1007/s10653-025-02412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
The preservation of groundwater quality is essential for maintaining the integrity of the water ecological cycle. The preservation of groundwater quality is crucial for sustaining the integrity of the water ecological cycle. Nitrate (NO3-) has emerged as a pervasive contaminant in groundwater, attracting significant research attention due to its extensive distribution and the potential environmental consequences it poses. The primary sources of NO3- pollution include soil organic nitrogen, atmospheric nitrogen deposition, domestic sewage, industrial wastewater, landfill leachate, as well as organic and inorganic nitrogen fertilizers and manure. A comprehensive understanding of these sources is imperative for devising effective strategies to mitigate NO3- contamination. Technologies for tracing NO3--polluted groundwater include hydrochemical analysis, nitrogen and oxygen isotope techniques, microbial tracers, and numerical simulations. Quantitative isotope analysis frequently necessitates the application of mathematical models such as IsoSource, IsoError, IsoConc, MixSIR, SIAR, and MixSIAR to deduce the origins of pollution. This study provides a summary of the application scenarios, as well as the strengths and limitations of these models. In terms of remediation, pump and treat and permeable reactive barrier are predominant technologies currently employed. These approaches are designed to remove or reduce NO3- concentrations in groundwater, thereby restoring its quality. The study offers a systematic examination of NO3- pollution, encompassing its origins, detection methodologies, and remediation approaches, highlighting the role of numerical simulations and integrating multidisciplinary knowledge. Additionally, this review delves into technological advancements and future trends concerning the detection and treatment of NO3- pollution in groundwater. It proposes methods to control the spread of pollution and acts as a guide for identifying and preventing pollution sources.
Collapse
Affiliation(s)
- Yuhao Liu
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
| | - Yu Zhang
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Haiyang Lv
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Lei Zhao
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Xinyi Wang
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Ziyan Yang
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Ruihua Li
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Weisheng Chen
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
| | - Gangfu Song
- Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
7
|
Yu E, Li Y, Li F, He C, Feng X. Source apportionment and influencing factors of surface water pollution through a combination of multiple receptor models and geodetector. ENVIRONMENTAL RESEARCH 2024; 263:120168. [PMID: 39424039 DOI: 10.1016/j.envres.2024.120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
In line with sustainable development goals (SDGs), precise quantification of water pollution and analysis of environmental interactions are crucial for effectively safeguarding water resources. In this study, Nemerow's pollution index was used to evaluate water quality, three receptor models were used to identify pollution sources, and Geodetector analysis was applied to explore environmental interactions in the North Shangyu Plain, Southeast China. Using 5207 surface water samples from September 2023 with 11 physicochemical parameters, the results showed that surface rivers in the North Shangyu Plain exhibited varying degrees of pollution: slight pollution upstream, moderate pollution in midstream and downstream, and concentrated high pollution in certain areas, with TN, CODCr, and TP as the primary pollutants. Multimethod source apportionment significantly improved the accuracy of pollution source attribution and identified five main sources: domestic sewage (1.42%-3.54%) characterized by NO3-N, phytoplankton source (38.43%-50.05%) indicated by chl and PC, agricultural cultivation (16.1%-17.63%) marked by TP and CODMn, industrial wastewater (17.64%-25.1%) primarily associated with TN, and natural source (10.32%-13.26%) characterized by DO, NH3-N, and CODCr. Influencing factor analysis validated the source identification. Natural factors had minor impacts on water parameters, while pollution control from agricultural activities was suggested to diversify fertilizer types rather than merely reduce quantities. The combined effects of industrial and aquaculture activities intensified pollution from TN, chl, and PC, underscoring the need for targeted management practices. This study showed the objectivity and reliability of using a combined approach of multiple receptor models and Geodetector to evaluate the river water quality status, which helps assist decision-makers in formulating more effective water resource protection strategies.
Collapse
Affiliation(s)
- Er Yu
- School of Public Affairs, Institute of Land Science and Property, Zhejiang University, Hangzhou, 310058, China
| | - Yan Li
- School of Public Affairs, Institute of Land Science and Property, Zhejiang University, Hangzhou, 310058, China.
| | - Feng Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Congying He
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Xinhui Feng
- School of Public Affairs, Institute of Land Science and Property, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Aleku DL, Dähnke K, Pichler T. Source, transport, and fate of nitrate in shallow groundwater in the eastern Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65034-65050. [PMID: 39565481 PMCID: PMC11624242 DOI: 10.1007/s11356-024-35499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
The eastern Niger Delta region in Nigeria is a hotspot for reactive nitrogen pollution due to extensive animal husbandry, pit latrine usage, and agricultural practices. Despite the high level of human activity, the sources and processes affecting nitrogen in groundwater remain understudied. Groundwater nitrate (NO3-) concentrations are highly variable, with some areas recording values well above the safe drinking water threshold of 50 mg/L. This is particularly true near municipal sewage systems. Elevated nitrite (NO2-) and ammonium (NH4+) concentrations were also detected in the study area. Sewage analysis revealed NO3- concentrations ranging from 1 to 145 mg/L, NO2- from 0.2 to 2 mg/L, and notably high NH4+ concentrations. A comparison of major ions indicated that 71%, 90%, 87%, and 92% of groundwater samples surpassed reference site levels for calcium (Ca2+), sodium (Na+), potassium (K+), and chloride (Cl-), respectively, pointing to sewage as a likely source of contamination. The NO3-/Cl- ratios at several sites suggested that most groundwater NO3- originates from human waste. Stable isotope analysis of NO3- showed a general enrichment in 15N and, in some cases, a depletion in 18O, indicating that the NO3- originates from sewage-derived NH4+ nitrification. Although denitrification, a process that reduces NO3-, is present, the high dissolved oxygen (DO) and NO3- levels in the groundwater suggest that denitrification is insufficient to fully mitigate NO3- pollution. Consequently, there is a risk of NO3- leaching from shallow aquifers into the Niger Delta's surface waters and ultimately into the coastal ocean.
Collapse
Affiliation(s)
| | - Kirstin Dähnke
- Institute for Carbon Cycles, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Thomas Pichler
- Institute of Geosciences, University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
9
|
Yang Y, Yuan Y, Xiong G, Yin Z, Guo Y, Song J, Zhu X, Wu J, Wang J, Wu J. Patterns of nitrate load variability under surface water-groundwater interactions in agriculturally intensive valley watersheds. WATER RESEARCH 2024; 267:122474. [PMID: 39316961 DOI: 10.1016/j.watres.2024.122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nitrate pollution is a significant environmental issue closely related to human activities, complicated hydrological interactions and nitrate fate in the valley watershed strongly affects nitrate load in hydrological systems. In this study, a nitrate reactive transport model by coupling SWAT-MODFLOW-RT3D between surface water and groundwater interactions at the watershed scale was developed, which was used to reproduce the interaction between surface water and groundwater in the basin from 2016 to 2019 and to reveal the nitrogen transformation process and the evolving trend of nitrate load within the hydrological system of the valley watershed. The results showed that the basin exhibited groundwater recharge to surface water in 2016-2019, particularly in the northwestern and northeastern mountainous regions of the valley watershed and the southern Beishan Reservoir vicinity. Groundwater recharge to surface water declined by 20.17 % from 2016 to 2019 due to precipitation. Nitrate loads in the hydrologic system of the watershed are primarily derived from human activities (including fertilizer application from agricultural activities and residential wastewater discharges) and the nitrogen cycle. Nitrate loads in surface water declined 16.05 % from 2016 to 2019. Nitrate levels are higher in agricultural farming and residential areas on the eastern and northern sides of the watershed. Additionally, hydrological interactions are usually accompanied by material accumulation and environmental changes. Nitrate levels tend to rise with converging water flows, a process that becomes more pronounced during precipitation events and cropping seasons in agriculturally intensive valley watersheds. However, environmental changes alter nitrogen transformation processes. Nitrogen fixation, nitrification, and ammonification intensify nitrogen inputs during river pooling, enhancing nitrogen cycling fluxes and elevating nitrate loads. These processes are further enhanced during groundwater recharge to surface water, leading to evaluated nitrate load. Enhanced denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anaerobic ammonia oxidation, and assimilation promote the nitrogen export from the system and reduce the nitrate load during surface water recharge to groundwater.
Collapse
Affiliation(s)
- Yun Yang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China.
| | - Yiliang Yuan
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Guiyao Xiong
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Ziyue Yin
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yong Guo
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Jian Song
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaobin Zhu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Wang J, Xiao Y, Wang L, Zhang Y, Feng M, Zhu W, Yang W, Shi W, Yang H, Han J, Hu W, Wang N. Deciphering pollution sources and mechanisms controlling groundwater chemistry in a typical dense agricultural plain on Yungui Plateau. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11156. [PMID: 39663606 DOI: 10.1002/wer.11156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/07/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Groundwater is a critical resource for economic growth and livelihoods in the dense agricultural plains of plateaus. However, contaminations from various sources pose significant threats to groundwater quality. Understanding the sources of groundwater contamination and the mechanisms of hydrochemical control is essential for the sustainable development of agriculturally intensive plains. This research utilizes 23 datasets of groundwater chemical measurements to apply hierarchical clustering analysis, positive matrix factorization, and hydrochemical analysis techniques. Through these methods, the study identifies the sources of groundwater contamination and deciphers the hydrochemical control mechanisms within a representative intensive agricultural plain region of Yungui Plateau. The finds indicate that groundwater in the plain primarily derives from the rainfall occurred in the surrounding mountains. During the long underground flow process, groundwater undergoes water-rock interactions and ion exchanges with various lithological strata, resulting in the formation of distinct hydrochemical types. As it traverses regions influenced by human activities, groundwater encounters varying levels and types of contamination. Consequently, there is a notable variation in groundwater quality across different areas of the plain. Groundwater is dominated by the hydrochemical faces of HCO3-Ca type in the southern part of the plain. Groundwater in the piedmont region of this part exhibits the highest quality, acting as the baseline for the overall groundwater quality of the plain. Groundwater in agricultural areas of this part is severely polluted by nitrate-rich agricultural wastewater. In the central urban area, under the control of municipal wastewater discharge and denitrification, groundwater is to some extent polluted by NH4 +. In the northern sector of the plain, groundwater chemistry exhibits greater diversity due to variations in geological strata and exposure to a range of pollution sources. The majority of the regions are contaminated with SO4 2- and Cl- and present a predominance of Cl-Na type for groundwater hydrochemical facies. Groundwater at the northernmost end is polluted by NO2 -, NH4 +, and P. In addition, there is also a small amount of groundwater near the lake that is heavily polluted by fertilizers. This study provides valuable insights for the development of sound groundwater management strategies, applicable not only to the current agricultural plain but also to analogous regions worldwide. PRACTITIONER POINTS: This study probed the impact of agricultural pollution on the groundwater hydrochemistry in a cultivated plain. The research pinpointed the origins and contributions of groundwater chemicals in the cultivated agricultural plain. A conceptual model was established to illustrate groundwater chemistry formation in an intensive agricultural irrigation plain on Yungui Plateau.
Collapse
Affiliation(s)
- Jie Wang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yong Xiao
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Liwei Wang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yuqing Zhang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mei Feng
- Yuxi Sub-Bureau of Yunnan Bureau of Hydrology and Water Resources, Yuxi, China
| | - Wenxiang Zhu
- Yuxi Sub-Bureau of Yunnan Bureau of Hydrology and Water Resources, Yuxi, China
| | - Wenchun Yang
- Yuxi Sub-Bureau of Yunnan Bureau of Hydrology and Water Resources, Yuxi, China
| | - Wenchao Shi
- Yuxi Sub-Bureau of Yunnan Bureau of Hydrology and Water Resources, Yuxi, China
| | - Hongjie Yang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, China
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, China
| | - Jibin Han
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Wenxu Hu
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| | - Ning Wang
- School of Water and Environment, Chang'an University, Xi'an, China
| |
Collapse
|
11
|
Li Z, Lu C, Zhang Y, Wu C, Liu B, Shu L. Mechanisms of evolution and pollution source identification in groundwater quality of the Fen River Basin driven by precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175893. [PMID: 39218087 DOI: 10.1016/j.scitotenv.2024.175893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Groundwater pollution has attracted widespread attention as a threat to human health and aquatic ecosystems. However, the mechanisms of pollutant enrichment and migration are unclear, and the spatiotemporal distributions of human health risks are poorly understood, indicating insufficient groundwater management and monitoring. This study assessed groundwater quality, human health risks, and pollutant sources in the Fen River Basin(FRB). Groundwater quality in the FRB is good, with approximately 87 % of groundwater samples rated as "excellent" or "good" in both the dry and rainy seasons. Significant precipitation elevates groundwater levels, making it more susceptible to human activities during the rainy season, slightly deteriorating water quality. Some sampling points in the southern of Taiyuan Basin are severely contaminated by mine drainage, with water quality index values up to 533.80, over twice the limit. Human health risks are mainly from As, F, NO3-, and Cr. Drinking water is the primary pathway of risk. From 2019 to 2020, the average non-carcinogenic risk of As, F, and NO3- increased by approximately 28 %, 170 % and 8.5 %, respectively. The average carcinogenic risk of As and Cr increased by 28 % and 786 %, the overall trend of human health risks is increasing. Source tracing indicates As and F mainly originate from geological factors, while NO3- and Cr are significantly influenced by human activities. Various natural factors, such as hydrogeochemical conditions and aquifer environments, and processes like evaporation, cation exchange, and nitrification/denitrification, affect pollutant concentrations. A multi-tracer approach, integrating hydrochemical and isotopic tracers, was employed to identify the groundwater pollution in the FRB, and the response of groundwater environment to pollutant enrichment. This study provides a scientific basis for the effective control of groundwater pollution at the watershed scale, which is very important in the Loess Plateau.
Collapse
Affiliation(s)
- Zhibin Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Chengpeng Lu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Chengcheng Wu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Bo Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Longcang Shu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
12
|
Wang S, Chen J, Liu F, Chen D, Zhang S, Bai Y, Zhang X, Kang S. Identification of groundwater nitrate sources and its human health risks in a typical agriculture-dominated watershed, North China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:495. [PMID: 39508929 DOI: 10.1007/s10653-024-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Identifying nitrate sources and migratory pathways is crucial for controlling groundwater nitrate pollution in agricultural watersheds. This study collected 35 shallow groundwater samples in the Nansi Lake Basin (NLB) to identify groundwater nitrate sources and potential health risks. Results showed that NO3- concentration in 62.9% of groundwater samples exceeded the drinking water standard (50 mg/L). Hierarchical cluster analysis (HCA) was used to classify the sampling points into three groups based on hydrochemical and isotopic data. Groups A and C were situated in the eastern recharge and discharge regions of Nansi Lake, while Group B was located in the Yellow River floodplain west of the lake. Hydrochemical data and nitrate stable isotopes (δ15N-NO3- and δ18O-NO3-) indicated that elevated NO3- primarily originated from soil organic nitrogen (SON) in Group A, while manure and sewage (M&S) were the primary sources in Groups B and C samples. Microbial nitrification was identified as the primary nitrogen transformation process across all groups. The source apportionment results indicated that SON contributed approximately 40.1% in Group A, while M&S contributed about 53.9% and 81.2% in Groups B and C, respectively. The Human Health Risk Assessment (HHRA) model indicated significant non-carcinogenic risks for residents east of Nansi Lake, primarily through the oral pathway, with NO3- concentration identified as the most influential factor by sensitivity analysis. These findings provide new perspectives on identifying and handling groundwater nitrogen pollution in agriculture-dominated NLB and similar basins that require enhanced nitrogen contamination management.
Collapse
Affiliation(s)
- Shou Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210024, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Jing Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210024, China.
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China.
| | - Fei Liu
- School of Water Conservancy and Hydropower, Hebei University of Engineering, 19 Taiji Road, Handan, 056038, Hebei, China.
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Shuxuan Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210024, China
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Yanjie Bai
- School of Water Conservancy and Hydropower, Hebei University of Engineering, 19 Taiji Road, Handan, 056038, Hebei, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Senqi Kang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| |
Collapse
|
13
|
Huang P, Cui M, Chai S, Li Y, Zhang Y, Yu Z, Peng W. Limestone water mixing process and hydrogen and oxygen stable isotope fractionation response under mining action. ENVIRONMENTAL RESEARCH 2024; 255:119208. [PMID: 38782341 DOI: 10.1016/j.envres.2024.119208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
North China type coalfield are gradually mining deep, and the mixing of groundwater is intensified. Hydrogen and oxygen isotopes are important elements for tracing groundwater movement. The fractionation response mechanism under mining conditions is not clear. In this paper, combined with numerical simulation, MixSIAR isotope mixing model and other methods, according to the δD, δ18O and hydrochemical information of various water bodies, the impact of coal mining on hydrogen and oxygen isotope fractionation is analyzed from multiple perspectives. The results show that summer soil water is the main source of recharge for limestone water, accounting for 30.7%-41.5%, and the Zhan River is the main source of recharge for limestone water. Before groundwater recharge, evaporation leads to the increase of δ18O in surface water by 0.31‰-5.58‰, water loss by 1.81%-28.00%, the increase of δ18O in soil water by 0.47‰-6.33‰, and water loss by 2.74%-35.80%. Compared with the coal mining layer, the degree of hydrogen and oxygen isotope drift and water-rock interaction in the coal mine stopping layer are significantly improved. The results of numerical simulation show that the pumping activity reduces the 18O concentration in the mining layer. The ion ratio is used as a new variable to eliminate the influence of water-rock interaction when calculating the mixing ratio. The results show that the limestone water is in a state of receiving external recharge, and mixing effect increases the δ18O in limestone water by 0.86‰ on average, and the δD increases by 0.72‰ on average. The research results explain the controlled process of hydrogen and oxygen isotope fractionation under mining conditions, which is of great significance to coal mine safety production.
Collapse
Affiliation(s)
- Pinghua Huang
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Mengke Cui
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Shuangwei Chai
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Yuanmeng Li
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Yanni Zhang
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Zhiheng Yu
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| | - Wanyu Peng
- School of Resources and Environment Engineering, Henan Polytechnic University, 454000 Jiaozuo, China.
| |
Collapse
|
14
|
Liu R, Qiu J, Wang S, Fu R, Qi X, Jian C, Hu Q, Zeng J, Liu N. Hydrochemical and microbial community characteristics and the sources of inorganic nitrogen in groundwater from different aquifers in Zhanjiang, Guangdong Province, China. ENVIRONMENTAL RESEARCH 2024; 252:119022. [PMID: 38685304 DOI: 10.1016/j.envres.2024.119022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Groundwater from different aquifers in the Zhanjiang area suffers from different degrees of nitrogen pollution, which poses a serious threat to the health of urban and rural residents as well as the surrounding aquatic ecological environment. However, neither the water chemistry and microbial community characteristics in different aquifer media nor the sources of inorganic nitrogen pollution have been extensively studied. This study integrated water quality parameters, dual isotopes (δ15N-NO3- and δ18O-NO3-), and 16S rRNA data to clarify the hydrochemical and microbial characteristics of loose rock pore water (LRPW), layered bedrock fissure water (LBFW), and volcanic rock pore fissure water (VRPFW) in the Zhanjiang area and to determine inorganic nitrogen pollution and sources. The results show that the hydrochemistry of groundwater in different aquifers is complex and diverse, which is mainly affected by rock weathering and atmospheric precipitation, and the cation exchange is strong. High NO3- concentration reduces the richness of the microbial community (VRPFW). There are a large number of bacteria related to nitrogen (N) cycle in groundwater and nitrification dominated the N transformation. A quarter of the samples exceeded the relevant inorganic nitrogen index limits specified in the drinking water standard for China. The NO3- content is highest in VRPFW and the NH4+ content is highest in shallow loose rock pore water (SLRPW). In general, NO3-/Cl-, dual isotope (δ15N-NO3- and δ18O-NO3-) data and MixSIAR quantitative results indicate manure and sewage (M&S) and soil organic nitrogen (SON) are the main sources of NO3-. In LRPW, as the depth increases, the contribution rate of M&S gradually decreases, and the contribution rate of SON gradually increases. The results of uncertainty analysis show that the UI90 values of SON and M&S are higher. This study provides a scientific basis for local relevant departments to address inorganic nitrogen pollution in groundwater.
Collapse
Affiliation(s)
- Rentao Liu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, Guangdong, China
| | - Shuang Wang
- Guangdong Geological Bureau Fourth Geological Brigade, Zhanjiang, 524049, Guangdong, China
| | - Renchuan Fu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaochen Qi
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chuanqi Jian
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qizhi Hu
- Guangdong Hydrogeology Battalion, Guangzhou, 510510, Guangdong, China
| | - Jingwen Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, Guangdong, China
| | - Na Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
15
|
Kang P, Xu J, Wang F, Zhang H, Zhao H. Characterizing the impact of reservoir storage and discharge on nitrogen dynamics in an upstream wetland using a δ 15N and δ 18O dual-isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172923. [PMID: 38701929 DOI: 10.1016/j.scitotenv.2024.172923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middle reaches of the Yellow River in China, undergoes significant water level changes (290-316 m), altering the composition of the nitrogen sources. This study employed a δ15N and δ18O dual-isotope method and MixSIAR modeling to quantify the contributions of nitrate sources. This reveals the impact of reservoir water impoundment and discharge on nitrogen dynamics in the upstream region of the wetland and the model sensitivity for each nitrate source. The results showed that the average concentrations of nitrate‑nitrogen (NO- 3-N) were elevated during the impoundment period compared to the discharge period. Nitrogen sources exhibited varying proportions in surface water, groundwater, and soil water during both the impoundment and discharge periods. The predominant sources include manure and sewage (MS), with a maximum proportion of 57.4 % in surface water. Soil nitrogen (SN) accounted for 25.8 % of groundwater nitrogen and 32.1 % of soil water nitrogen during the impoundment period, whereas, during the discharge period, soil nitrogen made up 41.4 % of surface water nitrogen, manure and sewage contributed 44.8 % of groundwater nitrogen, and manure and sewage dominated with 56.7 % of soil water nitrogen. Sensitivity analysis of the MixSIAR model revealed that the isotopic composition of the manure and sewage primary source most significantly influenced the apportionment results of the riverine nitrate source. Reservoir discharge facilitates the dissimilatory nitrate reduction to ammonium (DNRA). The migration of NO- 3 from surface water to soil water and groundwater occurred from the impoundment period to the discharge period.
Collapse
Affiliation(s)
- Pingping Kang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, Henan, China
| | - Jie Xu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Fuqiang Wang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, Henan, China.
| | - Honglu Zhang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Heng Zhao
- North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450046, Henan, China
| |
Collapse
|
16
|
Li J, Liu H, Pei H, Liu W, Yang G, Xie Y, Cao S, Wang J, Ma L, Zhang H. Coupled processes involving ammonium inputs, microbial nitrification, and calcite dissolution control riverine nitrate pollution in the piedmont zone (Qingshui River, China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172970. [PMID: 38705293 DOI: 10.1016/j.scitotenv.2024.172970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Rivers in agricultural countries widely suffer from diffuse nitrate (NO3-) pollution. Although pollution sources and fates of riverine NO3- have been reported worldwide, the driving mechanisms of riverine NO3- pollution associated with mineral dissolution in piedmont zones remain unclear. This study combined hydrogeochemical compositions, stable isotopes (δ18O-NO3-, δ15N-NO3-, δ18O-H2O, and δ2H-H2O), and molecular bioinformation to determine the pollution sources, biogeochemical evolution, and natural attenuation of riverine NO3- in a typical piedmont zone (Qingshui River). High NO3- concentration (37.5 ± 9.44 mg/L) was mainly observed in the agricultural reaches of the river, with ~15.38 % of the samples exceeding the acceptable limit for drinking purpose (44 mg/L as NO3-) set by the World Health Organization. Ammonium inputs, microbial nitrification, and HNO3-induced calcite dissolution were the dominant driving factors that control riverine NO3- contamination in the piedmont zone. Approximately 99.4 % of riverine NO3- contents were derived from NH4+-containing pollutants, consisted of manure & domestic sewage (74.0 % ± 13.0 %), NH4+-synthetic fertilizer (16.1 % ± 8.99 %), and soil organic nitrogen (9.35 % ± 4.49 %). These NH4+-containing pollutants were converted to HNO3 (37.2 ± 9.38 mg/L) by nitrifying bacteria, and then the produced HNO3 preferentially participated in the carbonate (mainly calcite) dissolution, which accounted for 40.0 % ± 12.1 % of the total riverine Ca2+ + Mg2+, also resulting in the rapid release of NO3- into the river water. Thus, microbial nitrification could be a new and non-negligible contributor of riverine NO3- pollution, whereas the involvement of HNO3 in calcite dissolution acted as an accelerator of riverine NO3- pollution. However, denitrification had lesser contribution to natural attenuation for high NO3- pollution. The obtained results indicated that the mitigation of riverine NO3- pollution should focus on the management of ammonium discharges, and the HNO3-induced carbonate dissolution needs to be considered in comprehensively understanding riverine NO3- pollution in piedmont zones.
Collapse
Affiliation(s)
- Jun Li
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Haoyang Liu
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Hongwei Pei
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Wei Liu
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Guoli Yang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Yincai Xie
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Shengwei Cao
- Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China
| | - Jiawei Wang
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Lishan Ma
- Hebei Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Hebei University of Architecture, Zhangjiakou 075000, China
| | - Hengxing Zhang
- Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China.
| |
Collapse
|
17
|
Kypritidou Z, Kelepertzis E, Kritikos I, Kapaj E, Skoulika I, Kostakis M, Vassilakis E, Karavoltsos S, Boeckx P, Matiatos I. Geochemistry and origin of inorganic contaminants in soil, river sediment and surface water in a heavily urbanized river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172250. [PMID: 38599404 DOI: 10.1016/j.scitotenv.2024.172250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Understanding the geochemistry and contamination of rivers affected by anthropogenic activities is paramount to water resources management. The Asopos river basin in central Greece is facing environmental quality deterioration threats due to industrial, urban and agricultural activities. Here, the geochemistry of river sediments and adjacent soil in terms of major and trace elements (Al, Ca, Mg, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and the geochemical composition of surface water in terms of major ions, trace elements and nutrients along the Asopos river basin were determined. In addition, this study characterized potential nitrate sources through the analysis of stable isotope composition of NO3- (δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-). Results indicated that specific chemical constituents including nutrients (NO2-, NH4+, PO43-) and major ions (Na+, Cl-) were highest in the urban, industrialized and downstream areas. On the other hand, nitrate (NO3-) concentration in river water (median 7.9 mg/L) showed a decreasing trend from the upstream agricultural sites to the urban area and even more in the downstream of the urban area sites. Ionic ratios (NO3-/Cl-) and δ15Ν-ΝΟ3- values (range from +10.2 ‰ to +15.7 ‰), complemented with a Bayesian isotope mixing model, clearly showed the influence of organic wastes from septic systems and industries operating in the urban area on river nitrate geochemistry. The interpretation of geochemical data of soil and river sediment samples demonstrated the strong influence of local geology on Cr, Fe, Mn and Ni content, with isolated samples showing elevated concentrations of Cd, Cu, Pb and Zn, mostly within the industrialized urban environment. The calculation of enrichment factors based on the national background concentrations provided limited insights into the origin of geogenic metals. Overall, this study highlighted the need for a more holistic approach to assess the impact of the geological background and anthropogenic activities on river waters and sediments.
Collapse
Affiliation(s)
- Zacharenia Kypritidou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece.
| | - Ioannis Kritikos
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Emanuela Kapaj
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Iro Skoulika
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Marios Kostakis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84 Athens, Greece
| | - Emmanuel Vassilakis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Sotirios Karavoltsos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84 Athens, Greece
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Department of Green Chemistry and Technology, Ghent University, Belgium
| | - Ioannis Matiatos
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 km of Athens-Sounio Ave., 19013 Anavissos, Attikis, Greece
| |
Collapse
|
18
|
Wang S, Chen J, Zhang S, Bai Y, Zhang X, Chen D, Hu J. Groundwater hydrochemical signatures, nitrate sources, and potential health risks in a typical karst catchment of North China using hydrochemistry and multiple stable isotopes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:173. [PMID: 38592592 DOI: 10.1007/s10653-024-01964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Nitrate pollution in aquatic ecosystems has received growing concern, particularly in fragile karst basins. In this study, hydrochemical compositions, multiple stable isotopes (δ2H-H2O, δ18Ο-Η2Ο, δ15Ν-ΝΟ3-, and δ18Ο-ΝΟ3-), and Bayesian stable isotope mixing model (MixSIAR) were applied to elucidate nitrate pollution sources in groundwater of the Yangzhuang Basin. The Durov diagram identified the dominant groundwater chemical face as Ca-HCO3 type. The NO3- concentration ranged from 10.89 to 90.45 mg/L (average 47.34 mg/L), showing an increasing trend from the upstream forest and grassland to the downstream agricultural dominant area. It is worth noting that 47.2% of groundwater samples exceeded the NO3- threshold value of 50 mg/L for drinking water recommended by the World Health Organization. The relationship between NO3-/Cl- and Cl- ratios suggested that most groundwater samples were located in nitrate mixed endmember from agricultural input, soil organic nitrogen, and manure & sewage. The Self-Organizing Map (SOM) and Pearson correlations analysis further indicated that the application of calcium fertilizer, sodium fertilizer, and livestock and poultry excrement in farmland elevated NO3- level in groundwater. The output results of the MixSIAR model showed that the primary sources of NO3- in groundwater were soil organic nitrogen (55.3%), followed by chemical fertilizers (28.5%), sewage & manure (12.7%), and atmospheric deposition (3.4%). Microbial nitrification was a dominant nitrogen conversion pathway elevating NO3- levels in groundwater, while the denitrification can be neglectable across the study area. The human health risk assessment (HHRA) model identified that about 88.9%, 77.8%, 72.2%, and 50.0% of groundwater samples posing nitrate's non-carcinogenic health hazards (HQ > 1) through oral intake for infants, children, females, and males, respectively. The findings of this study can offer useful biogeochemical information on nitrogen pollution in karst groundwater to support sustainable groundwater management in similar human-affected karst regions.
Collapse
Affiliation(s)
- Shou Wang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jing Chen
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China.
| | - Shuxuan Zhang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Yanjie Bai
- Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering, Nanjing, 210029, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, No. 8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jiahong Hu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of CAS, Shijiazhuang, 050021, Hebei, China
| |
Collapse
|
19
|
Chu Y, He B, He J, Zou H, Sun J, Wen D. Revealing the drivers and genesis of NO 3-N pollution classification in shallow groundwater of the Shaying River Basin by explainable machine learning and pathway analysis method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170742. [PMID: 38336062 DOI: 10.1016/j.scitotenv.2024.170742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Nitrate (NO3-N), as one of the ubiquitous contaminants in groundwater worldwide, has posed a serious threat to public health and the ecological environment. Despite extensive research on its genesis, little is known about the differences in the genesis of NO3-N pollution across different concentrations. Herein, a study of NO3-N pollution concentration classification was conducted using the Shaying River Basin as a typical area, followed by examining the genesis differences across different pollution classifications. Results demonstrated that three classifications (0-9.98 mg/L, 10.14-27.44 mg/L, and 28.34-136.30 mg/L) were effectively identified for NO3-N pollution using Jenks natural breaks method. Random forest exhibited superior performance in describing NO3-N pollution and was thereby affirmed as the optimal explanatory method. With this method coupling SEMs, the genesis of different NO3-N pollution classifications was proven to be significantly different. Specifically, strongly reducing conditions represented by Mn2+, Eh, and NO2-N played a dominant role in causing residual NO3-N at low levels. Manure and sewage (represented by Cl-) leaching into groundwater through precipitation is mainly responsible for NO3-N in the 10-30 mg/L classification, with a cumulative contribution rate exceeding 80 %. NO3-N concentrations >30 mg/L are primarily caused by the anthropogenic loads stemming from manure, sewage, and agricultural fertilization (represented by Cl- and K+) infiltrating under precipitation in vulnerable hydrogeological conditions. Pathway analysis based on standardized effect and significance further confirmed the rationality and reliability of the above results. The findings will provide more accurate information for policymakers in groundwater resource management to implement effective strategies to mitigate NO3-N pollution.
Collapse
Affiliation(s)
- Yanjia Chu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baonan He
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Jiangtao He
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Hua Zou
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jichao Sun
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, PR China
| | - Dongguang Wen
- Development Research Center of the Ministry of Water Resources, Beijing 100038, PR China
| |
Collapse
|
20
|
Wang P, Zhang W, Zhu Y, Liu Y, Li Y, Cao S, Hao Q, Liu S, Kong X, Han Z, Li B. Evolution of groundwater hydrochemical characteristics and formation mechanism during groundwater recharge: A case study in the Hutuo River alluvial-pluvial fan, North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170159. [PMID: 38242449 DOI: 10.1016/j.scitotenv.2024.170159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
A pilot project for groundwater recharge from rivers is currently being carried out in North China Plain. To investigate the influence of river recharge on groundwater hydrochemical characteristics, dynamic monitoring and analysis of groundwater samples were conducted at a typical recharge site in the Hutuo River alluvial-pluvial fan in the North China Plain from 2019 to 2021. Hydrochemical, isotopic, and multivariate statistical analyses were used to systematically reveal the spatiotemporal variation of groundwater chemistry and its driving factors during groundwater recharge process. The results showed that the groundwater hydrochemical types and characteristics in different recharge areas and recharge periods exhibited obvious spatiotemporal differences. The groundwater type varied from HCO3·SO4-Na·Mg to HCO3·SO4-Ca·Mg in an upstream ecological area, while the groundwater type changed from SO4·HCO3-Mg·Ca to HCO3·SO4-Ca·Mg in the downstream impacted by reclaimed water. Changes in the contents of Ca2+, Mg2+ and HCO3- were mostly controlled by the water-rock interactions and mixing-dilution of recharge water, while the increases in Na+, NO3-, Cl-, SO42- and NO3- contents were mainly due to the infiltration of reclaimed water. Nitrogen and oxygen isotope (δ15N and δ18O) tests and the Bayesian isotope mixing model results further demonstrated that nitrate pollution mainly originated from anthropogenic sources, and the major contribution came from manure and sewage, with an average proportion of 64.6 %. Principal component analysis indicated that water-rock interactions, river-groundwater mixing and redox environment alternation were dominant factors controlling groundwater chemical evolution in groundwater recharge process.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China
| | - Wei Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, China
| | - Yuchen Zhu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China
| | - Yaci Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China
| | - Yasong Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China
| | - Shengwei Cao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China
| | - Qichen Hao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China
| | - Shenghua Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, China
| | - Xiangke Kong
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen 361021, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, China.
| | - Zhantao Han
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Binghua Li
- Beijing Water Science and Technology Institute, Beijing 100048, China
| |
Collapse
|
21
|
Wu Y, Liu H, Zhang H, Li Q. Sources and seasonal variations of nitrate in the coastal multiple-aquifer groundwater of Beihai, southern China. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 262:104308. [PMID: 38301511 DOI: 10.1016/j.jconhyd.2024.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Elevated nitrate (NO3-) loadings in groundwater may cause health effects in drinking water and nutrient enrichment of aquatic ecosystems. To reveal the sources and seasonal variations of NO3- in the coastal groundwater of Beihai, southern China, we carried out hydrochemical and isotopic (δ15N-δ18O in NO3-) investigations in the summer and winter, respectively, concerning multiple-aquifer groundwater, rainwater, seawater, and surface water. The sources of the main elements present in the waters were interpreted by ionic ratios. NO3- sources were identified by combined use of the δ15N values and δ18O values or NO3-/Na+ molar ratios, with estimations of the proportional contribution by the Bayesian stable isotope mixing model. Denitrification was interpreted along the flow paths. The results show groundwater main elements are originated primarily from silicate weathering, and secondarily from anthropogenic inputs and carbonate dissolution. Its qualities are largely affected by seawater intrusion along the coastline. Because of difference in the predominant minerals within the aquifers and in scale and extent of seawater intrusion, the groundwater displays distinct ionic ratio characters. NO3- concentrations are up to 33.9 mg/L, with higher loadings in the plains relative to along the coastline. Soil N, domestic sewage, rainwater, chemical fertilizers, and algae are NO3- sources, with average proportional contributions of 0.255, 0.221, 0.207, 0.202, and 0.116, respectively. In relation to the winter, higher production of NO3- from nitrification of soil N- and algae-derived ammonium induced by higher temperatures in the summer accounts for increases in groundwater NO3- loadings. In the rural areas, elevated loadings of NO3- in the winter may be due to larger infiltration fractions of sewage. Seasonal variations of atmospheric NO3- deposition and farming may also cause the dynamics. Our results improve the understanding of sources and seasonal dynamics of NO3- in coastal groundwater.
Collapse
Affiliation(s)
- Ya Wu
- Wuhan Center, China Geological Survey, 430205 Wuhan, China.
| | - Huaiqing Liu
- Wuhan Center, China Geological Survey, 430205 Wuhan, China
| | - Hongxin Zhang
- Wuhan Center, China Geological Survey, 430205 Wuhan, China
| | - Qinghua Li
- Wuhan Center, China Geological Survey, 430205 Wuhan, China.
| |
Collapse
|
22
|
Xie F, Cai G, Li G, Li H, Chen X, Liu Y, Zhang W, Zhang J, Zhao X, Tang Z. Basin-wide tracking of nitrate cycling in Yangtze River through dual isotope and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169656. [PMID: 38157890 DOI: 10.1016/j.scitotenv.2023.169656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The nitrate (NO3-) input has adversely affected the water quality and ecological function in the whole basin of the Yangtze River. The protection of water sources and implementation of "great protection of Yangtze River" policy require large-scale information on water contamination. In this study, dual isotope and Bayesian mixing model were used to research the transformation and sources of nitrate. Chemical fertilizers contribute 76 % of the nitrate sources in the upstream, while chemical fertilizers were also dominant in the midstream (39 %) and downstream (39 %) of Yangtze River. In addition, nitrification process occurred in the whole basin. Four machine learning models were used to relate nitrate concentrations to explanatory variables describing influence factors to predict nitrate concentrations in the whole basin of Yangtze River. The anthropogenic and natural factors, such as rainfall, GDP and population were chosen to take as predictor variables. The eXtreme Gradient Boosting (XGBoost) model for nitrate has a better predictive performance with an R2 of 0.74. The predictive models of nitrate concentrations will help identify the nitrate distribution and transport in the whole Yangtze River basin. Overall, this study represents the first basin-wide data-driven assessment of the nitrate cycling in the Yangtze River basin.
Collapse
Affiliation(s)
- Fazhi Xie
- School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230031, Anhui, China
| | - Gege Cai
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230031, Anhui, China
| | - Guolian Li
- School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230031, Anhui, China
| | - Haibin Li
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230031, Anhui, China
| | - Xing Chen
- School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230031, Anhui, China
| | - Yun Liu
- School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230031, Anhui, China
| | - Wei Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jiamei Zhang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230031, Anhui, China.
| | - Xiaoli Zhao
- Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Zhi Tang
- Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| |
Collapse
|
23
|
Chen X, Tang Z, Li G, Zhang J, Xie F, Zheng L. Tracing sulfate sources and transformations of surface water using multiple isotopes in a mining-rural-urban agglomeration area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115805. [PMID: 38070416 DOI: 10.1016/j.ecoenv.2023.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Rapid urbanization and mining activities are exacerbating sulfate (SO42-) pollution in surface water, and the information on its sources and transformations is crucial for understanding the sulphur cycle in mining areas. In this study, the SO42- in the surface water of Huaibei mining area were monitored and the main sources of pollution and biogeochemical processes were identified using stable isotopes (δD, δ18O-H2O, δ34S-SO42- and δ18O-SO42-) and water chemistry. The results demonstrated the SO42- content in the Huihe River and Linhuan subsidence water area (SWA) is higher than that in other rivers and SWAs, which exceeded the environmental quality standard of surface water. The SO42- content of different rivers and SWAs showed seasonal differences, and the dry season was higher than the wet season. In addition, the SO42- in Tuohe River and Suihe River is primarily caused by urban sewage and agriculture activities, while in Zhonghu and Shuoxihu SWA is mainly contributed by natural evaporate dissolution. Notably, the input of SO42- in the Huihe River and Linhuan SWA caused by mining activities cannot be disregarded. The aerobic environment and isotopic fractionation of surface water indicate that sulfide oxidation is not the major cause of SO42- formation. This work has revealed the multiple sources and transformation mechanisms of SO42-, and provided a reference for the development of comprehensive management and effective remediation strategies of SO42- contamination in surface water around mining areas.
Collapse
Affiliation(s)
- Xing Chen
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China
| | - Zhi Tang
- Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Guolian Li
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Jiamei Zhang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Fazhi Xie
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Liugen Zheng
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China.
| |
Collapse
|
24
|
Wang D, Li P, Mu D, Liu W, Chen Y, Fida M. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167481. [PMID: 37788773 DOI: 10.1016/j.scitotenv.2023.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Clarifying the biogeochemical mechanism of nitrate (NO3-) in the vadose zone-groundwater system, particularly in agricultural contexts, is crucial for mitigating groundwater NO3- pollution. However, comprehensive studies on the impacts of changes in chemical indicators and microbial communities on NO3- are still lacking. This paper aims to address this gap by employing hydrogeochemistry, stable isotopes, and microbial techniques to assess the NO3- biogeochemical processes in the vadose zone-groundwater system. The findings suggested that NO3- in upper soil layers was primarily influenced by plant root absorption, assimilation, and nitrification processes. The oxygen contents gradually decreased with the nitrification process, resulting in the occurrence of the denitrification. However, denitrification predominantly occurred in the 60-80 cm soil layer in the study area. The limited thickness of the denitrification layer results in less NO3- consumption, leading to increased NO3- leaching into groundwater. Hydrochemical and isotopic characteristics further indicated that groundwater NO3- concentrations were mainly controlled by nitrification, followed by denitrification and mixing processes. The 16S rRNA sequencing analysis revealed great influences of soil sampling depths and groundwater NO3- concentrations on the microbial community structure. Additionally, the PICRUSt2-based prediction results demonstrated a stronger potential for dissimilatory reduction of NO3- to ammonium (DNRA) in both soil and groundwater compared to the other processes, potentially due to the widespread presence of the nrfH functional genes. However, the chemical indicators and isotopes used in this study did not support the occurrence of DNRA process in the vadose zone-groundwater system. This finding highlights the importance of an integrated approach combining microbiological, isotopic, and hydrogeochemical data to comprehensive understanding biogeochemical processes. The study developed a conceptual model elucidating the NO3- biogeochemical processes in the vadose zone-groundwater system within an agricultural area, contributing to enhanced comprehension and advancement of sustainable management practices for groundwater nitrogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Weichao Liu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Yinfu Chen
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Misbah Fida
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| |
Collapse
|
25
|
Lu S, Zhu Q, Li R. Selective adsorption of nitrate in water by organosilicon quaternary ammonium salt modified derived nickel-iron layered double hydroxide: Adsorption characteristics and mechanism. J Colloid Interface Sci 2023; 652:1481-1493. [PMID: 37659316 DOI: 10.1016/j.jcis.2023.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Nitrate (NO3-) is a widespread pollutant in the water environment. Due to its physicochemical properties, such as negative monovalent charge, traditional adsorption treatment processes have low selectivity for NO3- removal, resulting in low removal efficiency of NO3- by adsorbents in the presence of interfering ions. Therefore, to improve the adsorption selectivity and efficiency of NO3-. In this study, we used organosilicon quaternary modified derived nickel-iron layered double hydroxide (NiFe-MLDH/OQAS) for selective removal of NO3-. NiFe-MLDH/OQAS has a flowery globular structure, with interconnected nanosheets on the surface providing more adsorption sites for NO3-, which improves the adsorption rate and adsorption amount. What's more, the nitrate removal rate of NiFe-MLDH/OQAS only decreased by about 14.36% in the presence of the same concentration of interfering ions, and the maximum adsorption amount reached 61.05 mg/g, showing good selectivity and adsorption amount. Various characterization analyses indicate that the nitrate selectivity of NiFe-MLDH/OQAS is attributed to its unique layer spacing, as well as the abundant functional groups on the material surface. Finally, we demonstrated through experiments that NiFe-MLDH/OQAS has good cyclic regeneration ability and environmental safety. These findings demonstrate the great potential of NiFe-MLDH/OQAS for selective adsorption of NO3-.
Collapse
Affiliation(s)
- Shanshan Lu
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin 150080, China
| | - Qi Zhu
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin 150080, China.
| | - Renjing Li
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin 150080, China
| |
Collapse
|
26
|
Tang L, Yao R, Zhang Y, Ding W, Wang J, Kang J, Liu G, Zhang W, Li X. Hydrochemical analysis and groundwater suitability for drinking and irrigation in an arid agricultural area of the Northwest China. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104256. [PMID: 37865976 DOI: 10.1016/j.jconhyd.2023.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Groundwater is the foremost water source in the arid and semiarid regions of Northwest China. Assessing groundwater's drinking and irrigation quality is essential for protecting these valuable groundwater resources. In this study, a total of 24 confined groundwater samples and 54 phreatic groundwater samples were collected in the southern and central Ningxia area for hydrochemical analysis and quality assessment. The hydrochemical results revealed that hydrochemical types of phreatic and confined groundwater consistently belonged to Na-SO4-Cl and Na-Mg-SO4-Cl types. The driving forces of groundwater chemistry were determined by gypsum dissolution, silicate dissolution, and positive cation exchange for phreatic and confined aquifers. The entropy-weighted water quality index (EWQI) and irrigation water quality index (IWQI) showed that the drinking water quality and irrigation quality were better in phreatic groundwater than in confined groundwater due to the Neogene-Paleogene groundwater system recharge and strong evaporation. Measures such as controlling groundwater extraction and optimizing well placement need to be implemented. The achievements would be helpful for groundwater management and protection in agricultural areas under semi-arid and arid climates.
Collapse
Affiliation(s)
- Lijun Tang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Rongwen Yao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yunhui Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing Normal University, Beijing 100875, China.
| | - Wenming Ding
- Mineral Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Jing Wang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Jinhui Kang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Guihuan Liu
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Wei Zhang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| | - Xiaohui Li
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| |
Collapse
|
27
|
Yan J, Chen J, Zhang W. A new probabilistic assessment process for human health risk (HHR) in groundwater with extensive fluoride and nitrate optimized by non parametric estimation method. WATER RESEARCH 2023; 243:120379. [PMID: 37516079 DOI: 10.1016/j.watres.2023.120379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/18/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Excessive amounts of fluoride (F-) and nitrate (NO3-) in groundwater pose a significant threat to human health. However, a quantitative approach to assessing the human health risks caused by these harmful substances is lacking. To optimize the probabilistic assessment process for human health risk (HHR), this study introduced kernel density estimation (KDE) into the stochastic simulation of F- and NO3- content in groundwater samples. The potential HHRs caused by F- and NO3- in Songyuan City were summarized by combining the probabilistic and deterministic assessments. This study found that the concentrations of F- and NO3- did not follow common probability density functions (PDFs), but the KDE method passed the Kolmogorov-Smirnov test with the critical value of 0.067 and 0.062, showing high fitting accuracy. Monte Carlo simulation indicated that the probability of NO3- for children and adult exceeding the standard is 21.95% and 15.14%, respectively, which is comparable with the results of the deterministic assessment, but the probabilistic assessment emphasized lower probability of HHRs in children caused by excess F-(4.14%). Global sensitivity analysis revealed that excessive NO3- in groundwater has the highest sensitivity of the HHR (>0.1), followed by other factors representing water use habits (>0.01). This study presents a refined probabilistic assessment method for HHR and provides a scientific reference for understanding the state of groundwater environments.
Collapse
Affiliation(s)
- Jiaheng Yan
- College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, PR China; Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Jiansheng Chen
- College of Earth Sciences and Engineering, Hohai University, Nanjing 210098, PR China.
| | - Wenqing Zhang
- College of Environment and Resources, Jilin University, Changchun 130021, PR China
| |
Collapse
|