1
|
Dicataldo G, Desmond P, Al-Maas M, Adham S. Feasibility and application of membrane aerated biofilm reactors for industrial wastewater treatment. WATER RESEARCH 2025; 280:123523. [PMID: 40147306 DOI: 10.1016/j.watres.2025.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Membrane aerated biofilm reactors (MABRs) have emerged as a promising technology for wastewater treatment, offering significant advantages over conventional activated sludge (CAS) systems. Over the past decades, membrane processes have revolutionized municipal water treatment with membrane bioreactors (MBRs) becoming a widely accepted process for municipal and then industrial wastewater (IW) treatment. By the same token, MABR technologies were initially applied to municipal wastewater; however, their application in industrial settings is still emerging. Despite the promise of MABRs due to the biofilm's tolerance to IW toxins, there is a lack of information on their industrial applications. Therefore, this paper critically reviews the feasibility and application of MABRs for IW treatment, including pharmaceutical, chemical, refinery, petrochemical, oilfield, landfill leachate and other complex industrial waters. Three existing technology vendors with full-scale experience were compared; however, additional providers with innovative designs may provide step-changes in performance. Key outcomes highlight the effectiveness of MABRs in reducing carbon, nitrogen, and xenobiotics from high-strength IWs at bench and pilot scales. Critical factors influencing MABR performance, such as biofilm thickness (BT) were correlated to organics and nitrogen removal efficiency in industrial applications. Review of advances in MABR modeling techniques showed that current models lack the needed resolution for large and dynamic industrial systems. Additionally, the review compares municipal and industrial applications of MABRs, emphasizing the unique challenges and innovations required for their adoption in IW treatment. Overall, the MABR process was found to be feasible for industrial applications with pilot and/or demonstration-scale testing being necessary to further optimize process performance.
Collapse
Affiliation(s)
- Gennaro Dicataldo
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park. P.O. Box 24750, Doha, Qatar
| | - Peter Desmond
- Hamad Bin Khalifa University, College of Science and Engineering, Doha, Qatar
| | - Mashael Al-Maas
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park. P.O. Box 24750, Doha, Qatar
| | - Samer Adham
- ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park. P.O. Box 24750, Doha, Qatar; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Yao J, Li Y, An L, Wang P, Liu D, Ma J, Wang A, Wang W. Tolerant and highly-permeable membrane aerated biofilm reactor enabled by selective armored membrane. WATER RESEARCH 2025; 278:123337. [PMID: 40043581 DOI: 10.1016/j.watres.2025.123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 04/14/2025]
Abstract
Membrane aerated biofilm reactor (MABR) is a promising technology for dramatically reducing aeration energy consumption in wastewater treatment. However, the crucial membranes, including microporous hydrophobic membranes and dense membranes, are intolerant to fouling and possess high oxygen transfer resistance respectively, hindering their application potential. Herein, we developed a tolerant and highly-permeable membrane aerated biofilm reactor (THMABR) with a selective armor layer on the membrane to support the biofilm. The selective permeability of the selective armor layer enabled oxygen transfer efficiently and prevented interference by water, surfactant and microbial extracellular polymers. Besides, the composite of the 5 μm selective armor layer and microporous support significantly shortened the distance for solution-diffusion, reducing the transmembrane energy barrier of oxygen molecules. The THMABR's excellent and stable oxygen permeability solved the oxygen substrate concentration's limitation on oxidation rate, enabling functional bacteria to possess a higher oxidation potential and more abundant ecological niche. Based on the novel design, oxygen selective armor membrane (OSAM) performed notably higher oxygen transfer rates (9.61 gO2·m-2d-1) compared to the fouled microporous hydrophobic membrane (3.31 gO2·m-2d-1) and the dense membrane (4.04 gO2·m-2d-1). Besides, the OSAM exhibited more stable fouling resistance to water infiltration and pollutant intrusion compared to the microporous hydrophobic membrane after surfactant pretreatment. Municipal wastewater treatment tests further confirmed that the novel membrane support-selective armored layer-biofilm structure of THMABR can high-efficiently remove nitrogen. The structural characteristics, mechanisms of fouling resistance and oxygen transfer, as well as wastewater treatment performance of the THMABR and OSAM are discussed in detail. This work introduces a new design concept to overcome the bottleneck of traditional MABRs involving the disunity of tolerance and permeability, being expected to support the low-carbon and stable operation of wastewater biological treatment.
Collapse
Affiliation(s)
- Jinxin Yao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuchen Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liuqian An
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Komeijani M, Bahri-Laleh N, Mirjafary Z, D’Alterio MC, Rouhani M, Sakhaeinia H, Moghaddam AH, Mirmohammadi SA, Poater A. PLA/PMMA Reactive Blending in the Presence of MgO as an Exchange Reaction Catalyst. Polymers (Basel) 2025; 17:845. [PMID: 40219236 PMCID: PMC11991274 DOI: 10.3390/polym17070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
To address the limitations of poly (lactic acid) (PLA), it was blended with poly (methyl methacrylate) (PMMA) as a toughening component, using MgO nanoparticles (NPs, 0.075-0.15 wt%) as a catalyst. SEM pictures confirmed the good miscibility of the blends. Mechanical tests showed a slight decrease in elastic modulus and tensile strength for the PLA/PMMA125 sample containing 0.125% MgO. Yet, elongation at break rose by over 60% and impact strength increased by over 400% compared to pure PLA. Also, MgO facilitated the shifting of the glass transition temperature (Tg) of both polymers in DSC curves. Additionally, the absence of cold crystallization in PLA, coupled with reductions in its melting temperature (Tm) and crystallinity, were identified as critical factors contributing to improved miscibility within the reactive blend. Melt flow index (MFI) evaluation indicated a decrease in viscosity, while water contact angle measurements revealed an increase in polar groups on the surfaces of the MgO-containing samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses confirmed the effective distribution and dispersion of NPs throughout the blend, along with a significant decrease in crystallinity. Moreover, DFT calculations were performed to better understand the role of MgO in the reaction. The findings offered key insights into the reaction mechanism, confirming that MgO plays a crucial role in facilitating the transesterification between PLA and PMMA. These findings underscore the enhanced performance of exchange reactions between the active groups of both polymers in the presence of MgO, leading to the formation of PLA-PMMA copolymers with superior miscibility and mechanical properties. Finally, a cell culture assay confirmed the blend's non-toxicity, showing its versatile potential.
Collapse
Affiliation(s)
- Masoud Komeijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.K.); (Z.M.); (M.R.)
| | - Naeimeh Bahri-Laleh
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.K.); (Z.M.); (M.R.)
| | - Massimo Christian D’Alterio
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy;
| | - Morteza Rouhani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.K.); (Z.M.); (M.R.)
| | - Hossein Sakhaeinia
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran; (H.S.); (A.H.M.)
| | - Amin Hedayati Moghaddam
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran; (H.S.); (A.H.M.)
| | - Seyed Amin Mirmohammadi
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran; (H.S.); (A.H.M.)
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
4
|
Conceicao KC, Freitas LS, Villamar-Ayala CA. Behavior space-temporal of biofilters based on hazelnut shells/sawdust treating pharmaceutical and personal care products from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178891. [PMID: 40010246 DOI: 10.1016/j.scitotenv.2025.178891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Nature-based solutions (NBS) such as biofiltration are an efficient, eco-friendly, and economical alternative for wastewater treatment under decentralized contexts. However, the influence on removing emerging contaminants (pharmaceuticals and personal care products or PPCPs), considering different typologies and seasonality fate, has been little studied. In this work, four lab-scale biofiltration typologies (BM: Biofilter + microorganisms, BEM: Biofilter + earthworms + microorganisms, BH: Biofilter + microorganisms + plants + earthworms or Biofilter hybrid, BPM: Biofilter + plants + microorganisms) were monitored seasonally (April-December, 250 days), being fed with rural domestic wastewater. Zantedeschia aethiopica (L.) and Eisenia foetida Savigny were used as biotic components, interacting with organic support components (hazelnut shells and sawdust) for removal of organic matter, nutrients, and 4 PPCPs (caffeine, ibuprofen, losartan, and triclosan). The mass balance of PPCPs was carried out considering the input (influent), output (effluent), support (soil), and plant (root and stem/leaf). The results showed that the different evaluated typologies removed close to 100 % COD, up to 89 % NH4+-N, and up to 99 % coliforms. Meanwhile, caffeine, ibuprofen, losartan, and triclosan were removed between 34 and 100 %. Seasonality or biofiltration typology was non-significantly influential (p > 0.05). However, biofilter hybrid and the warm season were the most efficient for removing organic matter, nutrients, coliforms, and PPCPs. The PPCPs' fate was plants/substrate/effluent with values up to 36, 95, and 64 %, respectively. The effluent was caffeine's main fate. Substrate was the main fate of ibuprofen, losartan, and triclosan. Plants uptake caffeine as a carbon source.
Collapse
Affiliation(s)
- Kennedy C Conceicao
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Facultad de Ingeniería, Departamento de Ingeniería Civil Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O ́Higgins 3363, Estación Central, Santiago, Chile; Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile
| | - Lisiane S Freitas
- Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Cristina A Villamar-Ayala
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Programa para el Desarrollo de Sistemas Productivos Sostenibles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3769, Estación Central, Santiago, Chile.
| |
Collapse
|
5
|
Wang N, Xu Y, Peng L, Liang C, Song S, Quintana M. Biotic and abiotic removal of acetaminophen during sidestream partial nitritation processes: Underlying mechanisms and transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177836. [PMID: 39644630 DOI: 10.1016/j.scitotenv.2024.177836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Pharmaceutical residues in sidestream wastewater pose the hazardous threats to ecosystem and human health. In this work, the biotic and abiotic degradation of acetaminophen were investigated during the sidestream partial nitritation process. Results demonstrated that the abiotic removal efficiency of acetaminophen was positively correlated with nitrite concentration, whereas the biotransformation of acetaminophen was mainly dependent on metabolic types and free nitrous acid (FNA) concentrations. 91.6 % of acetaminophen, acting as the sole carbon and/or energy source to support the growth of ammonia-oxidizing bacteria (AOB) and heterotrophs, was removed by adsorption (6.2 %) and biotransformation (consisting of 49.4 % AOB-induced metabolism and 36.0 % heterotrophs-induced metabolism) when lacking nitrite and FNA. Increasing FNA from 0.03 mg N L-1 to 0.15 mg L-1 led to decrease in acetaminophen removal (from 78.8 % to 60.1 %) and ammonia oxidation, ascribed to the inhibitory effect of FNA on AOB activity. Nitro substitution occurred under AOB-induced cometabolism, while hydroxylation was conducted by heterotrophs. N-deacetylation, ring cleavage, hydroxylation, nitro-reduction, and deamination at lower FNA levels (0.03 mg N L-1) contributed to the formation of small molecular products, supporting the feasibility of sidestream partial nitritation in the effective elimination of acetaminophen. This work provides strategies for optimizing anti-inflammatory drugs removal via the regulation of FNA in the sidestream wastewater treatment process.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luís Potosí, Av, Sierra Leona 530, San Luis Potosí 78210, Mexico
| | - Yifeng Xu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| | - Lai Peng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
| | - Chuanzhou Liang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- Instituto de Metalurgia, Universidad Autónoma de San Luís Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Mildred Quintana
- Facultad de Ciencias, Universidad Autónoma de San Luís Potosí, Av. Parque Chapultepec 1570, San Luis Potosi 78210, Mexico
| |
Collapse
|
6
|
Rayat Pisheh H, Darvishi A, Masoomkhah SS. Amniotic membrane, a novel bioscaffold in cardiac diseases: from mechanism to applications. Front Bioeng Biotechnol 2024; 12:1521462. [PMID: 39758951 PMCID: PMC11696288 DOI: 10.3389/fbioe.2024.1521462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases represent one of the leading causes of death worldwide. Despite significant advances in the diagnosis and treatment of these diseases, numerous challenges remain in managing them. One of these challenges is the need for replacements for damaged cardiac tissues that can restore the normal function of the heart. Amniotic membrane, as a biological scaffold with unique properties, has attracted the attention of many researchers in recent years. This membrane, extracted from the human placenta, contains growth factors, cytokines, and other biomolecules that play a crucial role in tissue repair. Its anti-inflammatory, antibacterial, and wound-healing properties have made amniotic membrane a promising option for the treatment of heart diseases. This review article examines the applications of amniotic membrane in cardiovascular diseases. By focusing on the mechanisms of action of this biological scaffold and the results of clinical studies, an attempt will be made to evaluate the potential of using amniotic membrane in the treatment of heart diseases. Additionally, the existing challenges and future prospects in this field will be discussed.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
7
|
Xue Y, Cheng Y, Wang Q, Zhao R, Han X, Zhu J, Bai L, Li G, Zhang H, Liang H. Simultaneous removal of ammonia nitrogen, sulfamethoxazole, and antibiotic resistance genes in self-corrosion microelectrolysis-enhanced counter-diffusion biofilm system. BIORESOURCE TECHNOLOGY 2024; 412:131399. [PMID: 39218364 DOI: 10.1016/j.biortech.2024.131399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
A self-corrosion microelectrolysis (SME)-enhanced membrane-aerated biofilm reactor (eMABR) was developed for the removal of pollutants and reduction of antibiotic resistance genes (ARGs). Fe2+ and Fe3+ formed iron oxides on the biofilm, which enhanced the adsorption and redox process. SME can induce microorganisms to secrete more extracellular proteins and up-regulate the expression of ammonia monooxygenase (AMO) (0.92 log2). AMO exposed extra binding sites (ASP-69) for antibiotics, weakening the competition between NH4+-N and sulfamethoxazole (SMX). The NH4+-N removal efficiency in the S-eMABR (adding SMX and IC) increased by 44.87 % compared to the S-MABR (adding SMX). SME increased the removal performance of SMX by approximately 1.45 times, down-regulated the expressions of sul1 (-1.69 log2) and sul2 (-1.30 log2) genes, and controlled their transfer within the genus. This study provides a novel strategy for synergistic reduction of antibiotics and ARGs, and elucidates the corresponding mechanism based on metatranscriptomic and molecular docking analyses.
Collapse
Affiliation(s)
- Ying Xue
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yufei Cheng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Qingru Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Rui Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xiaohang Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Junqin Zhu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
8
|
Zheng P, Li W, Li Y, Cheng Y, Wang J, Mu Y, Shen J. Ammonia monooxygenase-mediated cometabolic biotransformation of volatile 4-chlorophenol in nitrifying counter-diffused biofilms: A combined molecular dynamics simulation, DFT calculation and experimental study. WATER RESEARCH 2024; 262:122090. [PMID: 39032340 DOI: 10.1016/j.watres.2024.122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Ammonia monooxygenase (AMO)-mediated cometabolism of organic pollutants has been widely observed in biological nitrogen removal process. However, its molecular mechanism remains unclear, hindering its practical application. Furthermore, conventional nitrification systems encounter significant challenges such as air pollution and the loss of ammonia-oxidizing bacteria, when dealing with wastewater containing volatile organic pollutants. This study developed a nitrifying membrane-aerated biofilm reactor (MABR) to enhance the biodegradation of volatile 4-chlorophenol (4-CP). Results showed that 4-CP was primarily removed via Nitrosomonas nitrosa-mediated cometabolism in the presence of NH4+-N, supported by the increased nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) content, AMO activity and the related genes abundance. Hydroquinone, detected for the first time and produced via oxidative dechlorination, as well as 4-chlorocatechol was primary transformation products of 4-CP. Nitrosomonas nitrosa AMO structural model was constructed for the first time using homology modeling. Molecular dynamics simulation suggested that the ortho-carbon in the benzene ring of 4-CP was more prone to metabolismcompared to the ipso-carbon. Density functional theory calculation revealed that 4-CP was metabolized by AMO via H-abstraction-OH-rebound reaction, with a significantly higher rebound barrier at the ipso-carbon (16.37 kcal·mol-1) as compared to the ortho-carbon (6.7 kcal·mol-1). This study fills the knowledge gap on the molecular mechanism of AMO-mediated cometabolism of organic pollutants, providing practical and theoretical foundations for improving volatile organic pollutants removal through nitrifying MABR.
Collapse
Affiliation(s)
- Peng Zheng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenqiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Youpeng Cheng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
9
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
10
|
Liang J, Zheng X, Ning T, Wang J, Wei X, Tan L, Shen F. Revealing the Viable Microbial Community of Biofilm in a Sewage Treatment System Using Propidium Monoazide Combined with Real-Time PCR and Metagenomics. Microorganisms 2024; 12:1508. [PMID: 39203351 PMCID: PMC11356008 DOI: 10.3390/microorganisms12081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial community composition, function, and viability are important for biofilm-based sewage treatment technologies. Most studies of microbial communities mainly rely on the total deoxyribonucleic acid (DNA) extracted from the biofilm. However, nucleotide materials released from dead microorganisms may interfere with the analysis of viable microorganisms and their metabolic potential. In this study, we developed a protocol to assess viability as well as viable community composition and function in biofilm in a sewage treatment system using propidium monoazide (PMA) coupled with real-time quantitative polymerase chain reaction (qPCR) and metagenomic technology. The optimal removal of PMA from non-viable cells was achieved by a PMA concentration of 4 μM, incubation in darkness for 5 min, and exposure for 5 min. Simultaneously, the detection limit can reach a viable bacteria proportion of 1%, within the detection concentration range of 102-108 CFU/mL (colony forming unit/mL), showing its effectiveness in removing interference from dead cells. Under the optimal conditions, the result of PMA-metagenomic sequencing revealed that 6.72% to 8.18% of non-viable microorganisms were influenced and the composition and relative abundance of the dominant genera were changed. Overall, this study established a fast, sensitive, and highly specific biofilm viability detection method, which could provide technical support for accurately deciphering the structural composition and function of viable microbial communities in sewage treatment biofilms.
Collapse
Affiliation(s)
- Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Institute of Environment and Sustainable Development in Agriculture, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| |
Collapse
|
11
|
Song Z, Zhang L, Yang J, Ni SQ, Peng Y. Achieving high nitrogen and antibiotics removal efficiency by nZVI-C in partial nitritation/anammox system with a single-stage membrane-aerated biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134626. [PMID: 38759403 DOI: 10.1016/j.jhazmat.2024.134626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
This study innovated constructed an activated carbon-loaded nano-zero-valent iron (nZVI-C) enhanced membrane aerated biofilm reactor (MABR) coupled partial nitritation/anammox (PN/A) system for optimizing nitrogen and antibiotics removal. Results showed that nitrogen and antibiotic removal efficiencies of 88.45 ± 0.14% and 89.90 ± 3.07% were obtained by nZVI-C, respectively. nZVI-C hastened Nitrosomonas enrichment (relative abundance raised from 2.85% to 12.28%) by increasing tryptophan content in EPS. Furthermore, nZVI-C proliferated amo gene by 3.92 times and directly generated electrons, stimulating Ammonia monooxygenase (AMO) co-metabolism activity. Concurrently, via antibiotic resistance genes (ARGs) horizontal transfer, Nitrosomonas synergized with Arenimonas and Comamonadaceae for efficient antibiotic removal. Moreover, nZVI-C mitigated antibiotics inhibition of electron transfer by proliferating genes for PN and anammox electron production (hao, hdh) and utilization (amo, hzs, nir). That facilitated electron transfer and synergistic substrate conversion between ammonia oxidizing bacteria (AOB) and anaerobic ammonia oxidizing bacteria (AnAOB). Finally, the high nitrogen removal efficiency of the MABR-PN/A system was achieved.
Collapse
Affiliation(s)
- Zixuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
12
|
Guo Y, Askari N, Smets I, Appels L. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. WATER RESEARCH 2024; 256:121598. [PMID: 38663209 DOI: 10.1016/j.watres.2024.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The emerging presence of organic micropollutants (OMPs) in water bodies produced by human activities is a source of growing concern due to their environmental and health issues. Biodegradation is a widely employed treatment method for OMPs in wastewater owing to its high efficiency and low operational cost. Compared to aerobic degradation, anaerobic degradation has numerous advantages, including energy efficiency and superior performance for certain recalcitrant compounds. Nonetheless, the low influent concentrations of OMPs in wastewater treatment plants (WWTPs) and their toxicity make it difficult to support the growth of microorganisms. Therefore, co-metabolism is a promising mechanism for OMP biodegradation in which co-substrates are added as carbon and energy sources and stimulate increased metabolic activity. Functional microorganisms and enzymes exhibit significant variations at each stage of anaerobic digestion affecting the environment for the degradation of OMPs with different structural properties, as these factors substantially influence OMPs' biodegradability and transformation pathways. However, there is a paucity of literature reviews that explicate the correlations between OMPs' chemical structure and specific metabolic conditions. This study provides a comprehensive review of the co-metabolic processes which are favored by each stage of anaerobic digestion and attempts to link various functional groups to their favorable degradation pathways. Furthermore, potential co-metabolic processes and strategies that can enhance co-digestion are also identified, providing directions for future research.
Collapse
Affiliation(s)
- Yutong Guo
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Ilse Smets
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
13
|
Rui D, Liu K, Ma Y, Huang K, Chen M, Wu F, Zhang X, Ye L. Pilot-scale investigation of performance and microbial community in a novel system combining fixed and suspended activated sludge. ENVIRONMENTAL RESEARCH 2024; 246:118141. [PMID: 38191046 DOI: 10.1016/j.envres.2024.118141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
The conventional activated sludge (CAS) process is a widely used method for wastewater treatment due to its effectiveness and affordability. However, it can be prone to sludge abnormalities such as sludge bulking/foaming and sludge loss, which can lead to a decrease in treatment efficiency. To address these issues, a novel bag-based fixed activated sludge (BBFAS) system utilizing mesh bags to contain the sludge was developed for low carbon/nitrogen ratio wastewater treatment. Pilot-scale experiments demonstrated that the BBFAS system could successfully avoid the sludge abnormalities. Moreover, it was not affected by mass transfer resistance and exhibited significantly higher nitrogen removal efficiency, surpassing that of the CAS system by up to 78%. Additionally, the BBFAS system demonstrated comparable organic matter removal efficiency to CAS system. 16S rRNA gene high-throughput sequencing revealed that the bacterial community structure within the BBFAS system was significantly different from that of the CAS system. The bacteria associated with ammonium removal were more abundant in the BBFAS system than in the CAS system. The abundance of Nitrospira in the BBFAS could reach up to 6% and significantly higher than that in the CAS system, and they were likely responsible for both ammonia-oxidizing and nitrite-oxidizing functions. Clear stratification of microbial communities was observed from the outer to inner layers of the bag components due to the gradients of dissolved oxygen and other substrates. Overall, this study presents a promising approach for avoiding activated sludge abnormalities while maintaining high pollutant removal performance.
Collapse
Affiliation(s)
- Dongni Rui
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Kunlong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yanyan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Nanjing Jiangdao Institute of Environmental Research, Nanjing, 210019, China
| | - Mengxue Chen
- Nanjing Gaoke Environmental Technology Co., Ltd., Nanjing, 210038, China
| | - Fei Wu
- Nanjing Gaoke Environmental Technology Co., Ltd., Nanjing, 210038, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Zhang Y, Sang P, Wang K, Gao J, Liu Q, Wang J, Qian F, Shu Y, Hong P. Enhanced chromium and nitrogen removal by constructing a biofilm reaction system based on denitrifying bacteria preferential colonization theory. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116156. [PMID: 38412631 DOI: 10.1016/j.ecoenv.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Understanding the developmental characteristics of microbial communities in biofilms is crucial for designing targeted functional microbial enhancements for the remediation of complex contamination scenarios. The strong prioritization effect of microorganisms confers the ability to colonize strains that arrive first dominantly. In this study, the auto-aggregating denitrifying bacterial Pseudomonas stutzeri strain YC-34, which has both nitrogen and chromium removal characteristics, was used as a biological material to form a stable biofilm system based on the principle of dominant colonization and biofortification. The effect of the biofilm system on nitrogen and chromium removal was characterized by measuring the changes in the quality of influent and effluent water. The pattern of biofilm changes was analyzed by measuring biofilm content and thickness and characterizing extracellular polymer substances (EPS). Further analysis of the biofilm microbiota characteristics and potential functions revealed the mechanism of strain YC-34 biofortified biofilm. The results revealed that the biofilm system formed could achieve 90.56% nitrate-nitrogen removal with an average initial nitrate-nitrogen concentration of 51.9 mg/L and 40% chromium removal with an average initial hexavalent chromium Cr(VI) concentration of 7.12 mg/L. The biofilm properties of the system were comparatively analyzed during the biofilm formation period, the fluctuation period of Cr(VI)-stressed water quality, and the stabilization period of Cr(VI)-stressed water quality. The biofilm system may be able to increase the structure of hydrogen bonds, the type of protein secondary structure, and the abundance of amino acid-like components in the EPS, which may confer biofilm tolerance to Cr(VI) stress and allow the system to maintain a stable biofilm structure. Furthermore, microbial characterization indicated an increase in microbial diversity in the face of chromium stress, with an increase in the abundance of nitrogen removal-associated functional microbiota and an increasing trend in the abundance of nitrogen transfer pathways. These results demonstrate that the biofilm system is stable in nitrogen and chromium removal. This bioaugmentation method may provide a new way for the remediation of heavy metal-polluted water bodies and also provides theoretical and application parameters for the popularization and application of biofilm systems.
Collapse
Affiliation(s)
- Yancheng Zhang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Pengcheng Sang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Kuan Wang
- Wuhu Three Gorges Water Co., Ltd., Wuhu 241000, China
| | - Jingyi Gao
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Qiang Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jihong Wang
- Wuhu Three Gorges Water Co., Ltd., Wuhu 241000, China
| | - Fangping Qian
- China National Chemical Communication Construction Group Co., Ltd., Jinan 250102, China
| | - Yilin Shu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
15
|
Tao H, Cao X, Song R, Zhou Z, Cheng F. Preparation of PDMS and PDMS-UiO-66 oxygen-rich membranes and modules for membrane-aerated biofilm reactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:873-886. [PMID: 38423606 PMCID: wst_2024_043 DOI: 10.2166/wst.2024.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A membrane-aerated biofilm reactor (MABR) combines membrane technology with biofilm processes and has unique advantages in the treatment of organic wastewater and volatile wastewater. The common membranes for MABR systems usually have relatively uneven pore structures and low bubble point pressure, resulting in unsatisfactory O2 utilization and wastewater treatment efficiency. In this work, polydimethylsiloxane (PDMS) and UiO-66 (a Zr-based metal organic framework) were coated on the surface of a commercial polypropylene (PP) hollow fiber membrane to prepare oxygen-rich MABR membranes and modules, which showed an attractive O2 utilization rate and wastewater treatment efficiency. The bubble points of the PDMS and PDMS-UiO-66 membranes were significantly higher than those of the PP membranes, and the PDMS-UiO-66 membranes had better oxygen enrichment capacity and biological affinity. The optimal PDMS-UiO-66 membrane modules had an O2 permeance of 31.65 GPU (1 GPU = 3.35 × 10-10 mol m-2 s-1 Pa-1), with O2/N2 selectivity of 2.21. The membrane hanging effect and processing capacity for domestic sewage were greatly improved. This study may provide insights and guidelines to fabricate porous mixed matrix membranes and modules in the industry for MABR. The developed products are expected to be applied in the actual separation process.
Collapse
Affiliation(s)
- Haiyan Tao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Xiaochang Cao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Rujie Song
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Zebin Zhou
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Fang Cheng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
16
|
Akkoyunlu B, Daly S, Cerrone F, Casey E. Investigating Mass Transfer and Reaction Engineering Characteristics in a Membrane Biofilm Using Cupriavidus necator H16. MEMBRANES 2023; 13:908. [PMID: 38132912 PMCID: PMC10744831 DOI: 10.3390/membranes13120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Membrane biofilm reactors are a growing trend in wastewater treatment whereby gas-transfer membranes provide efficient bubbleless aeration. Recently, there has been a growing interest in using these bioreactors for industrial biotechnology using microorganisms that can metabolise gaseous substrates. Since gas fermentation is limited by the low solubilities of gaseous substrates in liquid media, it is critical to characterise mass transfer rates of gaseous substrates to enable the design of membrane biofilm reactors. The objective of this study is to measure and analyse mass transfer rates and reaction engineering characteristics for a single tube membrane biofilm reactor using Cupriavidus necator H16. At elevated Reynolds numbers, the dominant resistance for gas diffusion shifts from the liquid boundary layer to the membrane. The biofilm growth rate was observed to decrease after 260 μm at 96 h. After 144 h, some sloughing of the biofilm occurred. Oxygen uptake rate and substrate utilisation rate for the biofilm developed showed that the biofilm changes from a single-substrate limited regime to a dual-substrate-limited regime after 72 h which alters the localisation of the microbial activity within the biofilm. This study shows that this platform technology has potential applications for industrial biotechnology.
Collapse
Affiliation(s)
- Burcu Akkoyunlu
- School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Dublin, Ireland; (B.A.); (S.D.)
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Sorcha Daly
- School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Dublin, Ireland; (B.A.); (S.D.)
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, D04 V1W8 Dublin, Ireland;
- School of Engineering, Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham ME4 4AG, UK
| | - Federico Cerrone
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, D04 V1W8 Dublin, Ireland;
- UCD Earth Institute, School of Biomolecular and Biomedical Sciences, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Biotechnology, Dublin City University, Glasnevin Campus, D09 N920 Dublin, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Dublin, Ireland; (B.A.); (S.D.)
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, D04 V1W8 Dublin, Ireland;
| |
Collapse
|
17
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|