1
|
Hu P, Ren W, Xi Z, Cai J, Ibrahim MAA, Shoeib T, Yang H. Dynamic process of UV-aging polystyrene microplastics, simultaneous adsorption of drugs, and subsequently coagulative removal together. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138100. [PMID: 40199081 DOI: 10.1016/j.jhazmat.2025.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
The aging of plastics and their adsorptive interactions with the residual contaminants in water has attracted increasing attentions. In this study, the dynamic process of UV-aging polystyrene (PS) microplastics (MPs) were semi-quantitatively analyzed using a coulter counter, and the adsorptive interactions between the aged PS MPs and two popular drugs[norfloxacin (NOR) and chloroquine phosphate (CQ)] were investigated simultaneously. The MPs presented a rapid size downtrend, reduced from micrometer to nanometer, and the particle number concentration increased about 2 -3 times after a 36.0 h aging effect. The apparent UV-aging process of PS MPs mainly obeyed the pseudo-first order kinetic model in currently measured MPs' size range. The drug uptakes of the aged MPs were fully consistent with the contents of oxygen-containing groups on MPs surface rather than MPs' size. The involved adsorption mechanisms were investigated in detail mainly including electrostatic attraction, hydrogen bonding, and π-π electron donor-acceptor interaction. The drug adsorbed MPs were subsequently efficiently removed by an enhanced coagulation together owing to the synergistic effects of the two pollutants. This study provides a novel and comprehensive perspective on the fundamental understanding the UV-aging process of MPs and the simultaneous adsorption behaviors, furthermore, a strategy was proposed for their collaborative removal.
Collapse
Affiliation(s)
- Pan Hu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wenxiao Ren
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhonghua Xi
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Cai
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hu Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
She Y, Wu L, Qi X, Sun S, Li Z. Aging behaviors intensify the impacts of microplastics on nitrate bioreduction-driven nitrogen cycling in freshwater sediments. WATER RESEARCH 2025; 279:123448. [PMID: 40064141 DOI: 10.1016/j.watres.2025.123448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 05/06/2025]
Abstract
Microplastics (MPs) inevitably undergo aging processes in natural environments; however, how aging behaviors influence the interactions between MPs exposures and nitrate bioreduction in freshwater sediments remains poorly understood. Here, we explored the distinct impacts of virgin and aged MPs (polystyrene (PS) and polylactic acid (PLA)) on nitrate bioreduction processes in lake sediments through a long-term microcosm experiment utilizing the 15N isotope tracing technique and molecular analysis. Compared to virgin MPs, aged PLA significantly increased the rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) (p < 0.05), facilitating sediment nitrogen loss, while aged PS only significantly improved the rates of DNRA by 272-297 % and contributed to nitrogen retention in sediments. Metagenomic sequencing demonstrated that a more significant enrichment of functional genes responsible for nitrate bioreduction pathways occurred with aged MPs exposures than with virgin MPs. By combining analyses of MPs aging traits and the key drivers of nitrate bioreduction, we revealed that aging behaviors directly regulated sediment nutrient status (e.g., DOC/NOx- ratio) and microbiological properties (from genes to bacteria), thereby further determining the activity of nitrate bioreduction. This work provides new insights into the impacts of aged MPs on sediment nitrate reduction and highlights the role of MPs aging in future assessments of long-term MPs pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liying Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Du L, Pan B, Han X, Li D, Meng Y, Liu Z, Xiong X, Li M. Enhanced ecological risk of microplastic ingestion by fish due to fragmentation and deposition in heavily sediment-laden river. WATER RESEARCH 2025; 278:123306. [PMID: 40015218 DOI: 10.1016/j.watres.2025.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
The widespread occurrence of microplastics (MPs) in rivers has aroused increasing concerns. However, there remains a significant gap about its effect on fish with different species, especially in highly-sediment-laden rivers. Here, through a large-scale investigation of microplastics in the Yellow River, our research highlighted effects of heavily sediments on MPs contamination in fish gut. MPs were 100 % tested in water, sediment and fish gut samples, with MPs in the lower reach 2∼3 times larger than that of the upper reach. Most of the microplastics were small (<1 mm), fibrous and blue fragments, composed of polyethylene, polypropylene, and polyethylene terephthalate. Feeding habitat and environment significantly controlled MPs ingestion by fish (p < 0.05), of which filter feeders and species with broader dietary preferences exhibited higher ingestion abundance, omnivorous fish abundance up to 24.9 items/individual. Heavily sediment load accelerated the fragmentation and deposition of MPs (p < 0.05), leading to the generation of more and smaller MPs particles, increasing ecological risks to aquatic organisms. Downstream, smaller sediment size and higher organic matter content also facilitated microplastic accumulation. The prevalence of highly toxic polyvinyl chloride polymers was emerged as the major contributor to environmental risks. Our results suggested that the contribution and ecological risks of small microplastics are worth attention in the mid and lower reaches of the Yellow River.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Baozhu Pan
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xu Han
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Dianbao Li
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Yueting Meng
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Zhiqi Liu
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Ming Li
- Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
4
|
Santhi JJ, Issac PK, Velayutham M, Rajan PSS, Hussain SA, Shaik MR, Shaik B, Guru A. Neurotoxic effects of chronic exposure to perfluorobutane sulfonate in adult zebrafish (Danio Rerio). Comp Biochem Physiol C Toxicol Pharmacol 2025; 292:110162. [PMID: 39993586 DOI: 10.1016/j.cbpc.2025.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Per and polyfluoroalkyl substances (PFAS) are synthetic compounds extensively utilized in industrial applications and consumer products. Long-chain PFAS has been linked to negative health impacts, prompting the introduction of shorter-chain alternatives like perfluorobutane sulfonate (PFBS). While long-chain PFAS are known to induce oxidative stress, neuroinflammation, and neuronal apoptosis, the neurotoxic potential of short-chain PFAS like PFBS was not well studied. This study aims to evaluate the neurotoxic effect and bioaccumulation of PFBS on adult zebrafish. In this study, adult zebrafish were exposed to PFBS at concentrations of 0.14, 1.4, and 14 μM for 28 days. PFBS accumulation in zebrafish brain tissue was confirmed by specific mass spectrum peaks. Behavioral assays revealed significant anxiety-like behavior, with PFBS (14 μM) exposed zebrafish spending more time in the bottom zone of the novel tank diving test (179.33 ± 1.03 s) and in the light and dark preference results showed increased time spent in the dark zone (165.17 ± 10.89 s). Learning and memory deficits were evident in the T-maze test, where PFBS-exposed zebrafish spent less time in the favorable zone (0.67 ± 1.15 s). Biochemical analysis showed significant inhibition of acetylcholinesterase (AChE) activity in the male and female brains (0.06 μmol/min and 0.09 μmol/min). Antioxidant enzyme levels were reduced, with superoxide dismutase (SOD) 5.45 U/mg protein in the male brain and 4.06 U/mg protein in the female brain, leading to increased oxidative stress biomarkers like lipid peroxidation and nitric oxide levels in male (0.99 μmol/mg/ml and 8.85 μM) and female brain (1.83 μmol/mg/ml and 8.74 μM), respectively. Gene expression analysis demonstrated the downregulation of SOD, CAT, GSR, and GPx, indicating impaired antioxidant defense mechanisms. Histopathological analysis of PFBS exposure groups revealed vacuolation and increased pyknotic neurons in the optic tectum region of the brain. Our study suggests that PFBS exposure leads to bioaccumulation in the brain, causing histopathological changes and cognitive impairment. In conclusion, PFBS induces neurotoxicity which can be a potential risk as they are incorporated into a range of consumer products.
Collapse
Affiliation(s)
- Jenila John Santhi
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Panneer Selvam Sundar Rajan
- Department of Chemical Engineering, Saveetha Engineering College, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
5
|
Nie M, Gao X, Zhao L, Han G, Duan Y, Han R, Dong S, Li Y, Du H, Yuan X, Yang Y. Organic substitution enhances soil quality, soil microbial community stability, foxtail millet productivity, and grain quality in North China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125613. [PMID: 40318616 DOI: 10.1016/j.jenvman.2025.125613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/09/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Excessive use of chemical fertilisers has reduced crop productivity and adversely affected agroecosystems. Partial substitution of chemical fertilisers with organic fertilisers can sustainably increase cereal yields; however, its effect on soil microbial characteristics in foxtail millet fields remains unclear. A two-year (2022-2023) experiment was conducted to investigate the effects of four fertilisation regimes (chemical fertiliser only, CF; 25 % organic substitution, ZF25; 50 % organic substitution, ZF50; and 75 % organic substitution, ZF75) on foxtail millet productivity, soil quality, and soil microorganism properties. The organic substitution groups promoted plant nitrogen uptake by 4.16 %-10.09 % and 3.79 %-12.88 % and improved soil fertility, increasing the crop productivity index (CPI) by 7.46 %-12.79 % and 3.78 %-6.39 % and soil quality index (SQI) by 36.48 %-125.46 % and 12.04 %-87.25 % in 2022 and 2023, respectively, compared to that in the chemical fertiliser group. ZF25 and ZF50 increased the annual millet yield by 1.39 %-6.53 % in 2022 and 2.80 %-7.87 % in 2023 compared to that of CF. Organic substitution altered the structure of the soil bacterial and fungal communities. Compared with CF, the Shannon index of soil bacteria and fungi increased by 0.28 %-1.68 % and 8.88 %-14.10 %, respectively. The biomarkers enriched in the organic substitution and chemical fertiliser groups had similar associated soil biochemical metrics, but the associated trends were reversed. Organic substitution also improved soil carbon and nitrogen metabolism. Bacteria and fungi indirectly influenced yield variations via enzyme activity and nutrient interactions. This study has important theoretical implications for scientific fertiliser management and the development of microbial fertilisers in agricultural practice.
Collapse
Affiliation(s)
- Mengen Nie
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China
| | - Xue Gao
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China
| | - Lijie Zhao
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China
| | - Genlan Han
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China
| | - Yanyan Duan
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China
| | - Ruihua Han
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China; Public Research and Development Center for Featured Coarse Gereals on the Loess Plateau, Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China
| | - Yongling Li
- Basic Department of Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Huiling Du
- Public Research and Development Center for Featured Coarse Gereals on the Loess Plateau, Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China; Shanxi Institute of Functional Agriculture, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China.
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China; Public Research and Development Center for Featured Coarse Gereals on the Loess Plateau, Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030800, Shanxi, China.
| | - Yanjun Yang
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong, 030600, Shanxi, China
| |
Collapse
|
6
|
Amani AM, Abbasi M, Najdian A, Mohamadpour F, Kasaee SR, Kamyab H, Chelliapan S, Ardeshiri H, Tayebi L, Vafa E, Mosleh-Shirazi S, Jahanbin A, Rajendran S, Simancas-Racines D. A potentially fruitful path toward a cleaner and safer environment: MXenes uses in environmental remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118222. [PMID: 40318405 DOI: 10.1016/j.ecoenv.2025.118222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
The rapid industrialization of the world has resulted in severe environmental pollution, necessitating the development of new materials such as pollution remediation. Two-dimensional (2D) MXenes have emerged as a promising family of materials due to their unique physicochemical properties, making them ideal for environmental remediation. The article sheds light on the new opportunities of MXenes in the removal of organic and inorganic contaminants, including organic dyes, pharmaceuticals, heavy metals, radionuclides, and gas pollutants. MXenes also show excellent performance in photocatalytic degradation, adsorption, and microbial inactivation with environmental safety. Moreover, their application in recovering valuable elements from waste streams is also being explored. While these advances are promising, challenges remain in surface chemistry, semiconducting behavior, interfacial effects, and large-scale synthesis. This review highlights the tremendous potential of MXenes in environmental remediation while also outlining the key challenges that need to be resolved to fully realize MXenes capabilities. By providing this comprehensive survey of MXene-based technologies, the paper stimulates further research and innovation in this rapidly evolving field.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul 02841, Republic of Korea; Universidad UTE, Quito 170527, Ecuador.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.
| | - Hanieh Ardeshiri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Institute for Engineering in Medicine, Health & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Alireza Jahanbin
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Blvd., Shiraz 7134851154, Iran
| | - Saravanan Rajendran
- Instituto de Alta Investigacion, Universidad de Tarapacá, Arica 1000000, Chile
| | - Daniel Simancas-Racines
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito 170527, Ecuador
| |
Collapse
|
7
|
Chen Y, Li Y, Niu L. Microbial degradation potential of microplastics in urban river sediments: Assessing and predicting the enrichment of PE/PP-degrading bacteria using SourceTracker and machine learning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125755. [PMID: 40378793 DOI: 10.1016/j.jenvman.2025.125755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/24/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025]
Abstract
Microplastic mitigation strategies that adapt to various actual aquatic environments require the ability to predict their microbial degradation potential. However, the sources and enrichment characteristics of the degrading bacteria in the plastisphere from river sediments, and their relationship with environmental conditions remain poorly understood. Here, SourceTracker analysis was adopted to investigate the sources and distribution characteristics of total PE/PP-degrading bacteria (TD) and local PE/PP-degrading bacteria (LD) in the plastisphere and surrounding sediments of the urban river. To better characterize the enrichment property of PE/PP-degrading bacteria in the plastisphere, two specific indices, the enrichment ratios of TD (ERTD) and LD (ERLD) separately, were first defined in this study. Furthermore, machine learning models were constructed to predict these enrichment ratios. The results showed that river sediments represented an important reservoir of PE/PP-degrading bacteria within the plastisphere (representing 81.8 %). Both the enrichment ratio of TD (R2 = 0.720) and the enrichment ratio of LD (R2 = 0.537) showed a significant positive correlation with the carbonyl index of PE/PP, indicating that the enrichment ratios can effectively reflect the microbial degradation potential of PE/PP in sediments. Compared to gradient boosting regression tree, multilayer perceptron, and support vector machines, the random forest (RF) model demonstrated superior accuracy in predicting both the enrichment ratio of TD (R2Test = 0.954, MSE = 0.180) and the enrichment ratio of LD (R2Test = 0.924, MSE = 0.009. It was also observed that the enrichment ratios were higher in river bends, indicating that river bends were potential hot zones for microbial degradation of PE/PP. SHAP analysis highlighted that the key environmental factors exhibited synergistic effects on both enrichment ratios of TD and LD. Finally, the concentration range of key environmental factors that maximize the enrichment ratio was determined. This study constitutes a powerful example of predicting microplastic microbial degradation potential across various scientific disciplines and provides a basis for the effective management of microplastics.
Collapse
Affiliation(s)
- Yamei Chen
- State Key Laboratory of Water Cycle and Water Security in River Basin , College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yi Li
- State Key Laboratory of Water Cycle and Water Security in River Basin , College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Lihua Niu
- State Key Laboratory of Water Cycle and Water Security in River Basin , College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
8
|
Habib SS, Majeed S, Rind KH, Naz S, Acar Ü, Cravana C, Ullah M, Khan K, Zahid M, Mohany M, Fazio F. Influence of tulsi Ocimum sanctum extract on fish health: Growth, hematology, serum immune parameters, and antioxidant status in Common Carp. JOURNAL OF AQUATIC ANIMAL HEALTH 2025:vsaf006. [PMID: 40366353 DOI: 10.1093/jahafs/vsaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/10/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVE In aquaculture, the trend is shifting towards using plant-derived alternatives that are abundant in phytochemicals as effective replacements for traditional antibiotics and synthetic feed additives. In the present study, the effects of tulsi Ocimum sanctum extract on growth performance, hemato-biochemical indices, serum immune parameters, and antioxidant parameters in Common Carp Cyprinus carpio were investigated. METHODS Common Carp (mean body weight ± SD = 10.6 ± 0.13 g) were fed experimental diets that contained tulsi leaf extract at 0.0 (control), 0.5, 1.0, and 1.5% for 60 d (25 fish/treatment). RESULTS The findings revealed a considerable enhancement in growth performance and a decreased feed conversion ratio, especially for the 1.0% tulsi-based diet. Additionally, weight gain and feed conversion ratio exhibited significance at both the linear and quadratic levels, as indicated by polynomial contrasts. The hematological and biochemical profiles exhibited improvements in groups receiving tulsi-enriched diets. The antioxidant status of fish serum exhibited a notable increase, as evidenced by elevated activities of total antioxidant capacity, superoxide dismutase, and catalase in fish that received the 1.0% and 1.5% tulsi-based diets. Tulsi-supplemented diets led to remarkable enhancements in serum lysozyme activity, alternative complement activity, and total immunoglobulin content. Moreover, tulsi supplementation at 1.0% and 1.5% showcased a significant reduction in serum glucose and cortisol levels compared to the other groups. CONCLUSIONS In conclusion, tulsi extract emerged as a valuable asset, positively influencing growth, blood parameters, antioxidant balance, and serum immune response in Common Carp, particularly at supplementation levels ranging from 1.0% to 1.5% in the diet.
Collapse
Affiliation(s)
| | - Saima Majeed
- Department of Maritime Sciences, Bahria University Karachi Campus, Karachi, Sindh, Pakistan
| | - Khalid Hussain Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Saira Naz
- Department of Zoology, University of Lahore Sargodha Campus, Sargodha, Punjab, Pakistan
| | - Ümit Acar
- Department of Forestry, Bayramiç Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Faculty of Marine Sciences and Technology, Department of Fisheries Industry Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Cristina Cravana
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Li Q, Imran. Using biochar, compost, and dry-based organic amendments in combination with mycorrhizae for mitigating heavy metal contamination in soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-12. [PMID: 40364482 DOI: 10.1080/15226514.2025.2502458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Water scarcity has led to the increased use of untreated wastewater for irrigation, contributing to heavy metal (HM) accumulation in soils and crops. This study evaluated the effectiveness of organic amendments and arbuscular mycorrhizal fungi (AMF) in reducing HM bioavailability and enhancing plant growth. A two-year pot experiment (2022-2023) was conducted using eight treatments (T1-T8) and three replicates each. Treatments included: T1 (Control), T2 Rice straw, T3, rice straw compost, T4, rice straw biochar, T5, AMF, T6, Straw + AMF, T7, compost + AMF, and T8, biochar + AMF. Post-harvest analysis showed that T7 and T8 significantly reduced soil and plant HM levels. T8 was the most effective, reducing Pb, Cd, and Ni in grains by up to 93%, 76%, and 83%, respectively. Shoot HM concentrations declined by 22%-52%, and grain uptake dropped by 58%-92%. T8 also improved shoot and root dry weights by 66% and 48%, and grain yield by 56%. Root colonization and mycorrhizal intensity increased significantly, along with urease (78%) and catalase (156%) activities. Results highlight the potential of T8 (biochar + AMF) as a sustainable strategy for remediating contaminated soils and improving crop productivity.
Collapse
Affiliation(s)
- Quanheng Li
- Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming, China
- Research Center for Earth System Science, Yunnan University, Kunming, China
| | - Imran
- College of Engineering, South China Agriculture University, Guangzhou, China
| |
Collapse
|
10
|
Wang B, Liu Y, Chen G, Chang H, Liu Y, Guo L, Wang Z. Impact of polyethylene microplastics on the nitrogen removal and bacterial community in sequencing batch reactor at different hydraulic retention times. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125415. [PMID: 40239345 DOI: 10.1016/j.jenvman.2025.125415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/28/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Both hydraulic retention time (HRT) and microplastics (MPs) are factors affecting the performance of biological wastewater treatment processes, but how MPs affect the role of HRT in biological wastewater treatment performance has not been investigated. In this study, the effects of polyethylene MPs (PE-MPs) on the nitrogen removal performance in a sequencing batch reactor (SBR) at different HRTs were investigated by analyzing the changes in the content and composition of extracellular polymer substances (EPS) and in the bacterial communities and metabolic pathways. In the PE-MPs absence, the HRT was shortened from 1440 to 720 min, resulting in a decrease in the average elimination of chemical oxygen demand and ammonia nitrogen by 13.21 % and 3.78 %, respectively. Whereas the presence of 0.5 mg/L PE-MPs enhanced the reduction by 73.36 % and 93.85 %, respectively. PE-MPs did not change the promotional impacts of HRT shortening on the levels of protein (PN) and polysaccharide (PS) within EPS, while amplified this effect. Aromatic PN of EPS was more sensitive to PE-MPs and HRT than tryptophan-like PN. PE-MPs resulted in a lower enzyme level in nitrification and denitrification metabolism pathways at different HRTs compared to no PE-MPs. This research offers novel perspectives for understanding how PE-MPs intervene in the influence of HRT on biological wastewater treatment performance.
Collapse
Affiliation(s)
- Bing Wang
- College of Environment Science, Liaoning University, Shenyang, China
| | - Yaohui Liu
- College of Environment Science, Liaoning University, Shenyang, China
| | - Guozhuang Chen
- College of Environment Science, Liaoning University, Shenyang, China
| | - Haowen Chang
- College of Environment Science, Liaoning University, Shenyang, China
| | - Yang Liu
- College of Environment Science, Liaoning University, Shenyang, China
| | - Liming Guo
- College of Environment Science, Liaoning University, Shenyang, China
| | - Zichao Wang
- College of Environment Science, Liaoning University, Shenyang, China.
| |
Collapse
|
11
|
Yang Y, Wang Y, Shi J. Aerobic biofilm systems outperform anaerobic and anoxic regimes in 2,4-dimethylphenol degradation: Microbial synergy and metabolic mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125408. [PMID: 40245737 DOI: 10.1016/j.jenvman.2025.125408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The efficient biodegradation of 2,4-dimethylphenol (2,4-DMP), a toxic and recalcitrant phenolic pollutant, remains a critical challenge in wastewater treatment, with ongoing debate regarding the optimal dissolved oxygen (DO) regime for biofilm-based systems. To resolve this, four biofilm reactors-anaerobic (R1), anoxic (R2), microaerobic (R3), and aerobic (R4)-were operated under a DO gradient (0.3-8.0 mg/L). When influent 2,4-DMP concentrations increased from 25 to 300 mg/L, removal efficiencies declined significantly in R1-R3 (9.0 %, 44.8 %, and 58.8 %, respectively), whereas R4 maintained 100 % removal regardless of loading. Rapid degradation occurred within 8-16 h in R4, correlating with DO consumption from 8.0 to 5.0 mg/L. Aerobic conditions eliminated dependence on extracellular polymeric substances (EPS) for pollutant sequestration, as complete mineralization negated intermediate accumulation. Microbial analysis revealed Zoogloea (18.92 % abundance), Prosthecobacter, and Ferruginibacter as keystone aerobic bacteria, encoding aromatic ring-hydroxylating dioxygenases (RHDs) for 2,4-DMP hydroxylation and β-ketoadipate pathway activation. Concurrently, fungal genera Cutaneotrichosporon (74.50 %) and Kalenjinia were enriched in R4, contributing laccase-mediated ring cleavage. Synergy between bacterial oxidative pathways and fungal ligninolytic systems enabled sustained COD removal (95.54 %) without biofilm destabilization. These findings conclusively demonstrate aerobic biofilms' superiority in 2,4-DMP treatment, driven by metabolic completeness, energy-efficient respiration, and cross-kingdom functional partitioning.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yarui Wang
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
12
|
Proshad R, Chandra K, Islam M, Khurram D, Rahim MA, Asif MR, Idris AM. Evaluation of machine learning models for accurate prediction of heavy metals in coal mining region soils in Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:181. [PMID: 40266355 DOI: 10.1007/s10653-025-02489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/30/2025] [Indexed: 04/24/2025]
Abstract
Coal mining soils are highly susceptible to heavy metal pollution due to the discharge of mine tailings, overburden dumps, and acid mine drainage. Developing a reliable predictive model for heavy metal concentrations in this region has proven to be a significant challenge. This study employed machine learning (ML) techniques to model heavy metal pollution in soils within this critical ecosystem. A total of 91 standardized soil samples were analyzed to predict the accumulation of eight heavy metals using four distinct ML algorithms. Among them, random forest model outer performed in predicting As (0.79), Cd (0.89), Cr (0.63), Ni (0.56), Cu (0.60), and Zn (0.52), achieving notable R squared values. The feature attribute analysis identified As-K, Pb-K, Cd-S, Zn-Fe2O3, Cr- Fe2O3, Ni-Al2O3, Cu-P, and Mn- Fe2O3 relationships resembled with correlation coefficients among them. The developed models revealed that the contamination factor for metals in soils indicated extremely high levels of Pb contamination (CF ≥ 6). In conclusion, this research offers a robust framework for predicting heavy metal pollution in coal mining soils, highlighting critical areas that require immediate conservation efforts. These findings emphasize the necessity for targeted environmental management and mitigation to reduce heavy metal pollution in mining sites.
Collapse
Affiliation(s)
- Ram Proshad
- State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Dil Khurram
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Md Abdur Rahim
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (CAS), Chengdu, 610299, China
- Department of Disaster Resilience and Engineering, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Maksudur Rahman Asif
- College of Environment and Ecology, Taiyuan University of Technology, Jinzhong, 030600, Shanxi, China
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia.
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia.
| |
Collapse
|
13
|
Wang J, Huangfu X, Huang R, Liang Y, Wu S, Liu H, Witkowski B, Gierczak T, Li S. Evaluating degradation efficiency of pesticides by persulfate, Fenton, and ozonation oxidation processes with machine learning. ENVIRONMENTAL RESEARCH 2025; 277:121548. [PMID: 40194678 DOI: 10.1016/j.envres.2025.121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Quantifying organic properties is pivotal for enhancing the precision and interpretability of degradation predictive machine learning (ML) models. This study used Binary Morgan Fingerprints (B-MF) and Count-Based Morgan Fingerprints (C-MF) to quantify pesticide structure, and built the ML model to forecast degradation rates of pesticides by persulfate (PS), Fenton (FT) and ozone oxidation (OZ). The result demonstrated that the C-MF-XGBoost model excelled, achieving R2 of 0.914, 0.934, and 0.971 on test-sets for the above three processes, respectively. The model accurately linked molecular structural variations to degradation rates, demonstrating that impact of molecular structure on the degradation rate was observed to be 12.4 %, 15.2 %, and 21.6 % respectively, across a broader range of SHAP values. Additionally, optimal pH ranges were identified for PS (3.5-5.5) and FT (2.5-4.0), while OZ showed a positive correlation with pH. The model identified electron gain/loss groups' promoting/inhibiting effects on degradation rates and highlighted the significance of N atomic structures in PS. Then, Tanimoto coefficient was used to evaluate the applicability of the model. This study lays a groundwork for quantifying organic compound structures and predicting their degradation impacts, presenting a novel framework to assess future organic pollutants' degradation performance.
Collapse
Affiliation(s)
- Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Ruixing Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Youheng Liang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Bartłomiej Witkowski
- Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Tomasz Gierczak
- Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shuo Li
- School of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
14
|
S. S, M. H, S. VA, Dey N, Vinayagam S, S. T, Kamaraj C, Gnanasekaran L, Goyal K, Ali H, Gupta G, Hussain MS, Subramaniyan V. Ecotoxicological evaluation of nanosized particles with emerging contaminants and their impact assessment in the aquatic environment: a review. JOURNAL OF NANOPARTICLE RESEARCH 2025; 27:112. [DOI: 10.1007/s11051-025-06306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/03/2025] [Indexed: 05/04/2025]
|
15
|
Ismail MA, Taki AG, Kumar S, Sammen SS, Amari A, Bongale A, Kisi O, Salem A. Effectiveness of waste-derived MIL type MOFs in removing PFOA and PFAS pollutants for environmental remediation. Sci Rep 2025; 15:9439. [PMID: 40108333 PMCID: PMC11923184 DOI: 10.1038/s41598-025-93854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Elimination of perfluorooctanoic acid (PFOA), a persistent pollutant that is toxic to human and ecosystem health, is important. In this study, three adsorbents, C-101, W-101, and NW-101, were evaluated. W-101 was modified by diamine ethyl modification to enhance the number of PFOA adsorption sites. The results showed that W-101 (42.7 mg g-1) had better PFOA adsorption capacity than C-101 (12.3 mg g-1), and NW-101 (698.4 mg g-1) was the best. The Langmuir model correctly described the isotherms of PFOA adsorption, and the pseudo-second-order kinetic model fitted the process. NW-101 exhibited an excellent adsorption efficiency, as it reached the equilibrium within 7 min, and also revealed higher reusability due to the stable structure of the amine-grafted structure; therefore, NW-101 proved very efficient in PFOA removal. The new method used the bark of poplar trees to prepare MIL-101(Cr) adsorbents with surface areas of 3341, 2767, and 2374 m2 g-1 for C-101, W-101, and NW-101, respectively. This cost-effective, eco-friendly method utilizes renewable raw materials, minimizes environmental impact, and represents a significant advance in PFOA removal and thermal material research.
Collapse
Affiliation(s)
- Mohamed A Ismail
- Department of Chemical Engineering, College of Engineering, King Khalid University, 61411, Abha, Saudi Arabia
| | - Anmar Ghanim Taki
- Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Satish Kumar
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | - Saad Sh Sammen
- Department of Civil Engineering, College of Engineering, University of Diyala, Baqubah, Diyala Governorate, 32001, Iraq
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, 61411, Abha, Saudi Arabia
| | - Arunkumar Bongale
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | - Ozgur Kisi
- Department of Civil Engineering, Lübeck University of Applied Science, 23562, Lübeck, Germany.
- Department of Civil Engineering, School of Technology, Ilia State University, 0162, Tbilisi, Georgia.
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea.
| | - Ali Salem
- Civil Engineering Department, Faculty of Engineering, Minia University, Minia, 61111, Egypt.
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
16
|
Xie Y, Wu P, Qu Y, Guo X, Zheng J, Xing Y, Zhang X, Liu Q. The Evolution of Nutrient and Microbial Composition and Maturity During the Composting of Different Plant-Derived Wastes. BIOLOGY 2025; 14:268. [PMID: 40136524 PMCID: PMC11940639 DOI: 10.3390/biology14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Composting is an environmentally friendly treatment technology that recycles and sanitizes organic solid waste. This study aimed to assess the evolution of nutrients, maturity, and microbial communities during the composting of different plant-derived wastes. The composting process was conducted over 49 days using three types of plant-derived waste: wheat bran (WB), peanut straw (PS), and poplar leaf litter (PL). This process was examined through physical, chemical, and biological parameters. The results revealed that after 49 days of composting, the three groups experienced significant changes. They were odorless, were insect-free, exhibited a dark brown color, had an alkaline pH value, and had an electrical conductivity (EC) value of less than 4 mS/cm. These characteristics indicated that they had reached maturity. Nutrient content was the most significant factor influencing the degree of humification of the different composting materials, while changes in microbial community diversity were the key driving factors. Significantly, the compost PS, derived from peanut straw, entered the thermophilic phase first, and by the end of composting, it had the lowest organic matter (OM) loss rate (17.4%), with increases in total nitrogen (TN), total phosphorus (TP), and total potassium (TK) in the order of PS > PL > WB. The increase in humus carbon (HSC) content and the humic acid/fulvic acid (HA/FA) ratio followed the order PS > WB > PL. FTIR spectra indicated that PS had greater aromatic characteristics compared to the other samples. The abundance and diversity of bacterial and fungal communities in the compost increased significantly, accompanied by more complex community structures. Crucially, there were no phytotoxic effects in any of the three composting treatments, and the compost PS boasted a high germination index (GI) of 94.79%, with the lowest heavy metal contents. The findings indicate that the compost PS has the highest potential for resource utilization and is suitable for agricultural applications. Our results demonstrate that composting technology for plant-derived waste has the potential to enhance soil fertility and provide a reference for the composting treatment and resource utilization of other plant-derived waste.
Collapse
Affiliation(s)
- Yuxin Xie
- College of Garden, Changchun University, Changchun 130012, China; (Y.X.); (P.W.); (Y.Q.); (X.G.); (J.Z.); (Y.X.); (X.Z.)
| | - Pengbing Wu
- College of Garden, Changchun University, Changchun 130012, China; (Y.X.); (P.W.); (Y.Q.); (X.G.); (J.Z.); (Y.X.); (X.Z.)
| | - Ying Qu
- College of Garden, Changchun University, Changchun 130012, China; (Y.X.); (P.W.); (Y.Q.); (X.G.); (J.Z.); (Y.X.); (X.Z.)
| | - Xingchi Guo
- College of Garden, Changchun University, Changchun 130012, China; (Y.X.); (P.W.); (Y.Q.); (X.G.); (J.Z.); (Y.X.); (X.Z.)
| | - Junyan Zheng
- College of Garden, Changchun University, Changchun 130012, China; (Y.X.); (P.W.); (Y.Q.); (X.G.); (J.Z.); (Y.X.); (X.Z.)
| | - Yuhe Xing
- College of Garden, Changchun University, Changchun 130012, China; (Y.X.); (P.W.); (Y.Q.); (X.G.); (J.Z.); (Y.X.); (X.Z.)
| | - Xu Zhang
- College of Garden, Changchun University, Changchun 130012, China; (Y.X.); (P.W.); (Y.Q.); (X.G.); (J.Z.); (Y.X.); (X.Z.)
| | - Qian Liu
- College of Garden, Changchun University, Changchun 130012, China; (Y.X.); (P.W.); (Y.Q.); (X.G.); (J.Z.); (Y.X.); (X.Z.)
- Institute of Resource Utilization and Soil Conservation, Changchun University, Changchun 130022, China
| |
Collapse
|
17
|
Liu D, Song G, Liu L, Madadi M, Li C, Hu W, Zhang Y, Liu Z, Sun C, Sun F. Enhanced Enzymatic Hydrolysis of Tobacco Stalk via Simultaneous Deconstruction and Modification through Triton X-100-Mediated Organosolv Pretreatment. CHEMSUSCHEM 2025:e202500197. [PMID: 40032800 DOI: 10.1002/cssc.202500197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Tobacco stalks (TS) present substantial potential for biofuel and biochemical production; however, their complex lignin structures and tightly bound carbohydrates pose significant challenges for enzymatic hydrolysis due to high recalcitrance. This study explores Triton-X 100-mediated 1,4-butanediol combined with AlCl3 pretreatment for TS fractionation towards improving enzymatic hydrolysis. Optimized pretreatment conditions achieved a significant removal of 87.8 % of hemicellulose and 81.0 % of lignin while maintaining a high cellulose retention of 90.1 %. Subsequently, the pretreated biomass recorded 91.2 % glucose yield after enzymatic hydrolysis at 10 % w/w solid with 12 FPU/g enzyme loadings, substantially outperforming controls. The presence of Triton-X 100 in pretreatment reduced enzyme requirements by up to 33.3 %. Structural characterization of the pretreated TS indicated effective disruption of lignin-carbohydrate complexes and an increase in biomass porosity by 1.2-2.3 folds, contributing to improved cellulose accessibility and enzymatic hydrolysis efficiency. Moreover, structural characterization of lignin revealed that Triton-X 100 grafted onto lignin by etherification, yielding a 21 % reduction in phenolic hydroxyl content and enhancing surface negative charge. These modifications effectively weaken both hydrogen bonding and electrostatic interactions between lignin and cellulase, thereby improving enzymatic hydrolysis efficiency. Overall, the proposed pretreatment presents a promising strategy for efficient fractionation and hydrolysis of TS biomass.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Liang Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Caiyue Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Wenhao Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yao Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zicheng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
18
|
Rind KH, Arshad M, Majeed S, Habib SS, Al-Rejaie SS, Mohany M, Aragona F, Fazio F. Impact of heavy metals on health and quality of Oreochromis niloticus cultured in biofloc and earthen pond systems. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2025; 60:129-137. [PMID: 40013663 DOI: 10.1080/03601234.2025.2468065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Heavy metal contamination in aquaculture threatens fish health and consumer safety, with bioaccumulation differing between farming systems. The study compares heavy metal (Cd, Cr, Pb and Cu) contamination in fish feed, water and organs (muscle, gills and liver) of Nile tilapia (Oreochromis niloticus) from biofloc and pond farming systems. Samples were collected from ten biofloc tanks and ten earthen ponds, with heavy metals quantified using atomic absorption spectrophotometry. Heavy metal levels in fish feed were below permissible limits, while pond water showed significantly higher (P < 0.05) contamination than biofloc water. Pond-reared tilapia exhibited higher heavy metal accumulation in muscles, gills and liver compared to biofloc-reared fish. The liver showed the highest bioaccumulation, followed by gills, in both systems. Cd levels exceeded standard limits in the liver and gills of pond-reared fish. Principal component analysis (PCA) and cluster analysis revealed strong correlations between heavy metals in gills, water and liver, while muscles and feed formed a separate cluster. Pb, Cd and Cu were closely associated, suggesting a common contamination source. The health index (HI) for muscle was <1 in both systems, indicating safety for consumption. Overall, biofloc-reared tilapia was found safer for human consumption compared to pond-reared fish.
Collapse
Affiliation(s)
- Khalid Hussain Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Madeeha Arshad
- Department of Zoology, Division of Science and Technology, University of Education Lahore, Faisalabad, Punjab, Pakistan
| | - Saima Majeed
- Department of Maritime Sciences, Bahria University Karachi Campus, Karachi, Sindh, Pakistan
| | | | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Liu L, Hua Y, Sun J, Ahmad S, He X, Zhuo Y, Tang J. Carbon Cycling in Wetlands Under the Shadow of Microplastics: Challenges and Prospects. TOXICS 2025; 13:143. [PMID: 40137470 PMCID: PMC11946319 DOI: 10.3390/toxics13030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Wetlands are one of the most crucial ecosystems for regulating carbon sequestration and mitigating global climate change. However, the disturbance to carbon dynamics caused by microplastics (MPs) in wetlands cannot be overlooked. This review explores the impacts of MPs on the carbon cycles within wetland ecosystems, focusing on the underlying physicochemical and microbial mechanisms. The accumulation of MPs in wetland sediments can severely destabilize plant root functions, disrupting water, nutrient, and oxygen transport, thereby reducing plant biomass development. Although MPs may temporarily enhance carbon storage, they ultimately accelerate the mineralization of organic carbon, leading to increased atmospheric carbon dioxide emissions and undermining long-term carbon sequestration. A critical aspect of this process involves shifts in microbial community structures driven by selective microbial colonization on MPs, which affect organic carbon decomposition and methane production, thus posing a threat to greenhouse gas emissions. Notably, dissolved organic matter derived from biodegradable MPs can promote the photoaging of coexisting MPs, enhancing the release of harmful substances from aged MPs and further impacting microbial-associated carbon dynamics due to disrupted metabolic activity. Therefore, it is imperative to deepen our understanding of the adverse effects and mechanisms of MPs on wetland health and carbon cycles. Future strategies should incorporate microbial regulation and ecological engineering techniques to develop effective methodologies aimed at maintaining the sustainable carbon sequestration capacity of wetlands affected by MP contamination.
Collapse
Affiliation(s)
- Linan Liu
- Hebei Provincial Key Laboratory of Agroecological Safety, Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (L.L.); (J.S.); (X.H.); (Y.Z.)
| | - Yizi Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| | - Jingmin Sun
- Hebei Provincial Key Laboratory of Agroecological Safety, Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (L.L.); (J.S.); (X.H.); (Y.Z.)
| | - Shakeel Ahmad
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Xin He
- Hebei Provincial Key Laboratory of Agroecological Safety, Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (L.L.); (J.S.); (X.H.); (Y.Z.)
| | - Yuguo Zhuo
- Hebei Provincial Key Laboratory of Agroecological Safety, Hebei Engineering Research Center for Ecological Restoration of Seaward Rivers and Coastal Waters, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (L.L.); (J.S.); (X.H.); (Y.Z.)
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| |
Collapse
|
20
|
Chen C, Lai H, Deng Y, Cao J, Chen J, Jin S, Wu W, Sun D, Zhang C. Response of sedimentary microbial community and antibiotic resistance genes to aged Micro(Nano)plastics exposure under high hydrostatic pressure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135942. [PMID: 39326153 DOI: 10.1016/j.jhazmat.2024.135942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Several studies reported that the presence of microplastics (MPs)/nanoplastics (NPs) in marine environments can alter microbial community and function. Yet, the impact of aged MPs/NPs on deep sea sedimentary ecosystems under high hydrostatic pressure remains insufficiently explored. Herein, the sedimentary microbial community composition, co-occurrence network, assembly, and transfer of antibiotic resistance genes (ARGs) in response to aged MPs/NPs were investigated. Compared with the control, NPs addition significantly reduced bacterial alpha diversity (p < 0.05), whereas MPs showed no significant impact (p > 0.05). Moreover, networks under NPs exhibited decreased complexity than that under MPs and the control, including edges, average degree, and the number of keystone. The assembly of the microbial community was primarily governed by stochastic processes, and aged MPs/NPs increased the importance of stochastic processes. Moreover, exposure to MPs/NPs for one month decreased the abundance of antibiotic resistance genes (ARGs) (from 94.8 to 36.2 TPM), while exposure for four months increased the abundance (from 40.6 to 88.1 TPM), and the shift of ARGs in sediment was driven by both functional modules and microbial community. This study is crucial for understanding the stress imposed by aged MPs/NPs on sedimentary ecosystems under high hydrostatic pressure.
Collapse
Affiliation(s)
- Chunlei Chen
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hongfei Lai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China; Guangzhou Marine Geological Survey, Guangzhou 510075, Guangdong, China
| | - Yinan Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China; Guangzhou Marine Geological Survey, Guangzhou 510075, Guangdong, China.
| | - Jun Cao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China; Guangzhou Marine Geological Survey, Guangzhou 510075, Guangdong, China
| | - Jiawang Chen
- Donghai laboratory, Zhoushan 316021, Zhejiang, China
| | - Shidi Jin
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Weimin Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020
| | - Dan Sun
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
21
|
Hu Y, Jia J, Zhou F, Shen D, Shentu J, Lu L, Qi S, Zhu M, Long Y. The synchronized dynamic release behavior of microplastics during farmland soil erosion process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123343. [PMID: 39536585 DOI: 10.1016/j.jenvman.2024.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) are widespread in farmland soil. However, the risks associated with their loss through soil erosion remain unknown. This study investigates the occurrence and behavior of MPs in farmland soil in a southeastern coastal area of China, focusing on their synchronized dynamic release during soil erosion scenarios. The results showed that the abundance of MPs in the tested farmland soil ranged from 2.40 × 104 to 1.04 × 105 items·kg-1. MPs predominantly appear as fragments and particles, with sizes concentrated between 30 and 100 μm. During the process of soil erosion, characterized by rapid soil subsidence, the amount of MPs released into water bodies initially decreases, averaging a reduction of 1.08 × 104 items·kg-1. This is followed by an average increase of 1.89 × 104 items·kg-1. The competition between the adsorption, collision, and sedimentation of soil particles and the desorption and release of settled particles, determines this behavior. This pattern is strongly related to the physicochemical properties and mechanical composition of the soil. Deep learning predictions revealed that, without external influences, 49.42% of MPs in farmland soil could be synchronously released into water bodies during erosion. The analysis shows that MPs exhibit dynamic behavior in time and space, posing serious threats to aquatic ecosystems. Controlling soil erosion in farmland is crucial for the source management of MP migration.
Collapse
Affiliation(s)
- Ying Hu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jia Jia
- Zhejiang Huanneng Environment Technology Co.,Ltd, Hangzhou, 310012, China
| | - Fanping Zhou
- Hangzhou Bole Digital Intelligence Technology Co., Ltd, Hangzhou, 310011, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
22
|
Shi T, Xu H, Pan C, Wang X, Jiang Y, Li Q, Guo J, Mo X, Luo P, Fang Q, Yang J. Distribution, characteristics, and ecological risks of microplastics in the Hongyingzi sorghum production base in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124866. [PMID: 39222769 DOI: 10.1016/j.envpol.2024.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Microplastics (MPs), an emerging pollutant of global concern, have been studied in the Hongyingzi sorghum production base. In this study, we investigated MPs in the surface soil (0-10 cm) and deeper soil (10-20 cm) in the Hongyingzi sorghum production base. Pollution characterization and ecological risk evaluation were conducted. The results revealed that the MP abundance ranged from 1.31 × 102 to 4.27 × 103 particles/kg, with an average of 1.42 ± 1.22 × 103 particles/kg. There was no clear correlation between the MP abundance and soil depth, and the ordinary kriging method predicted a range of 1.26 × 103-1.28 × 103 particles/kg in most of the study area, indicating a relatively uniform distribution. Among the 12 types of MPs detected, acrylates copolymer (ACR), polypropylene (PP), polyurethane (PU), and polymethyl methacrylate (PMMA) were the most frequently detected. These MPs primarily originated from packaging and advertising materials made from polyurethane and polyester used by Sauce Wine enterprises, as well as plastic products made from polyolefin used in daily life and agricultural activities. The particle size of MPs was primarily 20-100 μm. Overall, the proportion of the 20-100 μm MP was 95.1% in the surface soil layer and 86.7% in the deeper soil layer. Based on the pollution load index, the MP pollution level in the study area was classified as class I. Polymer hazard index evaluation revealed that the risk levels at all of the sampling sites ranged from IV to V, and ACR, PU, and PMMA were identified as significant sources of polymer hazard. Potential ecological index evaluation revealed that most of the soil samples collected from the study area were dangerous or extremely dangerous, and the surface soil posed a greater ecological risk than the deeper soil. These findings provide a scientific foundation for the prevention, control, and management of MP pollution in the Hongyingzi sorghum production base.
Collapse
Affiliation(s)
- Tianzhu Shi
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Huajie Xu
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China.
| | - Changbin Pan
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Xiangui Wang
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Yuting Jiang
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Qiong Li
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Ju Guo
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Xinliang Mo
- Department of Brewing Engineering, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Pan Luo
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Qilin Fang
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| | - Jing Yang
- Department of Resource and Environment, Moutai Institute, Renhuai, GuiZhou, 564500, China
| |
Collapse
|
23
|
Ojha PC, Satpathy SS, Ojha R, Dash J, Pradhan D. Insight into the removal of nanoplastics and microplastics by physical, chemical, and biological techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1055. [PMID: 39404908 DOI: 10.1007/s10661-024-13247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
Plastic pollutants create health crises like physical damage to tissues, upset reproductive processes, altered behaviour, oxidative stress, neurological disorders, DNA damage, gene expression, and disrupt physiological functions, as the biosphere accumulates them inadvertently through the food web. Water resources have become the generic host of plastic wastes irrespective of their particle size, resulting in widespread distribution in aquatic environments. The pre-treatment step of the traditional water treatment process can easily remove coarse-sized plastic wastes. However, the fine plastic particles, with sizes ranging from nanometres to millimetres, are indifferent to the traditional water treatment. To address the escalating problems, the upgradation of different traditional physical, chemical, and biological remediation techniques offers a promising avenue for tackling tiny plastic particles from the water environment. Further, new techniques and hybrid incorporations to the existing water treatment techniques have been explored, specifically removing tiny plastic debris. A detailed understanding of the sources, fate, and impact of plastic wastes in the environment, as well as an evaluation of the above treatment techniques and their limitations and challenges, can only show the way for their upgradation, hybridization, and development of new techniques. This review paper provides a comprehensive overview of the current knowledge and techniques for the remediation of nanoplastics and microplastics.
Collapse
Affiliation(s)
- Priti Chhanda Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Swati Sucharita Satpathy
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Ritesh Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Jyotilagna Dash
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Debabrata Pradhan
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India.
| |
Collapse
|
24
|
Chen H, Huang D, Zhou W, Deng R, Yin L, Xiao R, Li S, Li F, Lei Y. Hotspots lurking underwater: Insights into the contamination characteristics, environmental fates and impacts on biogeochemical cycling of microplastics in freshwater sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135132. [PMID: 39002483 DOI: 10.1016/j.jhazmat.2024.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The widespread presence of microplastics (MPs) in aquatic environments has become a significant concern, with freshwater sediments acting as terminal sinks, rapidly picking up these emerging anthropogenic particles. However, the accumulation, transport, degradation and biochemical impacts of MPs in freshwater sediments remain unresolved issues compared to other environmental compartments. Therefore, this paper systematically revealed the spatial distribution and characterization information of MPs in freshwater (rivers, lakes, and estuaries) sediments, in which small-size (<1 mm), fibers, transparent, polyethylene (PE), and polypropylene (PP) predominate, and the average abundance of MPs in river sediments displayed significant heterogeneity compared to other matrices. Next, the transport kinetics and drivers of MPs in sediments are summarized, MPs transport is controlled by the particle diversity and surrounding environmental variability, leading to different migration behaviors and transport efficiencies. Also emphasized the spatio-temporal evolution of MPs degradation processes and biodegradation mechanisms in sediments, different microorganisms can depolymerize high molecular weight polymers into low molecular weight biodegradation by-products via secreting hydrolytic enzymes or redox enzymes. Finally, discussed the ecological impacts of MPs on microbial-nutrient coupling in sediments, MPs can interfere with the ecological balance of microbially mediated nutrient cycling by altering community networks and structures, enzyme activities, and nutrient-related functional gene expressions. This work aims to elucidate the plasticity characteristics, fate processes, and potential ecological impact mechanisms of MPs in freshwater sediments, facilitating a better understanding of environmental risks of MPs in freshwater sediments.
Collapse
Affiliation(s)
- Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China.
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Lingshi Yin
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Lei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
25
|
Pan X, Lin L, Cao X, Jing Z, Dong L, Zhai W. Response of microbial communities and biogeochemical cycling functions to sediment physicochemical properties and microplastic pollution under damming and water diversion projects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173209. [PMID: 38754501 DOI: 10.1016/j.scitotenv.2024.173209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Understanding the interactions among flow-sediment, microorganisms, and biogeochemical cycles is crucial for comprehending the ecological response mechanisms of dams and water diversion. This study focused on the spatial patterns of carbon, nitrogen, phosphorus, and sulfur (CNPS) cycle functional genes in the water resource for the middle route of the South-to-North Water Diversion Project in China, specifically the Danjiangkou Reservoir (comprising the Han and Dan reservoirs). The investigation incorporated sediment physicochemical properties and microplastic pollution. Numerous microbial species were identified, revealing that microbial communities demonstrated sensitivity to changes in sedimentary mud content. The communities exhibited greater β diversity due to finer sediment particles in the Han Reservoir (HR), whereas in the Dan Reservoir (DR), despite having higher sediment nutrient content and MPs pollution, did not display this pattern. Regarding the composition and structure of microbial communities, the study highlighted that sediment N and P content had a more significant influence compared to particle size and MPs. The quantitative microbial element cycling (QMEC) results confirmed the presence of extensive chemolithotrophic microbes and strong nitrogen cycle activity stemming from long-term water storage and diversion operations. The denitrification intensity in the HR surpassed that of the DR. Notably, near the pre-dam area, biological nitrogen fixation, phosphorus removal, and sulfur reduction exhibited noticeable increases. Dam construction refined sediment, fostering the growth of different biogeochemical cycling bacteria and increasing the abundance of CNPS cycling genes. Furthermore, the presence of MPs exhibited a positive correlation with S cycling genes and a negative correlation with C and N cycling genes. These findings suggest that variations in flow-sediment dynamics and MPs pollution have significant impact the biogeochemical cycle of the reservoir.
Collapse
Affiliation(s)
- Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China.
| | - Xiaohuan Cao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Zheng Jing
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Wenliang Zhai
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| |
Collapse
|
26
|
Qian Y, Huang L, Yan P, Wang X, Luo Y. Biofilms on Plastic Debris and the Microbiome. Microorganisms 2024; 12:1362. [PMID: 39065130 PMCID: PMC11278848 DOI: 10.3390/microorganisms12071362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Plastic pollution has become a global environmental problem, and the large number of microorganisms attached to plastic debris in the environment has become a hot topic due to their rapid response to pollutants and environmental changes. In this study, we used high-throughput sequencing to investigate the microbial community structure of and explore the metagenome in the biofilm of two types of plastic debris, polystyrene (PS) and polyethylene terephthalate (PET), and compared them with a water sample collected at the sampling site. The phylum Proteobacteria dominated both the PET and PS samples, at 93.43% and 65.95%, respectively. The metagenome data indicated that the biofilm is enriched with a number of hydrocarbon (petroleum, microplastics, etc.) degrading genes. Our results show that the type of plastic determined the bacterial community structure of the biofilm, while the environment had relatively little effect.
Collapse
Affiliation(s)
- Yiqian Qian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Pei Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Yuanrong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
27
|
Chen Y, Niu L, Li Y, Wang Y, Shen J, Zhang W, Wang L. Distribution characteristics and microbial synergistic degradation potential of polyethylene and polypropylene in freshwater estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134328. [PMID: 38643575 DOI: 10.1016/j.jhazmat.2024.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The microbial degradation of polyethylene (PE) and polypropylene (PP) resins in rivers and lakes has emerged as a crucial issue in the management of microplastics. This study revealed that as the flow rate decreased longitudinally, ammonia nitrogen (NH4+-N), heavy fraction of organic carbon (HFOC), and small-size microplastics (< 1 mm) gradually accumulated in the deep and downstream estuarine sediments. Based on their surface morphology and carbonyl index, these sediments were identified as the potential hot zone for PE/PP degradation. Within the identified hot zone, concentrations of PE/PP-degrading genes, enzymes, and bacteria were significantly elevated compared to other zones, exhibiting strong intercorrelations. Analysis of niche differences revealed that the accumulation of NH4+-N and HFOC in the hot zone facilitated the synergistic coexistence of key bacteria responsible for PE/PP degradation within biofilms. The findings of this study offer a novel insight and comprehensive understanding of the distribution characteristics and synergistic degradation potential of PE/PP in natural freshwater environments.
Collapse
Affiliation(s)
- Yamei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yingjie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiayan Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
28
|
Bhatia SK, Kumar G, Yang YH. Understanding microplastic pollution: Tracing the footprints and eco-friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169926. [PMID: 38199349 DOI: 10.1016/j.scitotenv.2024.169926] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microplastics (MPs) pollution has emerged as a critical environmental issue with far-reaching consequences for ecosystems and human health. These are plastic particles measuring <5 mm and are categorized as primary and secondary based on their origin. Primary MPs are used in various products like cosmetics, scrubs, body wash, and toothpaste, while secondary MPs are generated through the degradation of plastic products. These have been detected in seas, rivers, snow, indoor air, and seafood, posing potential risks to human health through the food chain. Detecting and quantifying MPs are essential to understand their distribution and abundance in the environment. Various microscopic (fluorescence microscopy, scanning electron microscopy) and spectroscopy techniques (FTIR, Raman spectroscopy, X-ray photoelectron spectroscopy) have been reported to analyse MPs. Despite the challenges in scalable removal methods, biological systems have emerged as promising options for eco-friendly MPs remediation. Algae, bacteria, and fungi have shown the potential to adsorb and degrade MPs in wastewater treatment plants (WWTPs) offering hope for mitigating this global crisis. This review examines the sources, impacts, detection, and biological removal of MPs, highlighting future directions in this crucial field of environmental conservation. By fostering global collaboration and innovative research a path towards a cleaner and healthier planet for future generations can be promised.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
29
|
Liu TJ, Yang J, Wu JW, Sun XR, Gao XJ. Polyethylene microplastics induced inflammation via the miR-21/IRAK4/NF-κB axis resulting to endoplasmic reticulum stress and apoptosis in muscle of carp. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109375. [PMID: 38218424 DOI: 10.1016/j.fsi.2024.109375] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
As a widespread environmental pollutant, microplastics pose a great threat to the tissues and organs of aquatic animals. The carp's muscles are necessary for movement and survival. However, the mechanism of injury of polyethylene microplastics (PE-MPs) to carp muscle remains unclear. Therefore, in this study, PE-MPs with the diameter of 8 μm and the concentration of 1000 ng/L were used to feed carp for 21 days, and polyethylene microplastic treatment groups was established. The results showed that PE-MPs could cause structural abnormalities and disarrangement of muscle fibers, and aggravate oxidative stress in muscles. Exposure to PE-MPs reduced microRNA (miR-21) in muscle tissue, negatively regulated Interleukin-1 Receptor Associated Kinase 4 (IRAK4), activated Nuclear Factor Kappa-B (NF-κB) pathway, induced inflammation, and led to endoplasmic reticulum stress and apoptosis. The present study provides different targets for the prevention of muscle injury induced by polyethylene microplastics.
Collapse
Affiliation(s)
- Tian-Jing Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Yang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jia-Wei Wu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Ran Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xue-Jiao Gao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|